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JMJ14, a JmjC domain protein,
is required for RNA silencing
and cell-to-cell movement
of an RNA silencing signal
in Arabidopsis
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JMJ14 is a histone H3 Lys4 (H3K4) trimethyl demethylase
that affects mobile RNA silencing in an Arabidopsis
transgene system. It also influences CHH DNA methyl-
ation, abundance of endogenous transposon transcripts,
and flowering time. JMJ14 acts at a point in RNA silenc-
ing pathways that is downstream from RNA-dependent
RNA polymerase 2 (RDR2) and Argonaute 4 (AGO4). Our
results illustrate a link between RNA silencing and de-
methylation of histone H3 trimethylysine. We propose
that JMJ14 acts downstream from the Argonaute effector
complex to demethylate histone H3K4 at the target of
RNA silencing.
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In plants, RNA silencing of a non-cell-autonomous na-
ture is evident in transgenic and virus-infected plants.
Transgene silencing may initiate spontaneously or be
induced in localized regions and subsequently spread
throughout the plant (Palauqui et al. 1997; Voinnet and
Baulcombe 1997; Voinnet et al. 1998). Similarly, virus-
induced silencing has effects beyond the infected tissue,
and it is thought that the silencing signal is an RNA
species. This RNA would move short distances through
the plasmodesmata and systemically through the phloem
(Voinnet et al. 1998).

Movement of the silencing signal is also associated
with epigenetic modifications such as DNA cytosine
methylation at targeted DNA loci. This RNA-directed
DNA methylation (RdDM) is characterized by methyla-
tion of cytosines in all sequence contexts: CG, CHG, and
CHH, where H is A, T, or C. In contrast, RNA-indepen-
dent methylation affects those residues that are present
in a CG or CHG context. Various DNA cytosine meth-

yltransferases, histone-modifying enzymes, and nuclear-
localized RNA silencing proteins are required for RdDM
(Cao and Jacobsen 2002b; Jackson et al. 2002; Li et al.
2006; Pontes et al. 2006). In addition, several plant-
specific proteins are required, most notably subunits of
two novel RNA polymerases termed Pol IV and Pol V
(Herr 2005; Kanno et al. 2005b). Pol IV and Pol V share the
same second-largest subunit, NRPD2/NRPE2, but are
distinguished by their unique largest subunits, NRPD1
and NRPE1, respectively. Many of the other subunits are
shared with Pol II (Huang et al. 2009; Lahmy et al. 2009).
Pol IV produces and/or amplifies the small RNA trigger,
whereas Pol V acts downstream from this step to facili-
tate de novo methylation at the small RNA targeted site
(Kanno et al. 2005a).

RdDM is also associated with histone modification, as
well as DNA methylation at Arabidopsis loci, where CHG
methylation by CHROMOMETHYLASE 3 (CMT3) is de-
pendent on an SRA-SET domain protein, KRYPTONITE
(KYP/SUVH4) (Cao and Jacobsen 2002a; Jackson et al.
2002). KYP catalyzes methylation of histone H3 Lys9
(H3K9), providing a binding site for the chromodomain of
CMT3 (Lindroth et al. 2004). Two other SRA-SET pro-
teins (SUVH5 and SUVH6) that methylate H3K9 also
contribute (Ebbs et al. 2005; Ebbs and Bender 2006). The
relationship between histone and DNA modification also
operates in the reverse direction. Thus, KYP and SUVH6
bind directly to DNA methylated at CHG sites through
their SRA domains (Johnson et al. 2007).

