Jun-D: A third member of the Jun gene family

(transcription factor AP-1/oncogene/growth response/DNA-binding protein)

KEVIN RYDER, ANTHONY LANAHAN, EVELIO PEREZ-ALBUERNE, AND DANIEL NATHANS

Howard Hughes Medical Institute Laboratory and Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205

Contributed by Daniel Nathans, December 12, 1988

ABSTRACT The protooncogene c-jun encodes a component of the transcription factor AP-1. Both murine c-jun and a related gene (jun-B) are rapidly activated in BALB/c 3T3 cells by serum growth factors. We report here the cloning and analysis of a cDNA encoding a third member of the murine jun family, jun-D. The amino acid sequence encoded by jun-D has two extensive regions of homology with the other Jun proteins. One homology region includes the DNA-binding domain and sequences required for dimer formation and interaction with the Fos oncoprotein; the other includes the acidic sequence thought to be involved in gene activation. All three jun mRNAs are present in a variety of murine tissues and cell lines. In resting 3T3 cells, jun-D is expressed at a higher level compared to c-jun and jun-B, and its transcription is stimulated only slightly by serum growth factors. Thus, jun-D appears to be regulated differently than c-jun and jun-B.

The cellular homolog of the avian sarcoma virus oncogene v-jun (1-3) encodes a component of the complex transcription factor AP-1 (2-4). Both the murine protooncogene c-jun (also called jun-A) and a related gene (jun-B) have been identified as immediate early genes activated by serum growth factors in BALB/c mouse 3T3 cells (5-11). Based on restriction analysis of genomic DNA, it appeared that other jun-related genes are present in the mammalian genome (7). To search for these additional jun-related genes, we screened mouse cDNA and genomic libraries for clones that would hybridize to murine c-jun and/or jun-B cDNA probes. By this means we detected a third member of the jun family called jun-D (10). Here we report that jun-D cDNA encodes a protein closely related to c-Jun and Jun-B. Compared to c-jun and jun-B, jun-D is expressed at a higher level in nongrowing 3T3 cells and is activated only slightly by serum growth factors. Recently, we learned that jun-D cDNA has also been isolated by S.-I. Hirai, R. C. Ryseck, F. Mechta, R. Bravo, and M. Yaniv (personal communication).

MATERIALS AND METHODS

Cell Culture. BALB/c 3T3 cells and conditions of growth have been described (6).

Cloning of cDNA and Genomic DNA. A previously described λ bacteriophage cDNA library prepared from poly(A)⁺ RNA of BALB/c 3T3 cells stimulated with serum for 3 hr in the presence of cycloheximide (6) was probed with ³²P-labeled murine c-jun or jun-B cDNA. Filters were washed at reduced stringency (0.5 M NaCl at 65°C) or at high stringency (0.1 M NaCl at 65°C) to detect phage that hybridized only at reduced stringency. Seventeen λ phage libraries (12) were prepared from size-selected *Eco*RI fragments of mouse genomic DNA, the sizes corresponding to fragments previously shown by Southern blotting to cross-hybridize

with jun-B cDNA (7). The libraries were screened with 32 P-labeled jun-B or murine c-jun cDNA (or cloned fragments thereof) at 65°C in 1 M NaCl and washed with 0.3 M NaCl/ 0.03 M sodium citrate at 57°C.

Other Methods. DNA sequencing (13), mRNA mapping (7), nuclear run-on assays (14, 15), and blot-hybridization analysis of cellular or tissue RNA (Northern analysis; refs. 16–18) were performed as described (7, 8).

RESULTS

Isolation and Analysis of jun-D cDNA. To detect additional *jun*-related mouse genes, we screened cDNA libraries and genomic libraries with jun-B or c-jun cDNA probes, or both, under conditions of moderate to low stringency. A number of different genomic clones hybridized to one or more cDNA probes. One class of these corresponded to murine c-*jun* (8), another to *jun-B* (7), and another to a third member of the *jun* family (*jun-D*) whose cDNA was detected in a BALB/c 3T3 cell library (6). Of the remaining genomic clones, the most promising hybridizing isolates were found to have only short regions of sequence similarity to *jun-B* or c-*jun*.

