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Abstract

We have recently shown that a novel endothelial mitogen netrin-1 potently stimulates nitric oxide
(NO") production via a DCC-ERK1/2 dependent mechanism. In view of the well-established
cardioprotective role of NO®, the present study investigated whether netrin-1 is cardioprotective via
NO* signaling in the heart. Netrin-1 receptor DCC was abundantly expressed in the C57BL/6J mouse
hearts. Perfusion of heart with netrin-1 (100 ng/mL) using a Langendorff system significantly
increased NO* production. Under ischemia/reperfusion (I/R), netrin-1 induced a substantial reduction
ininfarctsize (21.8+4.9% from 42.5+3.6% in the controls), which was accompanied by an augmented
production of NO*. Pre-perfusion with DCC-antibody, U0126 (MEKZ1/2 inhibitor), L-NAME or
PTIO (NO* scavenger) attenuated protective effects of netrin-1 on infarct size and NO® production,
indicating upstream roles of DCC and ERK1/2 in NO* production, as well as an essential role of
NO* in cardioprotection. Netrin-1 induced reduction in infarct size was significantly attenuated in
DCC+/—mice, confirming an intermediate role of DCC. In additional experiments we found netrin-1
increased ERK1/2 and eNOSg1177 phosphorylation, and DCC protein expression, which was
diminished by I/R. Furthermore, netrin-1-induced DCC upregulation was NO* and ERK1/2-
dependent, implicating a feed-forward mechanism. DAF-AM staining revealed enhanced NO*
production in both cardiac endothelial cells (ECs) and myocytes. In primarily isolated
cardiomyocytes, netrin-1 also increased NO* production, DCC abundance and ERK1/2
phosphorylation. Of note, cardiac apoptosis was significantly attenuated by netrin-1, which was
reversed by DCC-antibody, U0126, L-NAME or PTIO. In summary, our data clearly demonstrate
that netrin-1 potently protects the heart from I/R injury by stimulating NO*® production from cardiac
ECs and myocytes. This potent effect is mediated by a DCC/ERK1/2/eNOS41177/NO°/DCC feed-
forward mechanism in both cell types.

Address Correspondence to: Hua Linda Cai, M.D., Ph.D., Division of Molecular Medicine, Cardiovascular Research Laboratories, The
Departments of Anesthesiology and Medicine, David Geffen School of Medicine at University of California Los Angeles, 650 Charles
E. Young Drive, Los Angeles, CA, 90095, Tel: 310-267-2303, Fax: 310-825-0132, hcai@mednet.ucla.edu.

DISCLOSURE

None.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers
we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting
proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could
affect the content, and all legal disclaimers that apply to the journal pertain.



1duasnuey Joyiny vVd-HIN 1duasnue Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Zhang and Cai Page 2

Keywords

Netrin-1; nitric oxide; eNOS; DCC; myocardial infarction; ischemia reperfusion; cardioprotection;
ERKZ1/2; electron spin resonance

Introduction

Netrin-1 is a secreted molecule that is largely known to play a defined role in guiding vertebrate
commissural axons in neuronal development [1-3]. Recent studies have further demonstrated
a critical role of netrin-1 in endothelial cell proliferation, migration and angiogenic signaling
[4-8], in addition to morphogenesis of epithelial cells [9,10]. At least eight netrin receptors
have been characterized in neurons, vascular system and other cell types in mammals. These
include deleted in colorectal cancer (DCC), UNC5A, B, C, D, neogenin, a6p4 and a3p1
integrins [10-14]. Netrin-1 binding to DCC mediates attractive outgrowth of axons, as well as
positive angiogenic signalings in endothelial and vascular smooth muscle cells [4-6]. In
contrast, the UNC5B receptor appears repulsive, mediating cellular effects such as filopodial
retraction [15,16], particularly in developing capillaries. The overall expression profile of
netrin-1 receptors in the heart however, has remained completely unknown.

In a recent study we found netrin-1 induces production of nitric oxide (NO®) to promote aortic
endothelial cell migration and proliferation [6]. Uniquely, we found that netrin-1 induced
NO* production is DCC-dependent, involving a feed-forward activation of ERK1/2-eNOS
[6]. Binding of netrin-1 to DCC leads to an initial activation of ERK1/2, consequent
phosphorylation and activation of eNOS as well as production of NO®, which in turn further
activates ERK1/2 and more NO* production to prompt endothelial cell growth and migration
[6]. In view of the potent cardioprotective effects of NO®, it is logical to speculate that netrin-1
might have beneficial effect in protecting cardiac muscles from ischemia/reperfusion (I/R)
insult. It has been established that a deficiency in endothelial nitric oxide synthase (eNOS)
exacerbates myocardial I/R injury, whereby eNOS overexpression, NO* donor, or dietary
supplementation of nitrite significantly improved cardiac function in models of hypoxia and
myocardial I/R injury [17-21]. In addition, netrin-1 has been shown to protect against renal 1/
R injury in vivo, with unknown molecular/signaling mechanisms [22].

