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Abstract

Background: During transcription, the nontranscribed DNA strand becomes single-stranded DNA (ssDNA), which can form
secondary structures. Unpaired bases in the ssDNA are less protected from mutagens and hence experience more
mutations than do paired bases. These mutations are called transcription-associated mutations. Transcription-associated
mutagenesis is increased under stress and depends on the DNA sequence. Therefore, selection might significantly influence
protein-coding sequences in terms of the transcription-associated mutability per transcription event under stress to
improve the survival of Escherichia coli.

Methodology/Principal Findings: The mutability index (MI) was developed by Wright et al. to estimate the relative
transcription-associated mutability of bases per transcription event. Using the most stable fold of each ssDNA that have an
average length n, MI was defined as (the number of folds in which the base is unpaired)/n6(highest –DG of all n folds in
which the base is unpaired), where DG is the free energy. The MI values show a significant correlation with mutation data
under stress but not with spontaneous mutations in E. coli. Protein sequence diversity is preferred under stress but not
under favorable conditions. Therefore, we evaluated the selection pressure on MI in terms of the protein sequence diversity
for all the protein-coding sequences in E. coli. The distributions of the MI values were lower at bases that could be
substituted with each of the other three bases without affecting the amino acid sequence than at bases that could not be
so substituted. Start codons had lower distributions of MI values than did nonstart codons.

Conclusions/Significance: Our results suggest that the majority of protein-coding sequences have evolved to promote
protein sequence diversity and to reduce gene knockout under stress. Consequently, transcription-associated mutagenesis
increases protein sequence diversity more effectively than does random mutagenesis under stress. Nonrandom
transcription-associated mutagenesis under stress should improve the survival of E. coli.
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Introduction

During transcription, the nontranscribed strand becomes single

stranded, whereas the transcribed strand forms a complex with

RNA polymerase and the nascent RNA transcript [1]. The ssDNA

is much more vulnerable to most mutagens than is the double-

stranded DNA [2] because it is not protected by pairing [3]. The

resulting mutations include single-base substitutions [2,4,5,6] and

insertions/deletions (indels) [4,7] and are called transcription-

associated mutations [8] or transcription-induced mutations [9].

Therefore, transcription-associated mutagenesis should be active

on the nontranscribed strands, in highly transcribed DNA regions,

and in cells under stress where high levels of mutagens are active.

The existence and significance of transcription-associated muta-

genesis is widely supported. For example, increased mutations

have been observed in highly transcribed regions in diverse

species, such as Escherichia coli [9,10,11], yeast [8], and humans

[12,13]. The nontranscribed strand is thought to have greater

numbers of mutations than the transcribed strand in E. coli

[6,9,11] and humans [14,15,16]. The larger numbers of mutations

on the nontranscribed strand are partly but not solely attributable

to the activity of the transcription-coupled DNA repair system,

which acts on the transcribed strand, in E. coli [6]. Transcription-

associated mutations are considered to occur regardless of specific

secondary structures [17]. Transcription-associated mutagenesis

becomes active under stress [18], and occurs in both genomic

DNA and plasmid DNA in E. coli [17]. Therefore, transcription-

associated mutagenesis is considered to be an intrinsic source of

mutations [5,8,11,19]. Furthermore, transcription-associated mu-

tations occur at a level that affects the genomic composition of T7
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bacteriophage [20]. As transcription-associated mutations occurs

asymmetrically on the transcribed and nontranscribed strands [6],

when all the transcription-associated mutations that occur in a cell

are not repaired, its two daughter cells have different genomic

DNA. Transcription-coupled DNA repair act selectively on the

transcribed strand [21]. Most, if not all, mutations on nontran-

scribed strands would be expressed only after replication.

Therefore, transcription-associated mutations should predomi-

nantly exert their effects not on the transcribing cells but on their

descendant cells. The mutation rate of E. coli is lower than one

base pair per genome per replication [22]. Therefore, E. coli cells

would often contain one transcription-associated mutation and no

other types of mutations in a genomic strand and no mutations in

the other genomic strand until cell division when transcription-

associated mutagenesis operates. In such cases, the unmutated

genomic DNA strand of the cell is inherited by one of its two

daughter cells. Consequently, transcription-associated mutagenesis

can be considered a safe way for dividing cells to rapidly increase

the sequence diversity of the next generation.

