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Abstract
An efficient approach toward the parallel solid-phase synthesis of highly diversified chiral
polyaminothiazoles employing Hantzsc’s thiazole synthesis is presented. The treatment of resin-
bound chiral polyamines with Fmoc-isothiocyanates generated polythioureas which were further
reacted with a variety of α-halogenoketones to afford following cleavage from the solid support the
desired chiral polyaminothiazoles in good yield and purity.

The thiazole ring system is an important structural element found in numerous biologically
active compounds.1 These have found applications in the development and preparation of drugs
for the treatment of allergies,2 inflammation,3 schizophrenia,4 hypertension,5 as well as
bacterial infections.6 Compounds containing the aminothiazole moiety are also known to be a
ligand of estrogen receptors,7 adenosine receptor antagonists,8 while other analogues exhibit
antitumoral properties.9 Moreover, thiazole derivatives are reported to be potential inhibitors
of cyclin-dependent kinases (CDKs)10 and glycogen synthase kinase-3 (GSK-3).11 2-
aminothiazoles were successfully employed as heterocyclic bioisosteres of the phenol moiety
on dopamine agonists and the widely used antiparkinsonian agent pramipexole. These resulted
in improved pharmacological properties including longer duration of action and improved
bioavailability.12 Conjugated polyaminothiazole films were reported to display
electrochemical properties with high thermal stability.13 Herein, we describe an efficient
approach for the parallel synthesis of diversified oligoaminothiazoles. Staring from resin-
bound peptides, a range of differing oligothiazoles were synthesized.

Thiourea is known to be a convenient starting material to prepare 2-amino-1,3-thiazoles.14,
15 Our approach using Hantzsc’s synthesis for the solid-phase synthesis of a variety of
diaminothiazoles is outlined in Scheme 1. The parallel synthesis was performed starting from
p-methylbenzhydrylamine (MBHA) resin bound acylated amino acid 1. Following reduction
of the amide bonds in the presence of borane-THF,16 the corresponding resin-bound diamines
2 were treated with Fmoc-isothiocyanate to generate the corresponding di-thioureas 3.
Following Fmoc deprotection, the resin-bound dithioureas were treated with a variety of α-
halogenoketones to afford following cleavage of the solid-support, the desired di-
aminothiazoles 5. The compounds were obtained in good yield (80 to 90%) and high purity
(Table 1). The only byproduct observed was the mono-thiazole due to an incomplete reaction
of the amine attached to the solid-support with Fmoc-isothiocyanate. We selected the following
amino acids, alanine, proline, valine and phenylalanine, and three different halogenoketones,
chloroacetone, 3-chloro-2-butanone and 2-chlorocyclohexanone. Similar results were obtained
with all the amino acids utilized and we did not observe any detrimental effect of the amino
acid side chains on the reaction. Some incomplete reaction was observed with the 2-
Chlorocyclohexanone.
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The same approach was employed for the synthesis of different lengths of chiral
polyaminothiazoles from their corresponding resin-bound chiral polyamines.17 Table 2 shows
examples of tetrathiazoles obtained from resin-bound tripeptides. All compounds were
analyzed by LC-MS and selected ones by 1H-NMR and 13C-NMR.

Due to the well-understood chemistry, the availability of a wide diversity of chiral amino acids
and the excellent synthetic purity and yields obtained during the solid- phase synthesis of
peptides, the work presented offers a unique approach toward the synthesis of chiral
polyaminothiazoles using resin-bound amino acids, peptides, and peptidomimetics as starting
materials.
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0.1 M in DMF), and DIC (6 equiv, 0.1 M in DMF) was added to the reaction vessel. The reaction
mixture was shaken at room temperature for 2 h, followed by washing with DMF (2 times) and DCM
(2 times). Upon removal of the Boc group with 55% TFA in DCM for 30 min, the resin was washed
and neutralized with 5% DIEA in DCM. The resin-bound amine was reacted with carboxylic acid
(10 equiv, 0.3 M in DMF), and DIC (10 equiv, 0.3 M in DMF) overnight, followed by washing with
DMF (2 times) and DCM (2 times). Air dried resin-bound acylated peptide was reduced using
BH3-THF. Typical reaction conditions for the solid-phase reduction of polyamides consist of the
treatment of resin-bound peptides with BH3-THF at 65°C for 72 hours. The generated resin-bound
borane-amine complexes are then disproportionate following overnight treatment with neat
piperidine at 65°C. The reduction is free of racemization. The generated amines were treated with
Fmoc-isothiocyanate (6 equiv, 0.3 M in DMF) at room temperature overnight. The Fmoc group was
removed with 20% piperidine in DMF (2 times × 10 minutes) followed by the addition of α-
halogenoketones (20 equiv, 0.3 M in DMF). The reaction with α–halogenoketones was carried out
at 70°C overnight. The cleavage of the product was carried out by the treatment with 100% anhydrous
HF at 0°C for 1.5 h, followed by nitrogen gas flow to remove the HF. The product was extracted by
95% acetic acid. After lyophilization, the products were characterized by electrospray LC-MS under
ESI conditions and selected compounds by 1H. 5e): 1H-NMR (500 MHz, DMSO-d6): δ (ppm) 7.17–
7.34 (m, 5H), 3.95 (m, 1H), 3.25 (m, 2H), 3.40 (m, 2H) 2.87 (dd, J = 5.6 Hz, J = 13.8 Hz, 1H), 2.78
(dd, J = 7.7 Hz, J= 1.4 Hz, 1H), 2.09 (s, 3H), 2.07 (s, 3H), 2.00 (s, 3H), 1.98 (s, 3H). MS (ESI): calcd
[MH+] 373.14, found 373.3. (5f): 1H-NMR (500 MHz, DMSO-d6): δ(ppm) 7.16–7.36 (m, 5H), 6.5
(s, 1H), 3.93 (m, 1H), 3.21 (m, 1H), 2.98 (m, 1H), 2.88 (dd, J=5.6 z, J= 14.0 Hz, 1H), 2.78 (dd, J=
7.4 Hz, J= 13.7 Hz, 1H), 2.46 (m, 4H), 2.38 (m, 4H), 1.7 (m, 8H). MS (ESI): calcd [MH+] 425.2,
found 425.6. (5p): 1H-NMR (500 MHz, DMSO-d6): δ (ppm) 8.18 (s, 1H), 7.15–7.30 (m, 10 H), 4.18
(m, 1H), 3.62 (m, 2H), 3.31 (m, 2H), 3.10 (m, 1H), 2.90 (dd, J= 6. Hz, J= 13.8 Hz, 1H), 2.75 (m,
1H), 2.63 (m, 1H), 2.49 (s, 3H), 2.07 (s, 3H), 1.97 (s, 3H). MS (ESI): calcd [MH+] 477.2, found
477.7.
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Scheme 1.
(a) BH3-THF, 65°C, 4 days; (b) piperidine, 65°C, overnight; (c) 6 equiv. Fmoc-NCS in DMF
(0.3 M), RT, overnight; (d) 20% piperidine/DMF; (e) 20 equiv. α– halogenoketones in DMF
(0.3 M), 70°C, overnight; (f) HF/anisole, 0°C, 90 min.
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