Therefore in the present study we aimed to examine whether and how netrin-1, potentially via
production of NO®, is cardioprotective. Three netrin-1 receptors, DCC, neogenin and UNC5B,
are present in the endothelial cells (ECs) of various vascular beds, and have been examined to
date for their roles in angiogenic signaling. We first found that despite an absence of UNC5B,
DCC and neogenin abundantly expressed in C57BL/6J mouse heart, at both mRNA and protein
levels. This was consistent with what was found earlier in adult ECs.® Hearts perfused using
a Langendorff system had an excessive myocardial infarction (MI, 42.5+£3.6%) after global
ischemia (20 min) and reperfusion (60 min), which was dramatically reduced by netrin-1
intervention (100 ng/ml, pre-perfusion 45 min, reperfusion 60 min) to 21.8+4.9%. This finding
was accompanied by an augmented NO* production. We then further demonstrated that this
cardioprotective effect of netrin-1 was dependent on DCC, and consequent activations of
ERK1/2 and eNOSg;177. Both cardiomyocytes and cardiac ECs were responsible for an
increase in NO® production, which feed-forwardly upregulated DCC expression. I/R-induced
cardiac apoptosis was significantly attenuated by netrin-1. Taken together; these observations
clearly demonstrate that netrin-1 potently protects the heart from I/R injury viaa DCC/ERK1/2/
eNOSg1177/NO*/DCC feed-forward mechanism.
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Purified mouse netrin-1 was purchased from R&D Systems. Polyclonal antibody for DCC was
obtained from EMD Calbiochem. Polyclonal antibodies specific for phosphorylated ERK1/2,
eNOSq1177 were obtained from Cell Signaling Technology (CST). Polyclonal antibody specific
for VEGFR2 was purchased from AbCAM. Other chemicals were purchased from Sigma in
the highest purity.

Male C57BL/6J mice (6-8 weeks old) were obtained from the Jackson Laboratories (Bar
Harbor, ME). DCC+/— mice were obtained from Dr. Marc Tessier-Lavigne from Genentech.
Mice were housed under a pathogen-free condition. The use of animals and experimental
procedures were approved by the Institutional Animal Care and Usage Committee at the
University of California Los Angeles (UCLA).

RT-PCR and Western blot

Total RNA was extracted from mouse hearts using TRIzol (Invitrogen) according to the
manufacturer’s instructions. Reverse transcription was performed in standard fashion with
iScript cDNA synthesis Kit (Bio-Rad). PCR was performed using the following primer pairs:
DCC, fw: CAGCAAAAACTGTGCAAGGA and rev: CGCAAAGTTCAGAATCGTCA,
UNCS5B, fw: AGTGTAATGGCGAGTGGGTC and rev: CGAAGAGTTCCTCCACTTGC;
Neogenin, fw: TGAACCAGTTGTGGGAAACA and rev: GCCACTCATTGGAGGTTTGT;
UNC5A, fw: CGTGTCCTGCACTTCAAAGA and rev: CCTGGTAGCTGACAAGGAGC;
UNCS5C, fw: CACATCTGGAGTGGCTCTCA and rev: GCATAGCTTCTGCCGGATAG;
UNCS5D, fw: GTAAAGCAGCTCAAGGTGGC and rev: ATGCAGCAGCTTTGGTTCTT,;
a6, fw: GTGTGTGAACATCAGGTGCC and rev: ATATTCTGAGCAGCAGCGGT,; a3, fw:
GCTGACCTGATCATCTGCAA and rev: GCAGTAGGACAGGAAGGCAG,; B4, fw:
GAGAGCGAGAGGGTGTCATC and rev: ATATCTCCATTGGGCCTCCT; PCRs were
carried out on an icycler (Bio-Rad) including primers generated for GAPDH, [(95°C/2 min),
(95°C/25 sec, 57°C/5 sec, 68°C 5 min) x 35, (72°C/10 min)]. Western blot analysis was
performed as previously published [23].

Langendorff perfusion

The mice were anesthetized with intraperitoneal pentobarbitone (60 mg/kg). Hearts were
harvested and rapidly transferred into ice-cold Krebs-Henseleit buffer (KHB). The aorta was
cannulated with a 20-gauge stainless steel blunt needle and transferred to the Langendorff rig
and perfused retrograde instantly with modified Krebs-Henseleit buffer, which contained (in
mmol/L): NaCl 118.0, KCI 4.7, CaCl, 2.5, MgS0,4 1.2, KH,PO4 1.2, NaHCO3 25.0, D-Glucose
10 at constant pressure (80+1 mmHg) using a peristaltic pump and feedback system.