A link between histone modification and DNA meth-
ylation is implied not only by the phenotype of mutations
in SRA-SET proteins, but also by the function of Jumonji
C (JmjC) proteins found in diverse eukaryotes, including
humans, yeast, and plants that are H3 lysine demeth-
ylases. Arabidopsis encodes 21 JmjC domain proteins,
including some that may affect DNA methylation (Lu
et al. 2008). One of them (IBM1/JMJ25) prevents the
spread of DNA methylation at certain genomic loci (Saze
et al. 2008). KDM1/LSD1—another protein in this group—
demethylates methylated H3K4 (H3K4me1) and dimeth-
ylated H3K4 (H3K4me2) residues (Shi et al. 2004). Other
JmjC group proteins (ELF6/JMJ11 and REF6/JMJ12) either
delay or accelerate flowering time, and they demethyl-
ate dimethylated/trimethylated H3K9 (H3K9me2/3) and
H3K36me2/3, respectively (Noh et al. 2004). MEE27/JMJ25
is required for embryo development, and belongs to the
KDM5/JARID1 subgroup of JmjC proteins (Pagnussat
et al. 2005). KDM5/JARID1 proteins are histone demeth-
ylases using H3K4me1, H3K4me2, and H3K4me3 sub-
strates (Christensen et al. 2007; Iwase et al. 2007; Lee
et al. 2007; Seward et al. 2007).

In this study, we describe genetic evidence to implicate
a KDM5/JARID1 protein, JMJ14, in RNA silencing. It is
associated with a mobile signal of silencing in a pathway
that is associated with methylation of the DNA at the
target locus of RNA silencing. JMJ14 is also implicated in
silencing of endogenous transposable elements in a path-
way that is dependent on RNA-dependent RNA poly-
merase 2 (RDR2) and Argonaute 4 (AGO4) and control of
flowering time. Based on an epistasis analysis in which
the subcellular location of RDR2 and AGO4 location was
assayed in wild-type and jmj14 plants, we propose that
JMJ14 acts downstream from the Argonaute effector
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complex to demethylate histone H3K4me3 residues at
the target of RNA silencing.

Results and Discussion

A JmjC domain-containing protein, JAM39/JMJ14,
is required for RNA silencing

To identify RNA silencing components involved in cell-
to-cell movement of an RNA silencing signal in Arabi-
dopsis, we used plants in which a transgenic photo-
bleaching phenotype was due to spread of an RNA
silencing signal into the mesophyll from the phloem
(Smith et al. 2007). The target of silencing in this system
was the endogenous phytoene desaturase (PDS), and we
refer to the silencer transgene as JAP (Smith et al. 2007).
We demonstrated previously that chromatin silencing
components NRPD1 (nuclear Pol IV), RDR2, and CLSY1
(an SNF2 domain-containing protein) are required for this
mobile silencing effect based on the characterization of
nrpd1, rdr2, and clsy1 mutants. Here, we characterize an
additional mutant, jam39, with a similar phenotype of
reduced photobleaching and lower levels of PDS siRNAs
(Fig. 1). We mapped jam39 to At4g20400, which encodes
the predicted JMJ14 protein with Jumonji C (JmjC), JmjN,
C5HC2 Zinc finger, F/Y-rich C terminus, and F/Y-rich N

terminus domains (Fig. 1). At4g20400 was first named as
JMJ14 (Lu et al. 2008), and subsequently as JMJ4 (Jeong
et al. 2009) and PKDM7B (Yang et al. 2010). We acknowl-
edge precedence and follow the Lu et al. (2008) nomen-
clature.

To confirm jam39 was due to mutation of At4g20400/
JMJ14, we complemented the mutant phenotype of
jam39 by transformation with a fragment of At4g20400
consisting of the promoter, coding region, and 39 un-
translated region (UTR) (Supplemental Fig. 1). We also
demonstrated that two T-DNA insertion alleles, jmj14-1
(salk_135712) and jmj14-2 (salk_136058), had a loss of
photobleaching phenotype in the presence of the JAP
transgene (Fig. 1). The mutant from our screen is jmj14-3.

Sequence alignment of JMJ14 and four other closely
related proteins—AtJMJ15/MEE27/At2g34880, AtJMJ16/
At1g08620, AtJMJ18/At1g30810, and AtJMJ19/
At2g38950—revealed a high degree of similarity to the
KDM5/JARID1 subgroup of JmjC proteins (Supplemental
Fig. 2; Lu et al. 2008) in the JmjC domain and in a 61-
amino-acid C5HC2 Zinc finger domain (Supplemental
Fig. 3). The C5HC2 domain has eight potential zinc
ligand-binding residues, and may bind DNA or RNA.
However, unlike the KDM5/JARID1 group, JMJ14 lacks
a PHD domain that preferentially binds H3K9me3 (Iwase
et al. 2007), and it has FYRN and FYRC domains at the N
and C termini (Supplemental Fig. 3). Interestingly FYRN
and FYRC domains are normally found in trithorax and
its homologs, a group of histone H3K4 methyltransferases
(Finn et al. 2006).