Transcription-associated mutagenesis has often been investigat-

ed in reversion assays under stress [6,23]. The nonrevertants in the

reversion assays are often assumed to be nondividing cells. In

reversion assays, organisms such as E. coli are engineered to divide

actively and hence form large detectable viable colonies only when

one or more of the requisite mutations occurs. E. coli can continue

to divide slowly by living on the debris of other cells [24]. For

example, E. coli can survive in batch cultures without any addition

of nutrients for many months [25]. Therefore, the possibility that

such nonrevertants divide as many times as they die cannot be

excluded. If cells are assumed to be nondividing, it is difficult to see

how E. coli could survive the high mutation rate experienced by

revertants. However, such a high mutation rate can be explained if

the E. coli cells live on cell debris and if transcription-associated

mutagenesis plays a significant role. We describe here a possible

scenario. After the nonrevertants are plated, the E. coli cells

continue to divide slowly by living on the debris of other cells,

perhaps following the death phase, in which about 99% of cells

die. When the E. coli cells experience stress, transcription-

associated mutagenesis increases [18]. E. coli safely increases its

sequence diversity in the daughter cells whenever all the

transcription-associated mutations that occur are not repaired

correctly before cell division. Whenever detrimental mutations

occur alone or in combination with preexisting mutations, the cells

die and produce cell debris. The surviving cells gradually

accumulate mutations as cell division recurs. While mutation

and selection occur, transcription-associated mutations can occur

at the sites that produce revertants. Therefore, the multiple

mutations of the revertants can be interpreted as the result of

mutation and selection through many generations, which would

significantly reduce the estimated mutation rate. Revertants are

usually counted 48 h after plating [6,23], which is longer than the

overnight or one day incubation typically required for colonies to

appear when nonrevertant E. coli cells are plated on rich medium.

This late appearance of revertants can be attributed to slow cell

division, a relatively low mutation rate, and limited numbers of

surviving cells per generation. The mismatched DNA base pairing

caused by mutations can result in cross-strand deamination in vitro

[26,27], so it is possible for transcription-associated mutagenesis to

rescue nondividing cells.

The ssDNA of the nontranscribed strand forms secondary

structures [18], which have different stability. Therefore, some

ssDNA sequences are sustained for a longer time than others.

Consequently, individual bases in the nontranscribed strand

display different transcription-associated mutability per transcrip-

tion event, depending on the period during which the base is

unpaired [28]. Transcription-associated mutability per transcrip-

tion event has been estimated by a few methods [3,28]. Among

them (see ‘‘Materials and Methods’’ for details), the mutability

index (MI), developed by Wright et al., focuses on transcription-

associated mutagenesis under stress conditions [28]. The following

is a description of the method of Wright et al. [28]. Because the

length of ssDNA can vary, the length of the ssDNA was simplified

to an average value n [28]. Therefore, any given base is assumed to

belong to n ssDNA. The most stable fold of each ssDNA was

identified, together with its –DG (the negative free energy) and

pairing information. Using these n folds containing a given base,

the MI of the given base was defined as (number of folds in which

the base is unpaired)/n6(highest 2DG of all n folds in which the

base is unpaired). After scanning the average ssDNA length (n) for

high 2DG to best match known in vivo hotspot data for E. coli,

Wright et al. set the average length of ssDNA (n) to 30 nt. The

calculated MI values showed a positive significant correlation with

the in vivo mutation data from reversion assays, but not with

spontaneous mutation data [28]. This result suggests that MI can

represent the relative transcription-associated mutability per

transcription event in E. coli under the conditions of the reversion

assays. Nontranscription-associated mutations were not excluded

from either of the mutation data sets used for the validation tests.

Therefore, the validation results imply that transcription-associat-

ed mutations constitute a large fraction of the total mutations in

highly transcribed regions under the conditions of the reversion

assays. Conversely, the invalidation of MI by the spontaneous

mutation data might be attributable to either or both of the

following two causes. First, transcription-associated mutations

might not constitute a large enough fraction of the total

spontaneous mutations to show a correlation. Second, the MI

for the 30-nt ssDNA might not represent transcription-associated

mutability per transcription event well under favorable conditions.

This may occur because the average length of ssDNA was set to 30

nt by screening hotspot data that were obtained under stress [28].

Transcription-associated mutability per transcription event

depends on the secondary structures formed by the DNA sequence

[23,28,29] and can therefore be influenced by selection [3]. Every

mutation does not exert the same effect. In protein-coding

sequences, silent mutations circumvent potentially deleterious

effects but do not increase the protein sequence diversity. Protein

sequence diversity is advantageous under stress but not under

conditions of spontaneous mutation. Interestingly, MI showed a

positive significant correlation with mutation data under stress but

not under conditions of spontaneous mutation [28]. Transcription-

associated mutagenesis has been strongly suggested to play

important roles under stress. For example, transcription-associated

mutations are abundant under stress [18,28] and in highly

transcribed regions [10,11]. Transcribed regions under a given

stress might be better targets for beneficial mutations under that

stress [30]. The MI validation by Wright et al. [28] suggested that

transcription-associated mutagenesis is responsible for a large

fraction of total mutations. Therefore, protein-coding sequences

might have evolved to effectively increase protein sequence

diversity by controlling transcription-associated mutability per

transcription event under stress and hence MI values. If

nonrandom MI values have been shaped within protein-coding

sequences, it would provide a clear advantage for the survival of E.

