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Abstract
Glycocylation represents the most complex and widespread post-translational modifications in
human proteins. The variation of glycosylation is closely related to oncogenic transformation.
Therefore, profiling of glycans detached from proteins is a promising strategy to identify biomarkers
for cancer detection. This study identified candidate glycan biomarkers associated with
hepatocellular carcinoma by mass spectrometry. Specifically, mass spectrometry data were analyzed
with a peak selection procedure which incorporates multiple random sampling strategies with
recursive feature selection based on support vector machines. Ten peak sets were obtained from
different combinations of samples. Seven peaks were shared by each of the 10 peaksets, in which 7–
12 peaks were selected, indicating 58–100% of peaks were shared by the 10 peaksets. Support vector
machines and hierarchical clustering method were used to evaluate the performance of the peaksets.
The predictive performance of the seven peaks was further evaluated by using 19 newly generated
MALDI-TOF spectra. Glycan structures for four glycans of the seven peaks were determined.
Literature search indicated that the structures of the four glycans could be found in some cancer-
related glycoproteins. The method of this study is significant in deriving consistent, accurate, and
biological significant glycan marker candidates for hepatocellular carcinoma diagnosis.
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1. Introduction
As the most complex and widespread post-translational modification (PTM),1 glycosylation
plays crucial roles during different oncogenetic processes.2-4 Many important tumor markers,
such as CEA,5 CA125,6 and PSA,7-9 are glycoproteins with altered glycan profiles in cancer.
As one of the most common types of malignant tumor, hepatocellular carcinoma (HCC) is
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difficult to diagnose due to the highly heterogenic nature of the disease and has a low survival
rate once diagnosed.10 The popular method to diagnose HCC is to measure a serum
glycoprotein marker alpha-fetoprotein (AFP). However, this marker has limited sensitivity
(41–65%).11 This sensitivity could be improved by measuring several highly specific
glycoprotein markers.11 Therefore, there is an urgent need to discover additional markers
associated with HCC for the early diagnosis.

Currently, glycan marker discovery by analyzing mass spectrometry (MS) data presents great
potential to identify a panel of biomarkers relevant for early diagnosis of heterogenic diseases
with improved accuracies.12-15 However, this approach is characterized by high
dimensionality and complex patterns with a substantial amount of noise arising from
measurement deviation, disease heterogeneity, and biological variability. A robust
computational method is required to identify markers relevant to a particular problem from the
MS data sets. Machine learning methods, especially neural networks and support vector
machines (SVM), provide potential application in the marker selection from MS data. Using
shallow feature selection method and Bayesian neural network (BNN) classifier, 99%
sensitivity and 98% specificity were reached on the SELDI-TOF MS data to identify ovarian
cancer using 2-fold cross validation (CV).12 Information gain and SVM classifier were used
for prion disease diagnosis from MALDIFTMS data and yielded 72% sensitivity and 73%
specificity by leave-one-out cross validation (LOOCV).13 t-test and several classification
methods such as discriminant analyses, k-nearest neighbor analysis, and SVM were used for
identifying ovarian cancer cases from normal patients, and SVM have resulted in the lowest
error rates.15 These methods utilized a filter strategy which identifies relevant peaks
independent of the classifiers. In the feature selection from machine learning classifiers,
another popular strategy is wrapper method, where classifiers that built from different peak
subsets evaluate the goodness of peak subsets by such criteria as CV error rate or accuracy
from the validation data set; the wrapper method presented good performance and a stable
feature subset when applied in microarray gene discovery16 and can be extended into MS peak
selection. Mahadevan et al. built a feature selection method known as recursive feature
elimination-support vector machine (RFE-SVM) to separate pneumonia from healthy people
by mass spectrometry. They obtained an overall accuracy of 84–96% by 4-fold CV and 87–
97% by LOOCV, providing much better predictive performance when compared with
multivariate analysis methods.17