Crystal structure of a KDM4A/JHDM3A catalytic core
sequence shows that Fe(II) is chelated by three residues
(His188, Glu190, and His276) within the JmjC domain
(Supplemental Fig. 3). Two additional residues (Thr185
and Lys206) are required for aKG binding (Chen et al.
2006; Klose et al. 2006). Substitutions of the Glu that
binds to Fe(II) to Asp, the Thr that binds to aKG to Tyr or
Phe, and the Lys that binds to aKG to Arg are compatible
with histone demethylation activity (Klose et al. 2006;
Agger et al. 2007; De Santa et al. 2007; Hong et al. 2007;
Lan et al. 2007). Based on these combined observations,
we predicted that JMJ14 has H3K4 histone demethylation
activity that is dependent on these conserved Fe(II)- and
aKG-binding amino acids (Supplemental Fig. 3). This
prediction has been confirmed recently by in vivo and
in vitro analysis of JMJ14 (Jeong et al. 2009; Lu et al. 2010).

JMJ14 acts at a far downstream stage of RNA silencing
pathway mutants

Previously, we identified non-CG DNA methylation at
the endogenous PDS locus in a region complementary to
the JAP transgene. NRPD1 is required for non-CG (CHG
and CHH) methylation and JAP-induced photobleaching
(Smith et al. 2007). In jmj14 mutants, based on bisulphite
sequence analysis, we found that the CHH methylation
at this endogenous PDS locus was reduced by as much as
in nrpd1 and rdr2 (Fig. 1). In contrast, CHG methylation
was not affected in jmj14 mutants, and was similar to
the wild-type control with the JAP transgene (Fig. 1). As
expected, nrpd1 and rdr2 mutants had reduced amounts
of CHG methylation at the endogenous PDS (Fig. 1). CG
sites were highly methylated in wild type and all mu-
tants, jmj14, nrpd1, and rdr2 (Fig. 1). From this result, we
infer that JMJ14 may act at the effector stage of RNA
silencing rather than siRNA biogenesis and, based on the

Figure 1. JMJ14/JAM39 is required for SUC2-PDS (JAP)-induced
silencing of PDS and DNA methylation. (A) Leaf phenotypes in JAP
background. (B) Detection of PDS siRNAs in jam39/jmj14-3 and
controls nrpd1 and rdr2. (C) Schematic representation of JMJ14 locus
and protein. Thick lines indicate exons and thin lines indicate
introns. Protein domains shown are JmjN (white hexagon), JmjC
(black rectangle), C5HC2 Zinc finger (white oval), FYRN (white
diamond), and FYRC (white pentagon). (D) Cytosine methylation at
the endogenous PDS locus assayed by bisulphite sequencing. At
least 18 clones were analyzed for each line.
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similarity of this protein to a histone demethylase, we
propose that it may influence epigenetic modification of
targeted DNA.

Based on epistatic interactions affecting the subcellular
localization of proteins, the components of the Pol IV
silencing pathway act in the sequence (NRPD1/CLSY1)–
RDR2–DCL3–AGO4–NRPE1 (Pontes et al. 2006). There-
fore, to place JMJ14 in the silencing pathway, we analyzed
the subcellular localization of RDR2 and AGO4 in nu-
clei of wild type and jmj14 mutants. Upstream silenc-
ing component RDR2 forms a crescent along the inner
perimeter of the nucleolus and at foci throughout the
nucleus (Pontes et al. 2006) in wild-type plants that was
unaffected in jmj14 mutants. AGO4 localizes to nucleo-
lus-adjacent Cajal bodies and nuclear foci, called AB
bodies (Li et al. 2006; Pontes et al. 2006), and this pattern
was also unaffected in most of the jmj14 and the JAP
nuclei examined (Fig. 2). These results are therefore

consistent with the hypothesis that JMJC14 acts far
downstream from siRNA biogenesis in the silencing
pathway.