coli. In the present study, we analyzed the effect of selection on MI

values using 4,132 protein-coding sequences from E. coli K12

MG1655, a fully sequenced E. coli strain. Our results show that

bases have higher MI values when one or more of the three

possible single-base substitutions at that base changes the encoded

Effective Nonrandom Mutations
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amino acid than when none of the three single-base substitutions

at the base changes the encoded amino acid. Start codons have

evolved to have lower MI values than nonstart codons. The

selection pressure is different on different base groups in individual

proteins. Our results suggest that the majority of protein-coding

sequences have evolved in E. coli to produce transcription-

associated mutations in such a way as to reduce gene knockout,

while increasing protein sequence diversity, under stress. Such

nonrandom mutagenesis would provide better sets of mutations

even before the mutations are exposed to selection. Different

selection pressures on MI allow each of the protein-coding

sequences in the genome to have different evolvability. We discuss

the biological benefits of nonrandom MI values, how selection

shapes MI values, and the variation in the selection pressures on

MI values.

Results

Calculation of MI
Transcription-associated mutability per transcription event

should be affected by the local secondary structures of the RNA

transcript, on which the functions of noncoding genes depend.

Therefore, noncoding genes were excluded from this analysis. MI

values for the 3,958,572 bases in the 4,132 protein-coding

sequences of the E. coli K12 MG1655 genome were calculated

according to the method described by Wright et al. [28], and the

negative MI values were then converted to zero (see the ‘‘Materials

and Methods’’ for details). The mass distribution of the MI values

was concentrated on smaller MI values (0#MI#2) and exhibited a

longer tail at the larger MI values (8#MI, skewness = 0.85;

Figure 1).

Evaluation of selection pressures in terms of protein
sequence diversity

Sequence properties affecting protein sequence

diversity. To analyze the selection pressure on MI in terms of

the generation of protein sequence diversity, or protein

evolvability, all the bases in each protein-coding sequence, with

the exception of those comprising the start and stop codons, were

divided into three groups. The groups were based on the results of

the three possible single-base substitutions at that base. The three

groups were defined as follows: 1) all three single-base substitutions

resulted in silent mutations, which do not change the encoded

amino acid (Basesilent); 2) all three single-base substitutions resulted

in missense mutations that changed the encoded amino acid

(Basemissense); and 3) the three single-base substitutions produced

two or three types of mutations: silent mutation, missense

mutation, or nonsense mutation (Baseother; Tables 1–2).

Generation of control sequences. To analyze the selection

pressure on MI in terms of the generation of protein-coding

sequence diversity, control sequences with the same related

features were required. Protein-coding sequences exert most of

their effects via their encoded proteins. The compositional ratios of

Basesilent, Basemissense, and Baseother would also affect the potential

to generate protein sequence diversity. To comport the same

product protein sequence and the same compositional ratios of

Basesilent, Basemissense, and Baseother, we generated 100 control

sequences per protein-coding sequence by shuffling the positions of

the synonymous codons within the protein-coding sequence,

except for the start codons and stop codons (Figure S1). The

resulting control sequences also had the same GC content as the

corresponding protein-coding sequence, which might affect the

local secondary structures [3], because they had the same codon

usage. The MI values of the control sequences were calculated as

described above for the protein-coding sequences.

Evaluation of the selection pressure on MI (SMI). The

protein-coding sequences and their control sequences have

different average potentials to produce transcription-associated

mutagenesis per transcription event [3]. By our calculation, the

lacI gene, for example, has an average MI of 2.08 but its control

sequences have average MI values between 1.78 and 2.42.

Transcription-associated mutability is also affected by changes in

the transcription level [10]. Therefore, to compare the relative MI

values of individual bases in each of the protein-coding sequences

and the control sequences, standard-normalized MI values were

introduced into this analysis. The selection pressure on MI at

Basesilent, for example, in a protein-coding sequence was evaluated

in the following way (Figure S2). All MI values were standard

normalized within the protein-coding sequence or in each control

sequence. All the resulting z-scores of the MI values for Basesilent,

for example, were averaged within each protein-coding sequence

or within each control sequence. The average z-score for Basesilent

in the protein-coding sequence was ranked against those in 100

control sequences. The resulting rank values were linearly

transformed to ‘‘SMI’’ values (21#SMI#1), which indicates the

selection pressure on MI under stress. As a consequence, each

protein-coding sequence had one SMI value for Basesilent. A

negative or positive SMI value for Basesilent in a protein-coding

sequence indicated that the protein-coding sequence had a lower

or higher average z-score for the MI values at Basesilent,

respectively, than did 50% of the random control sequences. For

example, a negative SMI value for a protein-coding sequence at

Basesilent indicates that the protein-coding sequence has evolved to

have lower transcription-associated mutability per transcription

event at Basesilent under stress. This method of calculating SMI

values was also applied to Basemissense, Baseother, and all other base

groups in the subsequent analyses described in this manuscript.