The sequence of the longest jun-D cDNA detected in the 3T3 cell library and the sequence derived from a 5' overlapping mouse genomic fragment of *jun-D* are shown in Fig. 1.* The complete cDNA is 1675 nucleotides long, corresponding to an electrophoretically estimated length of 1.8 kilobases for jun-D mRNA. The 5' end of the mRNA (nucleotide 1 in Fig. 1) was mapped by primer extension on 3T3 cell RNA as well as by S1 nuclease analysis with a probe derived from genomic DNA as described (7). Sequencing of the overlapping genomic fragment revealed a typical TATA motif 25–30 nucleotides 5' to the inferred transcription start site.

The first ATG at position 121 is preceded by a leader sequence with a G+C content of 85%. This ATG is followed by 1020 nucleotides of additional coding sequence, a termination codon, 532 nucleotides of 3' noncoding sequence, and a poly(A) tail. Although there is no characteristic poly(A) addition signal, there is an AGTAAA sequence near the 3' end that may serve as the signal. In addition, there is a single ATTTA element in the 3' noncoding region (nucleotides 1434–1438), multiple copies of which are associated with mRNA instability (19).

Comparison of *jun* **Sequences.** When the predicted amino acid sequence of Jun-D is compared with those of murine c-Jun and Jun-B, two long homology regions (HR-1 and HR-2) are seen (Fig. 2). Between HR-1 and HR-2 and at the amino end are segments with only short stretches of sequence similarity. In each homology region, Jun-D is more similar to murine c-Jun than it is to Jun-B. The C-terminal 40–50% of each Jun protein (including HR-2) retains specific DNA-binding activity and is able to form dimers and interact with Fos (20). This segment has the heptad repeats of leucine,

The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "*advertisement*" in accordance with 18 U.S.C. \$1734 solely to indicate this fact.

Abbreviation: HR-1 and HR-2, homology regions 1 and 2.

^{*}The sequence reported in this paper is being deposited in the EMBL/GenBank data base (accession no. J04509).