For no I/R setting, hearts were perfused with KHB or netrin-1 for 120 min. For I/R setting,
hearts were subjected to 30 min of perfusion with DCC-antibody (1 pg/ml), U0126 (50 pmol/
L), L-NAME (100 pmol/L), PTIO (60 pmol/L) or KHB only, followed by 45 min netrin-1 (100
ng/ml) perfusion. Then I/R injury was consistently produced by subjecting the hearts to 20 min
of normo-thermic ischemia, followed by reperfusion for 60 min with netrin-1. These
experimental protocols are illustrated in supplemental Figure 1.

Electron spin resonance detection of nitric oxide radical

Bioavailable nitric oxide radical (NO®) from cells or tissues was detected using electron spin
resonance (ESR) as described [6,23]. In brief, whole heart homogenates or cardiomyocytes
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were incubated with equal volume of freshly prepared NO*-specific spin trap Fe2*(DETC),
colloid (0.5 mmol/L) for 60 min. Gently collected homogenates or cell suspensions were snap-
frozen in liquid nitrogen and loaded into a finger Dewar for analysis with an eScan electron
spin resonance (ESR) spectrophotometer (Bruker) at the following settings: center field, 3410;
field sweep, 100 G; microwave frequency, 9.73 GHz; microwave power, 13.26 mW;
modulation amplitude, 9.82 G; 512 points resolution and receiver gain, 356.

Infarct size analysis

Infarct size was determined by triphenyl tetrazolium chloride (TTC) staining. In brief, at the
end of the experimental protocol hearts were infused with 1% TTC in phosphate buffered
solution (pH 7.4) for 10 min prior to snap freezing at —20°C. While frozen, the hearts were
sliced perpendicular to the long-axis of the heart at 1 mm intervals and de-stained in 10%
formaldehyde solution to increase contrast between necrotic and viable myocardium. The heart
slices were then digitally photographed for planimetry using NIH Image 1.62. Infarct size is
expressed as an infarct-to-risk zone ratio (the risk zone is the whole ventricular volume in this
global ischemic model).

Creatine kinase (CK) release

The effluent was collected during the entire 60 min of reperfusion. The amount of CK was
determined using a CK Reagent Set (Diagnostic Chemicals). CK reagent was reconstituted in
10 ml of buffer provided by the manufacturer. 40 ul of each sample was mixed with 1 ml of
reconstituted reagent, incubated for 2 min at 37°C and read at 340 nm by a Microplate Reader
(BioTek). The results were normalized by protein concentration, which was determined by DC
protein assay (Bio-Rad).

Spatial localization of NO*

In order to visualize NO® and to analyze its spatial localization in heart sections, the level of
NO* concentration was monitored using a fluorescent NO* probe, DAF-FM Diacetate. Sections
were loaded with DAF-FM Diacetate (10 pmol/L for 1 hr in DMSO), washed to remove
excessive probe, and soaked in fresh buffer for an additional 30 min incubation to complete
de-esterification of the intracellular diacetates. The sections were then mounted and visualized
with a confocal microscope.

Isolation of adult mouse cardiomyocytes

The heart was retrogradely perfused (37°C) at a constant pressure of 80 mm Hg for 5 min with
a Ca%*-free Tyrode buffer containing (in mmol/L): NaCl 130, KCI 5.4, MgSO,4 1, NaH,PO,
0.6, D-Glucose 10, HEPES 10, which was continuously bubbled with 95% O, + 5% CO,. The
enzymatic digestion was commenced by adding collagenase type Il (Worthington, 0.56 mg/
ml each) to the perfusion buffer and continued for 20 min. The heart was cut down and placed
in the Petri dish with perfusion solution. The digested ventricular tissues were cut into 2-3 mm
pieces and gently aspirated with a transfer pipette to facilitate cell dissociation. The myocytes
were allowed to sediment by gravity for 8-10 min in the 15-ml Falcon tubes.

Detection of apoptosis

Apoptosis was detected by the apoptosis detection kit (Chemicon International) according to
the manufacturer’s protocol. At the end of the experimental protocols frozen heart sections (12
um) were fixed with 1% formalin for 10 min at room temperature (RT) and washed twice in

PBS, permeabilized with ethanol/acetic acid (2:1) for 5 min at —20°C, washed twice in PBS,

and then incubated for >10 sec with the equilibration buffer. Subsequently, the sections were
incubated for 1 hr with DIG-conjugated dUTP and TdT enzymes at 37°C, and then for 10 min
in the stop buffer at RT, and finally washed three times in PBS. The sections were then
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incubated with FITC-conjugated anti-DIG antibody for 30 min at RT, and washed three times
in PBS. Coverslipped sections were mounted with medium containing 0.5 pg/ml of Propidium
lodide.