Basesilent exhibited lower SMI values than those of Basemissense and

Baseother (Wilcoxon signed-rank test, P,1e290 and P,1e290,

respectively; see ‘‘Materials and Methods’’ for the choice of

statistical methods). Basesilent and Basemissense exhibited

distributions of SMI lower and higher than zero, respectively

(Wilcoxon rank-sum test, P,1e2100 and P,1e2100, respectively;

Figure 2). These results suggest that protein-coding sequences have

evolved to increase the ratio of missense mutations to silent

mutations among transcription-associated mutations under stress.

In short, our results suggest that the genome sequence has evolved

to increase protein evolvability under stress.

Figure 1. Distribution of the mutability index (MI) values of
bases located in protein-coding sequences of E. coli K12
MG1655. Closed circles indicate the number of bases in each MI value
range (0.5). The vertical dotted line indicates the mean value (2.54).
doi:10.1371/journal.pone.0010567.g001
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Selection pressure on MI in terms of gene knockout
Start codons are the sites most likely to be involved in mutation-

based gene knockout within protein-coding sequences. To assess

the overall distribution of SMI in protein-coding sequences, we

grouped the primary positions of protein-coding sequences into

deciles, in a 59 to 39 direction. Among the 10 base groups, the base

group of the first decile showed the lowest distribution of SMI

values (Wilcoxon signed-rank test with the division having the

second-lowest SMI, P,0.01; Figure 3A). To analyze this result in

greater detail, the first decile was further divided into 1% divisions.

Among the resulting 10 groups, the base group of the first

percentile showed the lowest distribution of SMI values (Wilcoxon

rank-sum test with the division of the second-lowest SMI, P,1e210;

Figure 3B). Start codons occupy the 59-most positions in protein-

coding sequences. This may explain why the base group at the 59-

most position had the lowest SMI value among the groups tested.

To confirm this, the bases were grouped for each nth codon and

the SMI were compared. The start codons displayed the lowest SMI

values among the codons located in the 59 regions of the protein-

coding sequences (Wilcoxon signed-rank test with the division of

the second-lowest SMI, P,1e220; Figure 3C). The tendency to

form secondary structures is often affected by the primary position

on the protein-coding sequence. For instance, bases at the 59 end

are affected by the efficiency of translation initiation and bases at

the 39 end by Rho-independent transcription termination. The

base groups of the first four percentiles showed a reduction in SMI

values with decreasing percentile (Figure 3B). Therefore, the

lowest SMI values observed for the start codons may be caused by

this tendency toward low SMI values in the first four percentiles.

To exclude this possibility, we compared the results for the

subtraction of the SMI values of adjacent codons among the first 10

codons. When the SMI values for the second codons were

subtracted from the SMI values for the start codons, the results

were less than zero (Wilcoxon rank-sum test, P,1e220; Figure 3D).

However, the other adjacent codon pairs tested did not yield

values significantly less than zero (Wilcoxon rank-sum test,

P.0.01; Figure 3D). Therefore, the lower SMI values obtained

for the start codons are not just a tendency found at the 59 ends of

protein-coding sequences. Start codons exhibit lower SMI values

than those of other ATG codons (Wilcoxon rank-sum test,

P,1e260; Figure 3E). This result excludes the possibility of a

fitness effect exerted by the mutation of ATG codons. To confirm

that protein-coding gene knockout influences the effects of the

selection pressure on MI values, the SMI values for the start codons

were compared according to the position of the first nonstart ATG

codon. The presence of a closely following nonstart ATG codon at

the 59 end of the protein-coding sequence implies that single-base

substitutions at start codons cause the deletion of several N-

terminal amino acid residues. These N-terminal deletions have a

lower potential to cause protein-coding gene knockout. The SMI

Table 1. Mutations according to position in the protein-coding sequence.

Bases Single-base substitution Insertion or deletion

Main results Main effect Main result Effects

Start codon Disruption of start codon Gene knockout Frameshift mutations
(unless multiples of three
bases are inserted or
deleted)

Gene knockout or protein
truncation, with some
functional impairment
when it causes a frameshift

Codons occurring between
the start and stop codons

Only silent mutations (Basesilent) Neutral effect

Only missense mutations (Basemissense) Single amino-acid
substitution

Mixture of silent, missense, and nonsense
mutations (Baseother)

Various effects

doi:10.1371/journal.pone.0010567.t001

Table 2. Compositions of base types in protein-coding
sequences.