-53	53 CGGTGAGCTCATCGCGGGGGCCGAGGC <u>TATAA</u> GAGTGC																								
-18	GCG	GCGCGGGCGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG																							
83	ccc	CCGC	CCCG	GGGC	CGAG	CGCG	GCGG	GGGA	GGTG	GGG	ATG	GAA	ACG	ccc	TTC	TAT	GGC	GAG	GAG	GCG	CTG	AGC	GGC	CTG	GCT
(1)											MET	Glu	Thr	Pro	Phe	Tyr	Gly	Glu	Glu	Ala	Leu	Ser	Gly	Leu	Ala
166	GCG	GGT	GCG	TCG	AGC	GTC	GCT	GGT	GCT	ACT	GGG	GCC	ccc	GGC	GGT	GGT	GGC	TTC	GCG	ccc	CCG	GGC	CGC	GCT	TTC
(16)	Ala	Gly	Ala	Ser	Ser	Val	Ala	Gly	Ala	Thr	Gly	Ala	Pro	Gly	Gly	Gly	Gly	Phe	Ala	Pro	Pro	Gly	Arg	Ala	Phe
241	ccc	GGG	GCG	ccc	CCG	ACG	AGC	AGC	ATG	CTG	AAG	AAA	GAC	GÇĞ	CTG	ACG	CTC	AGC	CTG	GCG	GAG	CAG	GGĀ	GCG	GCG
(41)	Pro	Gly	Ala	Pro	Pro	Thr	Ser	Ser	MET	Leu	Lys	Lys	Asp	Ala	Leu	Thr	Leu	Ser	Leu	Ala	Glu	Gln	Gly	Ala	Ala
316	GGA	TTG	AAA	CCA	GGG	TCG	GCC	ACT	GCA	CCT	TCT	GCG	CTG	CGC	CCC	GAC	GGC	GCC	ccc	GAC	GGG	CTG	CTG	GCT	TCG
(66)	Gly	Leu	Lys	Pro	Gly	Ser	Ala	Thr	Ala	Pro	Ser	Ala	Leu	Arg	Pro	Asp	Gly	Ala	Pro	Asp	Gly	Leu	Leu	Ala	Ser
391	CCG	GAT	CTT	GGG	CTG	CTC	AAA	CTC	GCG	TCG	CCG	GAG	CTG	GAG	AGG	CTG	ATC	ATC	CAG	TCC	AAC	GGG	CTG	GTG	ACC
(91)	Pro	Asp	Leu	Gly	Leu	Leu	Lys	Leu	Ala	Ser	Pro	Glu	Leu	Glu	Arg	Leu	Ile	Ile	Gln	Ser	Asn	Gly	Leu	Val	Thr
466	ACT	ACC	CCG	ACC	AGT	ACG	CAG	TTC	CTC	TAC	CCG	AAG	GTG	GCA	GCC	AGC	GAG	GAG	CAG	GAG	TTC	GCC	GAA	GGC	TTC
(116)	Thr	Thr	Pro	Thr	Ser	Thr	Gln	Phe	Leu	Tyr	Pro	Lys	Val	Ala	Ala	Ser	Glu	Glu	Gln	Glu	Phe	Ala	Glu	Gly	Phe
541	GTC	AAG	GCG	CTG	GAG	GAC	CTG	CAC	AAG	CAA	AGC	CAG	CTG	GGT	GCG	GCC	ACC	GCG	GCC	ACC	TCA	GGG	GCT	ccc	GCG
(141)	Val	Lys	Ala	Leu	Glu	Asp	Leu	His	Lys	Gln	Ser	Gln	Leu	Gly	Ala	Ala	Thr	Ala	Ala	Thr	Ser	Gly	Ala	Pro	Ala
616	CCT	ccc	GCG	CCC	GCC	GAC	CTG	GCC	GCC	ACC	ccc	GGG	GCC	ACG	GAG	ACC	CCG	GTC	TAC	GCC	AAC	CTG	AGC	AGT	TTC
(166)	Pro	Pro	Ala	Pro	Ala	Asp	Leu	Ala	Ala	Thr	Pro	Gly	Ala	Thr	Glu	Thr	Pro	Val	Tyr	Ala	Asn	Leu	Ser	Ser	Phe
691	GCG	GGT	GGC	GCC	GGG	ccc	ССТ	GGG	GGC	GCG	GCC	ACC	GTG	GCT	TTC	GCC	GCG	GAG	CCA	GTG	CCC	TTC	CCG	CCG	CCC
(191)	Ala	Gly	Gly	Ala	Gly	Pro	Pro	Gly	Gly	Ala	Ala	Thr	Val	Ala	Phe	Ala	Ala	Glu	Pro	Val	Pro	Phe	Pro	Pro	Pro
766	CCG	GGC	GCG	CTG	GGG	CCG	CCG	CCA	ССТ	CCG	CAT	CCA	CCG	CGC	CTG	GCC	GCG	CTC	AAG	GAC	GAG	CCG	CAG	ACC	GTG
(216)	Pro	Gly	Ala	Leu	Gly	Pro	Pro	Pro	Pro	Pro	His	Pro	Pro	Arg	Leu	Ala	Ala	Leu	Lys	Asp	Glu	Pro	Gln	Thr	Val
841	CCG	GAC	GTG	CCG	AGC	TTC	GGC	GAC	AGC	CCT	CCG	CTG	TCG	CCC	ATC	GAC	ATG	GAC	ACG	CAA	GAA	CGC	ATC	AAG	GCG
(241)	Pro	Asp	Val	Pro	Ser	Phe	Gly	Asp	Ser	Pro	Pro	Leu	Ser	Pro	Ile	Asp	MET	Asp	Thr	Gin	Glu	Arg	Ile	Lys	Ala
916	GAG	CGC	AAG	AGG	CTG	CGC	AAC	CGC	ATC	GCC	GCC	TCC	AAA	TGC	CGC	AAG	CGC	AAG	CTG	GAG	CGT	ATC	TCG	CGC	CTG
(266)	Glu	Arg	Lys	Arg	Leu	Arg	Asn	Arg	Ile	Ala	Ala	Ser	Lys	Cys	Arg	Lys	Arg	Lys	Leu	GIU	Arg	lle	Ser	Arg	Leu
991	GAG	GAG	AAA	GTC	AAG	ACC	CTC	AAA	AGC	CAG	AAC	ACC	GAG	CTG	GCG	TCC	ACC	GCC	AGC	CTG	CTG	CGC	GAG	CAG	GTG
(291)	GIU	GIU	Lys	Val	Lys	Thr	Leu	Lys	Ser	GIN	Asn	Thr	GIU	Leu	Ala	Ser	Thr	Ala	Ser	Leu	Leu	Arg	GIU	GIN	Val
1066	GCG	CAG	CTC	AAA	CAG	AAA	GTC	CTC	AGC	CAC	GTC	AAC	AGC	GGC	TGC	CAG	CTG	CTG	CCC	CAG	CAC	CAG	GTC	CCG	GCG
(316)	ALA	GIN	Leu	Lys	GIN	LYS	val	Leu	ser	HIS	val	ASN	Ser	GTA	Cys	GIN	Leu	Leu	PIO	GIN	HIS	GIN	vai	PIO	ALA
1141	TAC	TGA	GCCC	GAGC	NCGG	GGCG	CATC	ICGCG	GACT	AGCI	GCGG	TGGG	GGGG	CGCC	CCGG	ACTO	TITC	GAGA	CTCG	GTGC	CCCC	GGAC	TCGA	CAAG	CLGG
(341)	TYP	-			C 3 mc		1000		~~~~~	~ ~ ~ ~	~~~~			~~~~	~~~		NCCO	3.000	~~~~	~~~ ~					CTCC
1239	239 ACCCCCCTTAACTCTGGATGGGGAACCCGAGCGCACGACCCCCGCCCTCGCGCCGCCTCTCTACNCCCAGTCCTGCGCGCGCGCCCCTTTGTACCTCC																								