Statistical analysis

Results

All data are presented as mean+SEM from four to six independent experiments (different
individual mice or different passage of BAECs used on different days). NO* data have been
normalized by protein prior to statistical analysis. ANOVA was used to compare means of
different experimental groups. Statistical significance is set as p<0.05.

Netrin-1 stimulates NO* production from mouse heart

RNA and protein samples were prepared from freshly isolated C57BL/6J mouse hearts.
Quantitative reverse transcription polymerase chain reaction (QRT-PCR) and western blot were
used to determine mRNA and protein levels of netrin-1 receptors respectively. Relative
abundance of each mMRNA expression, indexed by endogenous GAPDH, was used for
comparison. Whereas DCC, UNC5A, integrin 1 and a.3 were abundantly expressed at mMRNA
levels, UNC5B, C, D and 4 was undetectable (Figure 1A). Neogenin and 6 were weakly
expressed. We have also confirmed DCC and neogenin expression at protein level (data not
shown). Given the fact that DCC is present in the mouse heart, we wondered whether netrin-1
stimulates DCC-dependent changes in NO* signaling. Importantly, perfusion of heart with
netrin-1 (100 ng/ml, 120 min) resulted in a significant increase in NO* production, as
demonstrated by representative ESR spectra and grouped data from six independent
experiments (Figure 1B&C). Subsequent experiments indicate that netrin-1 also simulated
DCC-dependent NO* production from hearts exposed to I/R injury (see below).

Nitric oxide mediates netrin-1 induced cardiac protection from ischemia/reperfusion injury

In view of the potent effect of netrin-1 on cardiac NO*® production (Figure 1B&C) and the
potentially significant role of NO® in mediating cardioprotection, we next examined whether
netrin-1 induces cardioprotection during I/R injury. Hearts pre-perfused for 45 min with
netrin-1 (100 ng/ml) were subjected to 20 min global ischemia, followed by a 60 min
reperfusion with netrin-1. The experimental protocol is illustrated in supplemental Figure 1.
Infarct size was quantitated as the area not stained red with tetrazolium red. Netrin-1 treated
hearts had a substantial reduction in infarct size compared to untreated controls (21.8+4.9%
vs. 42.5+3.6% for netrin-1 treated I/R vs. I/R alone, p<0.01) (Figure 2A&B). This was
accompanied by an augmented production of NO* in netrin-1 treated, I/R-ed hearts (1.78+0.12
fold higher than the untreated I/R controls, Figure 2C&D).

To determine whether the cardioprotective effect of netrin-1 was dependent on NO*, we
subjected mouse hearts to NO*® scavenger PTIO (60 umol/L, 30 min) prior to netrin-1 perfusion
and I/R injury. While NO* production was attenuated (Figure 3C&D), the infarct size in PTIO-
pre-treated, netrin-1-perfused hearts was also reversed to near control levels of 40.6+4.2%
(Figure 3A&B), implicating that the cardioprotective effects of netrin-1 is indeed, NO*-
dependent.

DCC/ERK1/2 is required for netrin-1 induced cardioprotection

DCC-dependent activation of the mitogen activated protein kinase ERK1/2 has been found a
signal transduction pathway for netrin-1 stimulated NO* production in vascular ECs [6]. We
next examined whether a similar signaling cascade is the mechanism whereby netrin-1
increases NO*® production in the heart. Hearts were pre-perfused with antibody neutralizing
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DCC, MEK1/2 inhibitor U0126 or NOS inhibitor L-NAME for 30 min prior to netrin-1
perfusion. The apparent cardioprotective effects of netrin-1 were reversed (n=4 for all): the
infarct size was increased upon addition of DCC antibody (32.7+4.5%), U0126 (41.3+4.1%)
or L-NAME (40.9£7.2%), compared to netrin-1 treatment alone (21.8+4.9%) (Figure 4A&B).
In addition, creatine kinase (CK) release, as an index of cardiac muscle damage, showed
identical responses (Figure 4C). Concomitantly, increased NO*® production by netrin-1 (1.78
+0.12 fold vs. untreated I/R controls) was also attenuated by DCC antibody (1.31+0.21 fold
vs. untreated I/R controls), U0126 (1.12+0.15 fold vs. untreated I/R controls) or L-NAME
(0.90+0.13 fold vs. untreated I/R controls) (Figure 4D&E). Taken together; these results
indicate that NO*-dependent cardioprotective effect of netrin-1 is mediated by DCC-dependent
activation of ERK1/2 and eNOS.

In additional experiments hearts from wild type (WT) and DCC+/— mice were subjected to I/
R and netrin-1 perfusion. Netrin-1 provoked NO* production in I/R-ed DCC+/— hearts was
significantly reduced (0.66 fold+0.15, p<0.05, Figure 4F&G) comparing to age-matched WT
hearts. Netrin-1 induced reduction in infarct size in WT hearts was also markedly attenuated
(infarct size: 21.8+4.9% vs. 35.9+3.2% for WT vs. DCC+/— respectively, p<0.05, Figure
4H&]I). These data further implicate an intermediate role of DCC in mediating netrin-1 induced
cardioprotection.