Base type Mean 95% CI

Basesilent 16.63 16.57–16.69

Basemissense 56.96 56.90–57.02

Baseother 26.42 26.32–26.52

Sum 100.0

doi:10.1371/journal.pone.0010567.t002

Figure 2. SMI of the base groups according to the mutation
types generated by a single-base substitution. The bases were
grouped according to the type of mutations caused by single-base
substitutions. ‘‘Basesilent’’ and ‘‘Basemissense’’ indicate bases where all
single-base substitutions at the bases result in silent and missense
mutations, respectively. ‘‘Baseother’’ indicates all bases other than
Basesilent, Basemissense, and bases that occur in start and stop codons
in protein-coding sequences. Circles and error bars indicate the
pseudomedian and the 95% confidence interval (CI), respectively, as
assessed using the Wilcoxon rank-sum test. The vertical dotted line
represents the 0 value for SMI. Calculations of the Wilcoxon signed-rank
test: *1 P,1e290; *2 P,1e290.
doi:10.1371/journal.pone.0010567.g002
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values of start codons were higher in the presence of nonstart ATG

codons in the first 10 codons than in the presence of nonstart ATG

codons after the first 10 codons (Wilcoxon rank-sum test, P,1e24;

Figure 3F) and in the absence of nonstart ATG codons within the

first 10 codons (Wilcoxon rank-sum test, P,1e24; Figure 3F).

These results demonstrate that selection acts to reduce the MI

values of start codons when start codon mutations cause gene

knockout. These results suggest that protein-coding sequences

have evolved to reduce the proportion of gene knockouts by

transcription-associated mutations under stress.

Correlation between before and after single-base
substitutions

A single-base substitution in ssDNA often changes the most

stable secondary structure of the ssDNA. Therefore, a single-base

substitution of a base may change the MI value of the base itself

and of its 58 neighboring bases (29 bases upstream and 29 bases

downstream; Figure S3). The altered MI value would affect the

positive and negative selection that shapes the nonrandom MI. To

examine how nonrandom MI distributions are shaped, it is

important to assess the mutational effect of a specific base on its

own MI value and on the MI values of neighboring bases.

Therefore, we repeated 10,000 random single-base substitutions

100 times and analyzed the correlation values of the MI values for

the mutated bases themselves and for their neighboring bases

before and after single-base substitutions (see ‘‘Materials and

Methods’’). The MI values showed significant positive correlations

at both the mutated bases (R2 = 0.29, P,1e2100) and the

neighboring bases (R2 = 0.79, P,1e2100). The bases with high

MI values tended to retain similar MI values after single-base

substitutions (Figure S4). These results demonstrate that the MI

values of bases are usually subject to larger variation when

mutations occur at the base itself than when mutations occur at

neighboring bases, and that bases with high MI values are more

tolerant of variation in their MI values after single-base

substitutions at those bases than are bases with low MI values.

Discussion

Biological benefits of the nonrandom distribution of MI
values under stress

In this study, we have demonstrated that selection acts on

protein-coding sequences to lower the MI values at Basesilent and to

increase the MI values at Basemissense and Baseother under stress

(Figure 2). Under stress, protein sequence diversity is preferred and

some of this diversity is beneficial. Most beneficial mutations are

missense mutations rather than indels [31]. Missense mutations

can occur at Basemissense and Baseother but not at Basesilent.

However, some missense mutations can have detrimental effects.

Therefore, under stress, high MI at Basemissense and Baseother and

Figure 3. SMI of the base groups according to their relative positions within the protein-coding sequences. (A) The relative positions
were grouped into deciles from 0 to 100%. (B) The relative positions were then grouped into percentiles from 0 to 10%. (C) Start codons and their
adjacent downstream codons. The 1 on the Y-axis indicates the start codon. (D) Difference in the SMI values for the nth codon and the n+1th codon.
For example, ‘‘D1–2’’ indicates the difference between the SMI values of the first codons (start codons) and those of the second codons. (E) Start
codons and their following nonstart ATG codons. The 1 on the Y-axis indicates the start codon. (F) SMI values for the start codons, according to the
positions of the first nonstart ATG codons. $ indicates the largest P value among those calculated between a base group marked $ and all the other
base groups: $1 P,0.01; $2 P,1e210; $3 P,1e220; $4 P,1e260; *1 P,1e220; *2 P,1e24; *3 P,1e24 ($1, $3: Wilcoxon signed-rank test; $2, $4, *1, *2, *3:
Wilcoxon rank-sum test). Circles and error bars indicate the pseudomedian and the 95% CI, respectively, as assessed using the Wilcoxon rank-sum and
signed-rank test. The vertical dotted lines represent the 0 value for SMI.
doi:10.1371/journal.pone.0010567.g003