To confirm this conclusion, we used Western blotting
to assess the accumulation of AGO4 in the jmj14 mu-
tants. AGO4 is less abundant in nrpd1 and rdr2 mutants,
indicating that there is a link between the accumulation
of the AGO4 effector of silencing and upstream siRNA
biogenesis (Li et al. 2006; Pontes et al. 2006). In contrast,
in jmj14 mutants, the AGO4 protein levels were similar
in jmj14 and wild type (Fig. 2), consistent with the action
of this protein in the downstream part of the JAP trans-
gene silencing pathway.

In a further test, we recombined jmj14 with ago4 in the
JAP background. Single ago4 mutants exhibited enhanced
photobleaching that is not affected by loss of function in
either RDR2 or CLSY1 (Smith et al. 2007). Our interpre-
tation of this result is that AGO4 mediates self-silencing
of the JAP transgene. The enhanced phenotype in the
single ago4/mutants is because this self-silencing path-
way is perturbed, and it persists in the double mutants
because the requirement for upstream proteins RDR2 and
CLSY1 is bypassed. If JMJ14 acts in the upstream part of
the pathway, like RDR2 or CLSY1, then the jmj14 ago4
double mutant would exhibit the enhanced silencing
phenotype. However, it did not: The enhanced silencing
was greatly reduced (Fig. 3). This double-mutant analysis
is therefore a further confirmation that JMJ14 acts in the
downstream part of the JAP silencing pathway.

The effect of JMJ14 on endogenous RNA,
DNA methylation, and flowering

To find out whether JMJ14 also affects silencing at
endogenous loci, we used high-throughput sequencing
of siRNA from seedling and floral tissues in wild-type and
jmj14 plants. However, there were no loci at which JMJ14
had a significant effect. This lack of an effect was con-
firmed by small RNA Northern analysis of selected
microRNAs (miRNAs), trans-acting siRNAs (tasiRNAs),
and siRNAs (Fig. 4). From these data, it seemed likely that
JMJ14 acts similarly to RNA-binding regulators of flower-
ing FCA and FPA (Baurle et al. 2007): These proteins are
required for JAP-induced photobleaching and transgene-
directed methylation of the endogenous PDS DNA, but
they did not affect the abundance of endogenous siRNA.

The similar action of JMJ14 and these flowering time
regulators was reinforced by the analysis of long RNA
transcripts of retrotransposons AtSN1 and Solo LTR (long
terminal repeat) by quantitative RT–PCR. These long
RNAs are up-regulated in fpa and fca plants (Baurle et al.
2007), and they are similarly increased in jmj14 mutants.
AtSN1 RNA was increased 75-fold more than wild type
in jmj14 and nrpd1 mutants. A solo LTR was several-
hundred-fold more abundant than wild type in jmj14 and
nrpd1 mutants (Fig. 4).

Intergenic region 1 (IG1) RNA is also a target of the
RNA silencing pathway that affects AtSN1 and Solo LTR.
The IG1 RNA is up-regulated in nrpd1 and jmj14 mu-
tants, although the abundance of the associated small
RNAs (Huettel et al. 2006) in sequence data sets was not
affected by JMJ14 function. However, it was striking that
the long IG1 RNA increased to a greater extent in jmj14
mutants (Fig. 4) than in nrpd1.