FIG. 1. Nucleotide sequence of jun-D cDNA and the predicted Jun-D protein sequence. Also shown is the sequence from a genomic fragment that overlapped the 5' end of the cDNA. Numbers at the left refer to the first nucleotide on each line or (in parentheses) to the first amino acid. The adenine at nucleotide 1 (mRNA start site) is indicated in relief. A TATAA sequence in the genomic DNA is underlined. The predicted termination codon is noted, and the poly(A) tail is indicated (A_N). The identity of two nucleotides (positions 1293 and 1371) was uncertain.

present in all three Jun proteins, postulated to form an amphipathic helix and a dimerizing "leucine zipper" (25). HR-1, which is not required for specific DNA binding (2, 3, 20), contains the stretch of acidic amino acids of c-Jun that is able to substitute for the activator domain of the yeast transcription activator protein GCN4 (21); all 5 of the acidic amino acids in a 16-amino acid segment of c-Jun HR-1 are also present in Jun-B and Jun-D.

Serum Stimulation of Murine jun Genes. Both jun-B and c-jun are immediate early genes in 3T3 cells, characterized by rapid and transient activation by serum growth factors independent of new protein synthesis (5–9). Compared with jun-B and c-jun, jun-D mRNA is more abundant in nongrowing 3T3 cells and is stimulated less by serum (Fig. 3A) or by platelet-derived growth factor or fibroblast growth factor (results not shown). Moreover, there is little increase in transcription of jun-D after serum stimulation of resting cells, in contrast to what is found for c-jun and jun-B and other immediate early genes (Fig. 3B). In addition, jun-D mRNA is more stable than the other jun mRNAs after serum stimulation (data not shown). These results suggest that regulation of jun-D expression by serum growth factors is different from regulation of c-jun and jun-B.

Presence of jun-D mRNA in Tissues and Cell Lines. We have shown (8) that jun-B and c-jun mRNAs are present in many adult mouse tissues and in mouse placenta at days 8–14 of gestation. Similar results have been obtained with jun-D mRNA (Fig. 4A). With the exception of spleen and thymus, the distribution in tissues is similar to that found for c-jun and jun-B mRNAs; jun mRNAs are also present in many cell lines, but the relative amount of each jun RNA is different in some cell lines compared with others (Fig. 4B). These observations suggest that the Jun proteins play an important regulatory role in many cell types and that they are often not regulated coordinately. Moreover, since different Jun proteins interact *in vitro* to form heterodimers (20), it is possible that in cells expressing more than one *jun* gene, heterodimers contribute distinct regulatory activities.