Effective Nonrandom Mutations
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low MI at Basesilent can increase the chance of beneficial mutations

at the cost of increasing detrimental mutations. The proportion of

detrimental mutations among indels is larger than the proportion

of detrimental mutations among single-base substitutions. There-

fore, the proportion of detrimental mutations among indels is

larger than the proportion of detrimental mutations among indels

plus single-base substitutions. A protein sequence can be mutated

only by indels at Basesilent and by both indels and single-base

substitutions at Basemissense and Baseother. Therefore, the propor-

tion of detrimental mutations among mutations that result in a

change in the protein sequence is larger at Basesilent than at

Basemissense and Baseother.

These results imply that protein-coding sequences have evolved

to reduce the proportion of detrimental mutations produced while

increasing protein sequence diversity under stress. Supporting this

proposition, the MI values at start codons are low when mutations

at start codons are likely to cause gene knockouts (Figure 3). Gene

knockouts often result in detrimental mutations, for example in

essential genes, and often exert disadvantageous effects. In

prokaryotes such as E. coli, selective pressure is exerted on the

genome length, so they have very compact genomes [32]. This

implies that most preexisting genes recently contributed to the

fitness of the cell before they were lost in response to the selection

pressure on genome size. Consequently, our data suggest that

protein-coding sequences have evolved to control the transcrip-

tion-associated mutability per transcription event to increase

protein evolvability and to reduce the proportion of detrimental

mutations produced under stress.

Selection type that shapes nonrandom MI values within
protein-coding sequences

The reduction of MI values at Basesilent and start codons can be

achieved by purifying selection. Detrimental mutations are not

passed on to the descendant cells. We have demonstrated that

mutations alter the MI values of neighboring bases as well as that

of the mutated base itself. Therefore, the different MI values of

start codons and Basesilent can be caused by mutations at

neighboring bases. E. coli cells and their descendants that have

start codons and Basesilent with high MI values would frequently

suffer detrimental mutations because mutations occur frequently at

these sites. Increases in the MI values at Basemissense can be

achieved by positive selection. Positive selection implies that the

mutated bases are inherited by the descendant cells and become

dominant. The new bases at these sites will have different MI

values. However, as we have demonstrated, new MI values

correlate positively with the old MI values at the mutated sites. In

particular, bases with high MI values tend to retain these high MI

values after single-base substitutions (Figure S4). Therefore, high

MI values at Basemissense are frequently retained, although some

degree of fluctuation cannot be avoided. The distribution of SMI

values at Baseother was closer to that at Basemissense than to that at

Basesilent (Figure 2). Single-base substitutions at Baseother are made

up of two or more types of mutations: silent, missense, and

nonsense mutations. The compositions of silent mutations,

missense mutations, and nonsense mutations at Baseother were

26%, 60%, and 14%, respectively, throughout all protein-coding

sequences. Because the proportion of missense mutations is highest

at Baseother, the MI values at Baseother will be influenced by

selection in a similar way to those at Basemissense rather than to

those at Basesilent.

Variation in the selection pressure on MI values
Transcription-associated mutations increase under stress and in

highly transcribed regions. Individual protein-coding sequences

are repressed or derepressed under different stresses and have

different transcription levels under specific stresses. Therefore,

each protein-coding sequence has a different SMI value for each of

its base groups (Table 3). This result suggests that the protein

products of individual protein-coding sequences have different

evolvability. Interestingly, about one third of protein-coding

sequences have SMI values that are larger than zero at Basesilent

(Table 3). This suggests that about one third of protein-coding

sequences have evolved to reduce protein sequence diversity under

stress. Reduced protein evolvability is beneficial under favorable

conditions. Therefore, the high SMI values at Basesilent and the low

SMI values at Basemissense and Baseother might be attributable to the

activity of transcription-associated mutagenesis under favorable

conditions. However, the development of an index that predicts

transcription-associated mutability per transcription event under

favorable conditions and its subsequent analysis will be necessary

to determine the mechanism underlying this phenomenon.

Conclusions
In this study, we evaluated the selection pressure on MI, which

represents the relative potential for transcription-associated

mutagenesis per transcription event under stress. Our results

suggest that the majority of protein-coding sequences have evolved

to increase protein sequence diversity by controlling transcription-

associated mutagenesis under stress and that transcription-

associated mutagenesis produces protein sequence diversity more

effectively than does random mutagenesis. Therefore, transcrip-

tion-associated mutagenesis will confer faster protein evolvability

under stress, and will improve the chance of survival of E. coli.