Furthermore, DCC protein abundance, ERK1/2 phosphorylation and eNOSs1179
phosphorylation were all increased, as evidenced by representative Western blots and
quantitative data (Figure 5A-D). Interestingly, I/R alone induced a rapid decline in DCC
protein and mRNA expression (Figure 5B&H). Netrin-1 perfusion of I/R hearts led to a
significant restoration of DCC protein expression, which was abolished by DCC-antibody,
U0126, or L-NAME (Figure 5B), indicating a potential feed-forward loop of NO*-ERK1/2-
DCC. Bovine aortic endothelial cells (BAEC) and isolated cardiomyocytes were treated with
NO® donor MAMANOATE (1 mmol/L, 2 hr) prior to analysis of DCC expression. Of note,
NO* donor increased DCC protein expression in both cultured ECs and cardiomyocytes (Figure
51). In additional experiments hearts were perfused with netrin-1 and harvested at 0, 5, 10 and
30 min. Netrin-1 stimulation resulted in a rapid, time-dependent increase in ERK1/2 and
eNOSs1177 phosphorylations (for 0, 5 and 10 min time points), which lasted till up to 30 min
(longest time point examined, Figure 5J). Of note, RNA samples extracted from netrin-1-
perfused I/R hearts demonstrated an elevation in DCC mRNA levels (Figure 5H) as well,
indicating that transcriptional regulation may have occurred to contribute to protein changes.

Moreover, a clear increase in phosphorylated ERK1/2 (Figure 5C) and eNOSg;177 (Figure 5D)
was observed with netrin-1 treatment (n=6), which was inhibited by DCC-antibody or U0126,
but not by addition of L-NAME. These results seem to indicate that netrin-1 initiates its
signaling by binding to DCC, resulting in ERK1/2/eNOS activation to produce NO®, which in
turn, upregulates DCC to form a positive feedback loop. Furthermore, protein expression of
eNOS was upregulated by netrin-1 perfusion under I/R condition, whereas iNOS and nNOS
expression were unaffected (Figure 5A, E-G).

Cardiomyoctyes and ECs-derived NO*® production in response to netrin-1

The NO*-specific fluorescent probe DAF-AM was used to estimate changes in NO*® production
in left ventricle. In netrin-1 perfused, post-1/R heart NO*® staining was clearly increased
(supplemental Figure 2A, D, G, J). As shown in supplemental Figure 2C, F, I, L, some of the
increase in NO® staining was detected specifically in the ECs that line cardiac microvessels,
which also labeled positive for VEGFR2 fluorescent antibody (supplemental Figure 2B, E, H,
K). The rest of the NO* staining seemed to come primarily from cardiomyocytes, and showed
an increase in netrin-1 treated myocardium.

J Mol Cell Cardiol. Author manuscript; available in PMC 2011 June 1.
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To further investigate a specific role of cardiomyocytes in netrin-1 signaling in the heart,
cardiomyocytes were freshly isolated from hearts and treated with netrin-1 (30 min or 60 min)
in Tyrode’s solution. There was a significant increase in NO® production from cardiomyocytes
treated with netrin-1, as demonstrated by representative ESR spectra and grouped data from
three independent experiments (supplemental Figure 3A-D). Protein abundance of DCC and
ERK1/2 phosphorylation were also significantly elevated in netrin-1-treated cardiomyocytes
(supplemental Figure 3E), echoing results found in lysed cardiac tissues (Figure 5B). These
results seem to suggest that netrin-1-stimulated NO® production from cardiomyocytes is also
DCC-dependent, and requires activation of ERK1/2 and eNOS.

Netrin-1 protects cardiac cells from apoptosis

NO* protects ECs and cardiomyocytes from apoptosis induced by oxidant stress, inflammatory
cytokines and chemotherapeutic agents [24-27]. TUNEL assay was performed to determine
whether netrin-1 inhibits apoptotic cell death induced by I/R. Left ventricular sections were
incubated with FITC-conjugated anti-DIG antibody and coverslipped with the mounting
medium containing 0.5 pg/ml of Propidium lodide (PI). Representative TUNEL (green) and
P1 (red) stained sections and quantitative analysis are shown in Figure 6A&B. I/R injury led
to a significant increase in the percentage of TUNEL-positive cells compared to the non-I/R
sections (18.2+£1.45% vs. 0.33+£0.5%). The heart pre-treated with netrin-1 exhibited a
significant decrease in TUNEL positive cells (6.78+0.93%). The decrease in apoptosis was
completely attenuated by DCC-antibody (17.83£2.87%), U0126 (19.24+2.4%) or L-NAME
(17.82+2.19%), again consistently indicating intermediate roles of DCC, ERK1/2 and NO".