DISCUSSION

Three members of the mammalian jun family have now been identified: murine c-jun, jun-B, and jun-D. The three Jun proteins are closely related in amino acid sequence, particularly in the region (HR-2) containing the DNA-binding domain (2, 3, 20), the heptad leucine repeats (25), and domains for dimerization and interaction with Fos (20, 22-24), and in the segment (HR-1) containing a putative transcription activation domain (21). Jun-D is more closely related by sequence to c-Jun than to Jun-B. Functionally, the three Jun proteins show similar nucleotide sequence specificity for binding to a series of oligonucleotides, and DNAbinding by each protein is stimulated markedly by Fos (20). Although no activities unique to a particular Jun protein have been observed so far, the fact that regions of dissimilar sequence in the Jun proteins are evolutionarily conserved [in the case of c-Jun (8)] suggests that these regions are functionally important and therefore that each protein has distinctive biological properties.

Two observations indicate that regulation of the different murine *jun* genes is not coordinate. First, the relative amounts of c-jun, jun-B, and jun-D mRNAs in different cells or organs vary, in some cases markedly. Second, the level of jun-D mRNA in nongrowing 3T3 cells is higher than that of c-jun and jun-B mRNAs, and jun-D mRNA is more stable after serum stimulation. Moreover, transcriptional activation Α

JUN-D C-JUN JUN-B	МЕТРГУСЕ МТАКМЕТТГУ Е МСТКМЕОРГУНЕ	TEALSGLAAGAS DDAL DDSY	SVAGATGAPGGGGFAPPG NASF AAAG	RA FPGAPPTSS MLKKDA LOSESGAYGTSNPKILKOS (GRSPGSLSLHDYKLLKPT	LTLSLAEOGAAGLKP MTLNLADPV GSLK LALNLADPY RGLKG	50							
JUN-D C-JUN JUN-B	GS AT APS A LRPE PH LRAKNS PG ARGPGP E GS C	DGAP DGLLAS D LLTS GAGSYFS GOGS	PDLGL LKLASPELERLI PDVGL LKLASPELERLI DTGASLKLASTELERLI	IQ SNGLVTTTPTST OFL IQSSNGHITTTPTPT OFL IPNSNGVITTTPTPPGQYF	YPK VAA CPK NY YPRGGGSGGGTGGGY	103							
JUN-D C-JUN JUN-B	SEEQE FAEGFN TDEQEGFAEGFN TEEQEGFADGFN	/KALEDLHKOSC /RALAELHSONT /KALDDLH K	LGAATAAT SGAP API LPSVTSAAQPVSGAGMVA MNHVTPPNVSLGASG GI	PAPADLAATPG AT PAVASVAGAGGGGGGYSASL PO A GPGGV YAGP	ETPVYANLSSF A HSEPPVYANLSNFNP EP PPVYTNLSSYSP	178							
JUN-D C-JUN JUN-B	G GAGPPG GALSSGGGAPS ASAPSGGSGTAV	GAATVAFAAEP (GAAGLAFPSOF (GTGS SYPTAT	VPF PP PPGALGPPPPI 00000PP0PPHHLP00IP ISYL PHAPPFAGGHPAO	PHPPR LAALKDEPOTVPD VOHPR LOALKEEPOTVPE LGLSRGASAFKEEPOTVPE	VPSFGDSPPLSPIDM MPG E TPPLSPIDM ARSRDATPPVSPINM	250							
JUN-D C-JUN JUN-B	DTOERIKAERKI ESOERIKAERKI EDOERIKVERKI	RLRNRIAASKCF RMRNRIAASKCF RLRNRLAATKCF	KRKLERISRLEEKVKTLK: KRKLERIARLEEKVKTLK KRKLERIARLEDKVKTLK	SONTE LASTAS LLREOVAO AONSE LASTANMLREOVAO AENAG LSSA AGLLREOVAO	LKOKVLSHVNSGCOL LKOKVMNHVNSGCOL LKOKVMTHVSNGCOL	325							
JUN-D C-JUN JUN-B	LPOHOVPAY MLTOOLOTF 3: LLGVKGHAF	34											
В	DNA-Binding												
	Fos interaction												
		? Effector		Leucine repeats									
N .	64	⁴ HR-1 ¹²	22 23	Dimerization 23 HR-2 ³	25 334								
			Per cent Similarity										
c/B/D	22	74	16	75	0								
c/B	36	79	25	79	22								
c/D	42	84	39	88	11								
B/D	36	78	23	82	22								