Materials and Methods

Sequence data
The sequence of E. coli K12 MG1655 was downloaded from

the NCBI ftp site (ftp://ftp.ncbi.nih.gov/genomes/Bacteria/

Escherichia_coli_K12). The sequences of the 4,132 E. coli protein-

coding genes were used in this analysis. For each protein-coding

sequence, 100 control sequences were generated by synonymous

codon shuffling; the codon position for any given amino acid was

shuffled, whereas the positions of the start and stop codons were

maintained (see Figure S1). This step was repeated for each of the 20

amino acids. Random shuffling was performed using the ‘‘random’’

Table 3. Distributions of SMI values.

21.0#SMI,20.5 20.5#SMI,0 0#SMI,0.5 0.5#SMI#1 Sum

Basemissense 21.25% 21.03% 25.46% 32.26% 100.0%

Baseother 19.53% 21.93% 24.25% 34.29% 100.0%

Basesilent 38.53% 25.62% 20.57% 15.27% 100.0%

doi:10.1371/journal.pone.0010567.t003
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module of the standard library of the Python program, version 2.6

(http://www.python.org).

Sequence features
Relative base positions in protein-coding sequences. The

base pairs in a protein-coding sequence with a length of n base pairs

were numbered from 1 to n. For the kth base, the length ratio was

defined as ([k–1]/[n–1])6100. For example, the first base of the start

codon and the last base of the stop codon were assigned positions 0

and 100, respectively.

nth codon. In a protein-coding sequence that produces a

protein of n amino acids, the codons were numbered from 1 to

n+1. For example, the start and stop codons were assigned

positions 1 and n+1, respectively.

nth ATG codon. In a protein-coding sequence, the start

codon was assigned position 1, even when it was not an ATG. The

subsequent k ATG codons were sequentially assigned positions

from 2 to k+1.

Selection of a method to predict transcription-associated
mutability per transcription event

Two methods have been developed to predict transcription-

associated mutagenesis potentials. The first is the MI of Wright

et al., which focuses on transcription-associated mutations and was

validated using in vivo mutation data from reversion assays.

Because the purpose of this study was to investigate the selection

pressure on transcription-associated mutability per transcription

event under stress, Wright et al.’s MI was adequate. Hoede et al.

[3] developed another index, the transcription-driven mutability

index (TDMI). To validate these indices, these authors used

conservation data taken from the alignment of orthologous gene

sequences among E. coli strains. The mutations that generated

these variable sites might be originated under stress, under

favorable conditions, or under a mixture of both types of

conditions. The variable sites in the sequence alignments were

the results of mutations in the ancestral sequences. Therefore, the

TDMI values for the ancestral sequences should have been

compared with the conservation data in the validation process.

However, the TDMI values were calculated from the sequence of

an extant E. coli strain. Therefore, TDMI was not adequate for the

present analysis.

Calculation of MI values
We initially calculated the MI values according to the method

described by Wright et al. [28] using the hybrid-ss-min program of

the UNAFold package [33], which is the local program from the

DINAMelt web server, version 3.6 [34], used by Wright et al. The

calculation of MI with an average ssDNA length of 30 nt was

described here. The protein-coding sequences were extended to

include the 29-nt (that is [30–1]-nt) upstream and downstream

sequences. Subsequences were then generated by sliding a window

of 30 nt along the resulting extended sequence. Consequently,

each individual base belonged to 30 subsequences. All subse-

quences were then folded using the hybrid-ss-min program [33]

and the DG values and paired/unpaired status of the most stable

folds of each given subsequence were determined. The MI value

for each base was calculated using the equation proposed by

Wright et al. [28]: (number of folds in which the base is unpaired)/

306(highest –DG of all 30 folds in which the base is unpaired). A

small proportion of MI values (0.4%) was smaller than zero when

the first factor, ‘number of folds in which the base is unpaired’, was

greater than zero but the second factor, ‘highest –DG of all n folds

in which the base is unpaired’, was smaller than zero. However,

when the ‘number of folds in which the base is unpaired’ is zero,

the MI value becomes zero. This contradicts the assumption that

bases that remain unpaired for a longer time have higher MI

values. Stable folds are not formed when the –DG of the most

stable fold is less than zero. Therefore, these values were converted

to zero.

Evaluation of the effect of selection on MI (SMI)
For protein-coding sequences and their control sequences, the

MI value of each base was standard normalized within the protein-

coding sequence. To compare the transcription-associated

mutability per transcription event among the base groups, the

standard-normalized MI values for each base group were averaged

for the protein-coding sequence and for each of the control

sequences. The rank of a gene sequence at a given base group was

calculated from these averaged values against the corresponding

values of 100 control sequences. The rank was then transformed to

SMI values using the equation (26rank – 102)/100. As a result, each

protein-coding sequence had a value between 21 and 1

(21#SMI#1) for each base group.