The activation of AtSN1 and Solo LTR in jmj14 is also
associated with loss of symmetric and asymmetric DNA

Figure 2. Nuclear localization of effector components AGO4 and
RDR2 are not perturbed in jmj14. (A) Immunolocalization of AGO4
was performed on nuclei derived from JAP3 and mutants jmj14-3
and ago4. DAPI was used as a DNA counterstain. (B) Immunolo-
calization of RDR2 was performed on JAP3, and mutants jmj14-3 and
rdr2. n = number of nuclei analyzed; (%) percentage of nuclei with
representative immunolocalization pattern. Bar, 5 mm. (C) Detection
of AGO4 protein abundance by Western analysis. AGO1 abundance
was used as a loading control.
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methylation at the corresponding genomic loci (Hamilton
et al. 2002), as found previously in nrpd1 (Herr et al.
2005). Using an assay that combines digestion of genomic
DNA using DNA methylation-sensitive restriction en-
zymes and semiquantitative PCR (Fig. 3), we found a loss
of DNA methylation at these loci in jmj14 similar to
nrpd1. We also assayed DNA methylation at solo LTRs
using the PCR assay and found a loss of DNA methyla-
tion in jmj14 similar to nrpd1 (Fig. 4).

A link between JMJ14 and FPA/FCA was made through
our observations that all three genes affect flowering.
However, under long- and short-day conditions, the jmj14
mutants flowered earlier than the controls, approxi-
mately six rosette leaves, respectively (Fig. 5), whereas
fca and fpa mutants were later flowering (Quesada et al.
2003). This difference can be explained by the distinct
activity of FPA/FCA and JMJ14 on the flowering time
pathways. FPA/FCA suppress the FLC master regulator of
flowering (Quesada et al. 2003), whereas JMJ14 does not
affect FLC. Instead, it promotes expression of a second
regulator, FT (Jeong et al. 2009; Lu et al. 2010).

JMJ14 in chromatin silencing

A straightforward interpretation of the results presented
here invokes JMJ14 in the downstream part of silencing
pathways that affect various endogenous loci, including
PDS, AtSN1, Solo LTR, and IG1 (Fig. 3). Presumably, as
JMJ14 is a histone H3K4 demethylase (Supplemental Fig.
2; Jeong et al. 2009; Lu et al. 2010), its role would lead to
the loss of activating epigenetic marks associated with
H3K4 methylation at the chromatin of target loci. This
interpretation therefore implies that RNA silencing at
AtSN1, Solo LTR, IG1, and PDS is either transcriptional
or cotranscriptional, and is influenced by structural
changes at the chromatin level.

Loss of a positive epigenetic mark is normally associ-
ated with gain of a negative mark at either the chromatin
or DNA level and, consistent with this idea, there is
increased methylation of DNA at AtSN1, Solo LTR, and
PDS target loci (Figs. 1, 4). At the PDS transgene locus,
this change could be indirect and influenced by reduced
siRNA production in the jmj14 mutants (Fig. 1). How-
ever, at the endogenous loci, where the level of siRNA is
unaffected by the JMJ14 mutations (Fig. 4), there may be
a more direct linkage. Inactivating epigenetic marks as-
sociated with modification of H3K9 or H3K27 might also
be involved, and so that loss of the corresponding histone
methyltransferase functions would give loss of the PDS

silencing phenotype in the JAP lines. However, mutation
of histone methyltransferase KYP had no effect on the
PDS silencing phenotype (data not shown), and one of the
other Arabidopsis SRA/SET domain proteins might be
involved.

It is striking that mutation of JMJ14 has no effect on
siRNA production from endogenous loci, but it does
influence the level of siRNA from the PDS loci (Figs. 1,
3). To account for this observation, there must be a differ-
ence between the response of the endogenous and trans-
gene loci to JMJ14-mediated epigenetic modification.
Presumably, the endogenous AtSN1 and Solo LTR loci
produce siRNA irrespective of whether JMJ14 is active,
whereas the JAP transgene must be a better source of
siRNA in the presence rather than the absence of active
JMJ14. According to this idea, the JAP transgene would
differ from the endogenous AtSN1 and Solo LTR loci
in that there would be a positive feedback system af-
fecting siRNA production. Silencing at all of these loci
would be affected by JMJ14 acting at the downstream
effector step. However, the silencing of the PDS locus
would be reinforced in the presence of JMJ14 if the loss of
the H3K4-activating epigenetic mark promoted further
rounds of sRNA production.