FIG. 2. (A) Comparison of murine Jun-D, c-Jun, and Jun-B sequences in the single-letter amino acid code. Sequence identities and similarities (D = E, I = V, K = R, and T = S) are shaded. Numbers to the right refer to the last residue of c-Jun on each line. (B) Linear representation of murine c-Jun (heavy line, numbers above the line indicating amino acid residue number) with the percent similarity between Jun proteins for each region taken from A. HR-1 and HR-2 are the homology regions 1 and 2 referred to in the text. Above the line are functions assigned to HR-1 and HR-2 (refs. 2, 3, 20-24).

of jun-D in 3T3 cells by serum growth factors is much less than activation of c-jun and jun-B. Therefore, each of the genes is likely to have unique controlling elements that govern responses to specific intracellular or extracellular signals.

The constitutive expression of jun-D in resting 3T3 cells raises the possibility that Jun-D is involved in the activation of immediate early genes induced by growth factors and by tumor promoters. Several tumor promoter- and growth factor-responsive genes are downstream of AP-1 binding sites (26-28). Ligand-induced modification of preexisting Jun-D could play a role in the activation of these genes.

We thank Laura Sanders for technical support, Se-Jin Lee for tissue and cell line RNAs, Keith Peden for helpful comments, and Lily Mitchell for preparation of the manuscript. We also thank Moshe Yaniv for sharing unpublished results. This research was supported in part by Grant 5 P01 CA16519 from the National Cancer Institute. K.R. is a postdoctoral fellow of the American Cancer Society; E.P.-A. is a trainee of the Medical Scientist Training Program of the National Institute of General Medical Science (GM 07309).

- 1. Maki, Y., Bos, T. J., Davis, C., Starbuck, M. & Vogt, P. K. (1987) Proc. Natl. Acad. Sci. USA 84, 2848-2852.
- Bohman, D., Bos, T. J., Admon, A., Nishiimurg, T., Vogt, P. K. & Tjian, R. (1987) *Science* 238, 1386–1392. Angel, P., Allegretto, E. A., Okoni, S. T., Hattori, K., Boyle,
- 3. W. J., Hunter, T. & Karin, M. (1988) Nature (London) 332, 166-171.
- Bos, T. J., Bohman, D., Tsuchie, H., Tjian, R. & Vogt, P. K. 4. (1988) Cell 52, 705-712.
- Lamph, W. W., Wansley, P., Sassone-Corsi, P. & Verma, 5. I. M. (1988) Nature (London) 334, 629-631.
- 6. Lau, L. F. & Nathans, D. (1987) Proc. Natl. Acad. Sci. USA 84, 1182-1186.
- 7. Ryder, K., Lau, L. F. & Nathans, D. (1988) Proc. Natl. Acad. Sci. USA 85, 1487-1491.
- Ryder, K. & Nathans, D. (1988) Proc. Natl. Acad. Sci. USA 85, 8. 8464-8467.
- 9. Ryseck, P.-P., Hirai, S. I., Yaniv, M. & Bravo, R. (1988) Nature (London) 334, 535-537.
- 10 Nathans, D., Lau, L. V., Christy, B., Hartzell, S., Nakabeppu, Y. & Ryder, K. (1988) Cold Spring Harbor Symp. Quant. Biol. 53, 893-900.
- Lau, L. F. & Nathans, D. (1985) EMBO J. 4, 3145-3151. 11.
- 12. Frishauf, A. M., Lehrach, H., Poustka, A. & Murray, N. (1983) J. Mol. Biol. 170, 827-842.