Discussion

The most significant finding of the study is the innovative identification of a DCC/ERK1/2/
eNOSg1177/NO°*/DCC/NO* pathway that protects the heart from I/R induced apoptotic cell
death and infarction. NO* is produced following a DCC-dependent ERK1/2-eNOSq1177
activation in both cardiomyocytes and cardiac ECs, and that elevation in DCC expression was
abolished by inhibition of ERK1/2 or NO®, revealing a feed-forward loop of DCC-ERK1/2-
NO*-DCC. I/R induced a rapid loss in DCC protein and mRNA expression, which was
recovered by netrin-1 to a level that was two fold of the control. Exogenous NO*® donor also
upregulated DCC expression in both cultured myocytes and cardiac ECs.

Despite having been well characterized for its role in regulating axonal guidance [1-3], any
potential effects of circulating netrin-1 on the pathophysiology of the cardiovascular system
remain largely elusive. While recent studies identified an angiogenic role of netrin-1 [4-8],
whether it affects cardiac function is completely unknown. In the present study for the first
time we delineated effects of netrin-1 perfusion on cardiac protection. Also for the first time
we examined expressional profiles in the heart of the eight known netrin-1 receptors. As
demonstrated in Figure 1, DCC, neogenin, UNC5A, integerin 1 and a3 were found highly
expressed in C57BL/6J mouse hearts (MRNA detected by RT-PCR). Among these DCC and
neogenin are attractive receptors that mediate axonal outgrowth, and both expressed in cultured
endothelial cells; however only DCC mediates netrin-1 stimulated NO*® production and
endothelial cell growth and migration [6]. The repulsive receptor UNC5B however was not
expressed in mouse heart (Figure 1), although found in endothelial cells previously [15,27].
The mouse hearts we used for these analysis were rinsed out of blood completely using Krebs-
Henseleit buffer, so that the mRNA extracted was not contaminated by those of blood cells. If
using uncleaned hearts or monocytes, abundant UNC5B mRNA was detected (data not shown),
which is consistent to previous findings that monocytes express large amount of UNC5B
[28].

J Mol Cell Cardiol. Author manuscript; available in PMC 2011 June 1.
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The concept that NO* is a powerful cardioprotectant against I/R injury has become well
accepted [17,20,29]. Whereas in eNOS deficient mice the infarct size is significantly
augmented following I/R injury [30], overexpression of eNOS is associated with reduced
infarct size [17,18,31]. Nitrite supplementation results in a 48% reduction in infarct size post
I/R insult [32-35]. Indeed, NO* has been shown to mediate cardioprotective effects of estrogen
[36], statins [37], moderate alcohol [38], peroxisome proliferator-activated receptor-alpha
[39] and sildenafil [40]. In our study, netrin-1 induced an approximate 2-fold increase in cardiac
NO* production, which was associated with a 49% decrease in infarct size following I/R injury.
The specific, NO*-mediated cardioprotective effect of netrin-1 was abolished by NO*® scavenger
PTIO (Figure 3) and NOS inhibitor L-NAME (Figure 4). Taken together; our data further
establishes a cardioprotective role of NO® and reveals the mechanisms whereby netrin-1
exhibits cardioprotection.

Our findings support an essential role of DCC in mediating netrin-1 induction of NO® in cardiac
ECs and myocytes. DCC-antibody abolishes netrin-1 induction of NO* production in I/R-ed
hearts. This finding shares similarities with our previous observation that netrin-1 stimulates
NO* production in mature ECs in a DCC-dependent manner [6]. DCC protein abundance and
mRNA expression were increased in netrin-1-perfused, I/R-ed hearts, although I/R alone
induced a decline in DCC protein and mRNA expression (Figure 5A&B&I). NO* donor also
upregulated DCC protein expression in both cultured ECs and cardiomyocytes (Figure 5H).
Taken together; these data reveal a feed-forward loop of DCC-NO*-DCC, and a predominant
role of DCC in mediating netrin-1-dependent cardioprotection. Though the expression of
neogenin was abundant, neogenin-antibody had no effect on netrin-1 stimulated NO*
production or cardioprotection (data not shown).