Correlation of MI values before and after mutation
Ten thousand single bases selected randomly from protein-

coding sequences were randomly mutated to one of the three other

possible bases. The MI values of the base targeted by the mutation

and of the 29 bases located upstream and downstream from this

position were calculated before and after the mutation. The

neighboring bases that were not within the protein-coding

sequences were excluded from the calculation of the correlation.

The MI values of the same bases before and after mutation were

used to calculate Pearson’s correlation values. These steps were

repeated 100 times. The mean Pearson’s correlation values were

used for this study.

Selection of statistical methods
Wilcoxon signed-rank test and Wilcoxon rank-sum test are

nonparametric statistical methods and are alternatives to paired

Student’s t test and Student’s t test, respectively. Nonparametric

statistical methods are robust and can be used even when a normal

distribution cannot be assumed. To compare the difference of

groups, the Wilcoxon signed-rank test and Wilcoxon rank-sum test

were used. We used paired comparisons (and hence the Wilcoxon

signed-rank test) wherever possible. For example, in Figure 3C, the

Wilcoxon signed-rank test was used because every protein-coding

sequence had more than 10 codons, so a paired comparison of the

start codons and ith codons (2#i#10) inside each of the protein-

coding sequences was possible. Conversely, in Figure 3E, the

Wilcoxon rank-sum test was used because some protein-coding

sequences did not have 10 ATG codons and paired comparisons

were not possible in some protein-coding sequences.

All statistical analyses were performed using the R statistical

package [35]. All rankings were made in increasing order.

Supporting Information

Figure S1 Schematic representation of synonymous codon

shuffling. (A) An imaginary sequence encoding six amino acids.

The start codon and stop codon were excluded from shuffling. The

arrows indicate random shuffling. The positions of synonymous

codons (encoding the same amino acid) were shuffled randomly.

This shuffling was repeated for each of the 20 amino acids. In the

example sequence, there is one codon for serine, so it was self-

shuffled. (B) All the control sequences generated from the sequence

in (A). The control sequences can include the protein-coding

Effective Nonrandom Mutations
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sequence if the synonymous-codon-shuffled sequences happen to

include the same sequence as the protein-coding sequence.

Found at: doi:10.1371/journal.pone.0010567.s001 (0.01 MB

PDF)

Figure S2 Example of calculating SMI from arbitrary MI values.

(A) MI values for an imaginary protein-coding sequence and its

control sequences. The control sequences were generated with

synonymous codon shuffling. The z-score values for MI were

arbitrarily assigned for the demonstration. Base groups START,

O, M, S, and STOP represent the start codon, Baseother,

Basemissense, Basesilent, and the stop codon, respectively. (B) The

average z-scores for MI for the individual base groups of individual

sequences. For example, Basesilent of the protein-coding sequence

has z-scores for the MI values of 2 2.01, 2.95, and 0.42 in (A), so

its average value (0.45) is written as the corresponding value in (B).

(C) The z-score average for MI of the protein-coding sequence was

ranked among the corresponding values for the control sequences.

The rank values (1#rank#N+1) obtained were linearly trans-

formed to SMI (2 1#SMI#1) using the equation (26rank 2 2 2

N)/N, where N is the number of control sequences (which is four

in this example and 100 in the main text). In this example, four

control sequences were used for clarity and the values were

rounded to the nearest two decimal places, although we used 100

control sequences and calculated them to 15 decimal places in the

actual calculation in the main text.

Found at: doi:10.1371/journal.pone.0010567.s002 (0.34 MB

PDF)

Figure S3 An example of the effect of a single-base substitution

on secondary structure. (A) A single-base substitution can affect the

most stable secondary structures of all ssDNA sequences that

contain the mutated site. Each underlined sequence is 30 nt. (B)

The sequence underlined by third line in (A). (C) The resulting

sequence of G-to-C single-base substitution at the base marked

with a star in the sequence shown in (B). The secondary structures

of (B) and (C) indicate the most stable secondary structures of these

sequences. In this example, the G-to-C mutation changes the most

stable secondary structure and hence the paired/unpaired state

and the 2DG value of the bases, which determine their MI values.

Found at: doi:10.1371/journal.pone.0010567.s003 (0.54 MB TIF)

Figure S4 Correlation of MI values before and after single-base

substitutions. The correlations of the MI values before and after

mutation were plotted. The MI values were divided into 10 groups

according to the rank of each before and after a single-base

substitution. The diameter of each circle is proportional to the

number in each division.

Found at: doi:10.1371/journal.pone.0010567.s004 (0.57 MB TIF)
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