Biochemistry: Ryder et al.

FIG. 3. (A) Changes in jun-D and c-jun mRNA levels after stimulation of 3T3 cells with serum. Total RNA (10 μ g) was fractionated by electrophoresis, blotted, and hybridized with ³²Plabeled c-jun or jun-D cDNA. Times above each lane refer to hours after addition of serum to resting cells; 3C refers to treatment with serum plus cycloheximide for 3 hr, and QC refers to quiescent cells treated with cycloheximide alone for 3 hr. (B) Changes in transcription of *jun-D* and c-*jun* genes after serum stimulation of 3T3 cells. ³²P-labeled nuclear run-on transcripts were hybridized to jun-D, c-jun, fos, and myc cDNA immobilized on nitrocellulose filters. Nuclei were prepared at the times after addition of serum indicated above each lane. In the last lane, the cells were treated with serum plus cycloheximide (CHX) for 120 min.

- 13. Sanger, F., Nicklen, S. & Coulson, A. R. (1977) Proc. Natl. Acad. Sci. USA 74, 5463-5467.
- Groudine, M., Peretz, M. & Weintraub, H. (1981) Mol. Cell. Biol. 1, 281–288.
- 15. Greenberg, M. & Ziff, E. (1984) Nature (London) 311, 433-438.
- Chirgwin, J. M., Przybyla, A. E., MacDonald, R. J. & Rutter, W. J. (1979) *Biochemistry* 18, 5294–5299.
- 17. Goldberg, D. A. (1980) Proc. Natl. Acad. Sci. USA 77, 5794-5798.
- 18. Thomas, P. S. (1980) Proc. Natl. Acad. Sci. USA 77, 5201-5205.
- 19. Shaw, G. & Kamen, R. (1986) Cell 46, 659-667.

FIG. 4. (A) Distribution of jun-D mRNA in mouse tissues. Total RNA (10 μ g) was analyzed by Northern blotting. Lanes: B, brain; I, intestine; K, kidney; L, liver; S, spleen; T, thymus; 8–18, placental RNA at the indicated day of gestation. (B) Distribution of c-jun, jun-B, and jun-D mRNAs in cultured cell lines. Total RNA (10 μ g) was analyzed by Northern blotting with one jun probe at a time, and the three autoradiograms were photographed together. Lanes: 1, 3T3 cells treated with serum plus cycloheximide for 3 hr; 2, quiescent 3T3 cells; 3, NIH 3T3 cells; 4, C127I cells transformed by bovine papilloma virus; 5, C₃H/10T1/2 mouse fibroblasts; 6, mouse L 929 cells; 7, simian virus 40-transformed mouse testicular cells; 8, BNL CL.2 fetal hepatocytes; 9, chemically transformed BNL CL.2; 10, HEPA-1 hepatoma cells; 11, RAW 264.7 mouse macrophages; 12, Friend erythroleukemia cells; 13, undifferentiated F9 cells; 14, differentiated F9 cells.

- Nakabeppu, Y., Ryder, K. & Nathans, D. (1988) Cell 55, 907-915.
- 21. Struhl, K. (1988) Nature (London) 332, 649-651.
- Kouzarides, T. & Ziff, E. (1988) Nature (London) 336, 646-651.
 Halazonetis, T. D., Geogopoulos, K., Greenberg, M. E. &
- Leder, P. (1988) Cell 55, 917-924.
 24. Rauscher, F. S., III, von Papas, P., Franza, B. R., Jr., & Curran, T. (1988) Cells Dev. 2, 1687-1699.
- Landschulz, W. H., Johnson, P. F. & McKnight, S. L. (1988) Science 240, 1759–1763.
- Angel, P., Imagawa, M., Chiu, R., Stein, B., Imbra, R. J., Rahmsdorf, H. J., Jonat, C., Herrlich, P. & Karin, M. (1987) *Cell* 49, 729-739.
- 27. Lee, W., Mitchell, P. & Tjian, R. (1987) Cell 49, 741-752.
- Sassone-Corsi, P., Sisson, J. C. & Verma, I. M. (1988) Nature (London) 334, 314–319.