Netrin-1 perfusion resulted in marked increases in ERK1/2 (Figure 5C) and eNOSq177 (Figure
5D) phosphorylations, which were inhibited by DCC-antibody or U0126, but not by addition
of L-NAME. These seem to suggest that netrin-1/DCC/ERK1/2/eNOS pathway is turned on
first, as inhibition of NO* production was ineffective in preventing DCC/ERK activation,
whereas, the secondary feed-forward mechanism of NO*/DCC/ERK1/2 occurs later, as DCC-
antibody and U0126 blocked eNOS phosphorylation. The role of ERK1/2 in mediating netrin-1
activation of eNOS is similar to previous observations that ERK1/2 is involved in transient
activation of eNOS by ROS [41,42]. It is interesting to speculate that this may share similarities
with ROS-dependent preconditioning. Recent studies by Das et al demonstrated that ERK1/2
phosphorylation mediates sildenafil-induced myocardial protection against I/R injury in mice
[43]. Previous studies by Li et al also demonstrated that ERK1/2 mediates NO* donor stimulated
apoptotic reduction during I/R.** Transgenic mice with activated MEK1/ERK2 have protected
myocardium when exposed to I/R insult in vivo [45]. Confirming a cardioprotective role of
ERK1/2, our data also neatly identifies a netrin-1/DCC/ERK1/2/eNOS/NO*/DCC feed-
forward loop that mediates the cardioprotective effects of netrin-1.

We have also further evaluated a potential role of PI3K/AKT pathway in mediating netrin-1
induced cardioprotection. Following the same I/R protocol outlined in suppl. Fig. 1, we found
that after the entire I/R procedure, AKT phosphorylation was minimal and unaffected by DCC-
Ab, U0126 or L-NAME (data not shown), although our data do not rule out the possibility that
AKT was more active at earlier time points. LY294002 pretreatment also failed to reduced
netrin-1 stimulated NO*® production (data not shown), implicating that PI3K/AKT pathway is
not required for netrin-1 stimulation of NO® production in this particular Langendorff perfusion
model.

Netrin-1 induced reduction in myocardial injury, is at least in part, mediated by NO*-dependent
decrease in myocardial apoptosis. We observed that TUNEL-positive cardiomyocytes were
decreased by 62.7% in netrin-1 treated hearts than that of controls. Apoptosis has been observed
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previously in hearts subjected to either continuous ischemia or ischemia followed by
reperfusion [46,47]. One of the major protective mechanisms of NO*® has been shown to be
prevention of myocardial apoptosis/death [31,48]. Indeed, myocardial apoptosis was
significantly increased in eNOS-deficient mice during fetal and neonatal heart development,
implicating that basal NO* release from eNOS protects cardiomyocytes from apoptosis [49].
Weiland et. al. have also shown that inhibition of endogenous eNOS potentiates I/R induced
myocardial apoptosis via caspase 3 pathway [50]. Consistent to these observations, our data
demonstrated that inhibition of netrin-1 signaling to attenuate NO* production resulted in loss
of the cardioprotective effects of netrin-1.

In summary, our innovative findings characterized a signaling mechanism whereby netrin-1
exerts its powerful cardioprotective effect during I/R injury. Upon netrin-1 perfusion, its
attractive receptor DCC is activated, resulting in ERK1/2/eNOSs; 177 activation, which in turn,
produces NO* to upregulate DCC expression, forming a feed-forward loop to maintain DCC
activity and additional NO*® production. A persistent supply of NO® may thus underlie the
marked reductions in infarct size and cardiac apoptosis. Only previously known as a neuronal
developmental protein and a regulator of angiogenesis, netrin-1, here gains a new role as a
potent cardioprotective agent. Additional investigations focusing on the therapeutic potential
of netrin-1 in managing ischemic heart disease may prove highly rewarding.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Expression of Netrin-1 receptors in the heart and netrin-1 stimulation of cardiac nitric
oxide (NO®) production

Whole mouse hearts (C57BL/6J) were homogenated for RNA and protein extraction. (A)
Expression of DCC, neogenin, UNC5A -D, integrin 1, B4, a3, and a6 mRNA in the mouse
heart was measured by RT-PCR and normalized to levels of GAPDH. In additional
experiments, mouse hearts were freshly isolated and perfused with netrin-1 (100 ng/ml) on the
Langendorff rig for 120 min. Hearts were then homogenated and incubated with the NO*-
specific spin trap Fe2*(DETC), for 60 min prior to ESR analysis of NO* production. (B)
Representative ESR spectra. (C) Grouped data from six independent experiments (Means
+SEM, n=6), *p<0.01.
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Figure 2. Netrin-1 protects heart from ischemia/reperfusion injury

Hearts were pre-perfused for 45 min with netrin-1 (100 ng/ml) before ischemia/reperfusion
(20 min ischemia, 60 min reperfusion with netrin-1). Sections of hearts were stained with 2,3,5-
TTC and infarct area calculated as % of risk area. (A) Infarct size was significantly decreased
in netrin-1 treated hearts from that of controls (21.8+4.9% vs. 42.5+3.6%, respectively,
p<0.01); (B) Infarct size shown in quantitative grouped data (Means+SEM, n=5), * p<0.01.
(C) Representative ESR spectra of NO* production from hearts perfused with netrin-1; (D)
Grouped data from four independent experiments. * p<0.05;
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Figure 3. Nitric oxide is required for netrin-1 induced cardiac protection from ischemia/reperfusion
injury