Figure 3. JMJ14 and not NRPD1A is required for JAP-induced
enhanced photobleaching. (A) Single mutants nrpd1, clsy1, or
jmj14-3 in a JAP background. Controls plants Col and JAP are also
shown. (B) Double mutants of nrpd1, clsy1, or jmj14 in an ago4 JAP
genetic background. Control plant JAP ago4 is also shown. All plants
were grown under long-day conditions.

Figure 4. Characterization of endogenous siRNAs and detection
of increased AtSN1, solo LTR, and IG1 abundance in jmj14. (A)
Detection of siRNAs derived from AtSN1, LTR, 5S, tasiRNA 1511,
and miRNAs 159 and 319 in JAP3, jmj14, and nrpd1 mutants. (B)
Detection of AtSN1 transcripts in JAP, jmj14, and nrpd1 mutants
by quantitative PCR. (C,D) Detection of solo LTR abundance (C)
and IG1 abundance (D) by quantitative PCR. (E) Analysis of DNA
methylation at AtSN1 by PCR. AluI digestion is sensitive to cyto-
sine methylation. Reduction of methylation results in reduced levels
of the PCR product. (F) Analysis of DNA methylation at solo LTR.
MspI digestion is sensitive to cytosine methylation. Quantification
of triplicate samples was performed, of which one representative
sample is shown.

Cell-to-cell movement of RNA silencing

GENES & DEVELOPMENT 989



Materials and methods

Plant material

Transgenic Arabidopsis thaliana (Columbia ecotype) SUC2-PDS line #3,

described here as JAP, was described previously (Smith et al. 2007). JMJ14/

At4g20400 alleles described are as follows: jmj14-1 is Salk_135712, jmj14-2

is SALK_136058, and jmj14-3 is an EMS-induced mutation. Allele jmj14-3

was a G-to-A transition changing conserved amino acid 387 from Glu to

Lys, and was detected by a PCR and restriction enzyme digestion assay.

EcoRI digestion of the PCR product amplified using oligonucleotide

primers CCTTGAAGAACAGCCTGACTTG and GCTCCCAGAGGCA

GTAAGTAG revealed two products, 200 and 264 bp, in Columbia, and

a single 464 product in jmj14-3. Mutant alleles used were ago4 (ago4-3),

nrpd1 (nrpd1a-5), nrpd1e (drd3-1), and rdr2-5.

Plasmid constructs

A complementing 6.2-kb genomic clone of JMJ14/At4g20400 was ampli-

fied using oligonucleotide primers attB1 (AGCAACATGTGTGTGACC)

and attB2 (GATCTAGACGAGGATGATCTCAC), cloned into pGGW2-

35S and transformed into jmj14-3 using Agrobacterium tumefaciens

GV3101-mediated transformation. Vector pGGW2-35S was constructed

after XbaI digestion of pGGW2 to remove the 35SCaMV promoter and

self-ligation of the remaining vector. Gateway recombination sequence

attB1 is ACAAGTTTGTACAAAAAAGCAGGCT and attB2 is ACCCAG

CTTTCTTGTACAAAGTGGT.

RNA and protein analysis

Solexa small RNA cloning was performed using Illumina Solexa kit as

described by the manufacturer. Total RNA was isolated from 10-d-old

seedlings, and ;10 mg of mirVana (Ambion)-purified RNA was used for

ligation to adapters and amplification of small RNA fragments. Illumina

sequencing was performed at Cambridge Research Institute UK, Cam-

bridge. RT–PCR was performed using an Invitrogen SuperScript III kit as

per the manufacturer’s recommendations using 5 mg of total RNA and

with oligo-dT. RT–PCR detection of the JAP transgene was described

previously (Smith et al. 2007). RT–PCR detection of JMJ14 mRNA was

performed using primers GGGCTTGAAATGTTTGGATTTCTC and

CTTCAACAGTCCACGCAGAAGC. RT–PCR detection of retrotranspo-

son AtSN1 and DNA transposon AtMu1 by RT–PCR was described

previously (Herr et al. 2005; Baurle et al. 2007). Nuclear immunolocaliza-

tion of proteins AGO4 and RDR2 was performed as described (Pontes et al.

2006).
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