Hearts were pre-perfused with PT1O for 30 min prior to netrin-1 perfusion (100 ng/ml, 45 min),
followed by ischemia/reperfusion (20 min ischemia, 60 min reperfusion with netrin-1).
Sections of hearts were stained with 2,3,5-TTC and infarct area calculated as % of risk area.
(A & B) Representative TTC stainings of I/R Netrin-1, I/R PTIO/Netrin-1 and quantitative
grouped data (Means£SEM, n=5), *p<0.05 (C) Representative ESR spectra for NO*®; (D)
Grouped data from three independent experiments, *p<0.001;
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Figure 4. DCC/ERK1/2 activation is required for netrin-1-induced cardioprotection

Hearts were perfused with DCC antibody (1 pg/ml), ERK1/2 inhibitor U0126 (50 umol/L) or
L-NAME (100 pumol/L) for 30 min prior to 45 min netrin-1 perfusion. Ischemia/reperfusion
injury was consistently produced by subjecting the hearts to 20 min of ischemia, followed by
reperfusion for 60 min (with or without netrin-1). Sections of hearts were stained with 2,3,5-
TTC and infarct area calculated as % of risk area. (A) Representative TTC stainings of control
hearts, and hearts receiving netrin-1, DCC-antibody/netrin-1, U0126/netrin-1 and L-NAME/
netrin-1; (B) Infarct size shown in quantitative grouped data of A (Means+SEM, n=5),
*p<0.001 vs. control; **p<0.05 vs netrin-1; (C) Creatine kinase (CK) release was measured
by collecting effluent during the entire 60 min of reperfusion from control hearts, and hearts
receiving netrin-1, DCC-antibody/netrin-1, U0126/netrin-1 and L-NAME/netrin-1 (Means
+SEM, n=3). *p<0.05 vs. control; **p<0.05 vs netrin-1; (D) Representative ESR spectra of
NO* production of control hearts, and hearts receiving netrin-1, DCC-antibody/netrin-1,
U0126/netrin-1 and L-NAME/netrin-1; (E) Grouped data of NO* production of D (Means
+SEM, n=5). *p<0.001 vs. control, **p<0.05 vs. netrin-1; (F) Representative ESR spectra of
NO* production from IR-ed hearts of WT or DCC+/— mice perfused with netrin-1; (G) Grouped
data of NO* production of F (Means+SEM, *p<0.05); (H) Representative TTC stainings of
netrin-1 perfused, IR-ed hearts from WT or DCC+/—mice; (1) Infarct size shown in quantitative
grouped data of H (Means+SEM, n=3), * p<0.05.
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Figure 5. DCC-ERK1/2-eNOS1177-NO*-DCC feed-forward loop upon netrin-1 activation

Hearts were perfused as described in Figure 4. All quantitative data are expressed in Means
+SEM for statistical analysis. (A) Representative Western blots; (B) Grouped densitometric
data of DCC protein expression (n=6), *p<0.01 vs no I/R; **p<0.001 vs I/R control.
***n<0.001 vs netrin-1; (C) Grouped densitometric data of ERK1/2 phosphorylation that is
normalized by ERK1/2 (n=3), *p<0.05 vs I/R control, **p<0.01 vs netrin-1; (D) Grouped
densitometric data of eNOS41177 phosphorylation that is normalized by eNOS (n=4), *p<0.01
vs I/R control, **p<0.01 vs netrin-1; (E) Grouped densitometric data of eNOS protein
expression (n=5), *p<0.05 vs I/R control; (F) Grouped densitometric data of iINOS protein
expression (n=4); (G) Grouped densitometric data of nNOS protein expression (n=3); (H)
Representative and grouped mRNA levels of RT-PCR analysis of DCC in post netrin-1-
perfused hearts (n=3), *p<0.05; (1) Representative and grouped Western blot data of DCC
expression in NO* donor-treated BAECs and cardiomyocytes. (J) Representative and grouped
Western blots data of ERK1/2 and eNOSg;177 phosphorylation at different time points. Hearts
were perfused with netrin-1 (100 ng/mL) and harvested at 0, 5, 10 and 30 min for Western blot
analysis
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Figure 6. Netrin-1 reduces cardiomyocyte apoptosis in post-1/R hearts

Hearts perfused as described in Fig 4. (A) Representative detection of I/R-induced apoptotic
cells by TUNEL (green), and of all the cells by Propidium lodide (PI, red), in heart sections
of the following conditions: control, ischemia/reperfusion (I/R), netrin-1 treated I/R, netrin-1/
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DCC I/R, netrin-1/U0126 I/R or Netrin-1/L-NAME I/R; (B) Grouped data from three
independent experiments. *p<0.001 vs I/R control, **p<0.05 vs netrin-1.
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