In our previous studies, we utilized ant colony optimization combined with support vector
machines (ACO-SVM) peak selection to identify biomarkers for HCC diagnosis14,18-21 using
matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF
MS). Six peptide markers were identified that yielded 100% sensitivity and 91% specificity in
an independent test set,14,21 and two of them were found to be fragments of Complement C3
and C4.14,21 Six to 10 glycan markers were found to be associated with HCC with 87–93%
sensitivity and 89–100% specificity.14,18-20 Two glycans with permethylated molecular
weight at 2040 and 4502 were identified in most of these studies.14,19,20 In this study, we
apply an integrated RFE-SVM approach to select glycan markers correctly distinguishing HCC
cases from chronic liver disease (CLD) patients through MALDI-TOF MS data. This method
incorporated RFE-SVM with the consensus scoring system, multiple random sampling
method, and feature-ranking consistency evaluation system. We generated 10 discriminant
peak sets from the various combinations of MALDI-TOF spectra. Each set contained 7–12
peaks; 7 glycan peaks were present in all 10 peak sets, indicating that 58–100% of all the peaks
in the 10 sets were shared by all of them. These results suggest that the discriminant peaksets
are insensitive to the sample combinations. Different evaluation methods and a newly
generated data set were used to evaluate the performances of the selected peaks. Among
previously selected candidate markers, those with permethylation molecular weight at 2040,
2186, and 450214,18-20 were included in the 7 peaks which were selected by all of the 10 sets.
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The structures of 4 glycans of the 7 peaks were determined. A literature search indicated that
the structures of the four glycans could be found in cancer-related glycoproteins beta-
glucuronidase, cytochrome, and immunoglobulin, suggesting their possible roles in cancer
progression.

2. Materials and Methods
Data Sets

Two hundred and three serum samples were collected from 73 HCC cases, 52 CLD cases, and
78 healthy individuals from Cairo, Egypt.14 Diagnosis of HCC was confirmed by pathology,
cytology, imaging, and serum AFP. CLD cases included fibrosis and cirrhosis patients.
Controls were recruited among patients from an orthopedic and fracture clinic and were
frequency-matched to cancer cases by gender, age, and smoking status.14

N-Glycans were released from glycoprotein, extracted, and permethylated by a solid-phase
approach. The resulting permethylated glycans were spotted on a MLADI plate with DHB-
matrix, and the MALDI plate was dried under vacuum. Mass spectra were acquired using a
4800 MALDI TOF/TOF Analyzer (Applied Biosystems, Inc.) equipped with a Nd:YAG 355-
nm laser. MALDI spectra were recorded in positive-ion mode, since permethylation eliminates
the negative charge normally associated with sialylated glycans.

Two hundred and three mass spectra, including 73 HCC cases, 52 CLD cases and 78 healthy
individuals, were acquired at the National Center for Glycomics and Glycoproteomics at
Indiana University. The 73 HCC spectra and 52 CLD spectra were utilized for peak selection.
Nineteen additional spectra were generated at the Proteomics and Metabolomics Shared
Resource at Georgetown University Medical Center and used for peak evaluation. The 19
spectra were obtained from 9 CLD and 10 HCC samples, which are a subset of the previously
analyzed 52 CLD and 73 HCC cases. The same sample preparation protocol14 was used in
generating the original 203 spectra and the additional 19 spectra.

Glycan Structure Determination
Structural assignment of the different N-glycans was achieved through high-energy collision
incident dissociation (CID) tandem MS analyses. Although tandem MS analysis utilizing high
energy CID is currently allowing comprehensive characterization of glycan structures,
enzymatic sequencing, in some cases, is deemed necessary to confirm structural attributes such
as linkages. This is accomplished by employing an array of excoglycosidases including those
specific for different sialic acid, fucose and galactose linkages. For enrichment of minor
glycans, we first used the quantification by TOF-MS to select samples with the highest intensity
of a glycan of interest. The glycan is then further enriched from these samples by micro
fractionation, as described previously.22,23 Briefly, our method for separation of the
permethylated glycans incorporates derivatization, C18 trapping of permethylated glycans, and
C18 nano-LC separation.22 The chromatographic separation of permethylated glycans is
attained initially using an isocratic condition of 32% phase B (acetonitrile containing 0.1%
formic acid) for 40 min, followed by an increase of phase A to 55% over 15 min. The mobile
composition is then held at 55% for 10 min. Phase A consists of 3% aqueous acetonitrile with
10 mM ammonium formate. The separation is achieved on C18 nanocolumn (150 × 0.075 mm
fused silica pulled-tip column).

MALDI-TOF MS Data PreProcessing
Each spectrum of the 203 MALDI sample consisted of approximately 121 000 data points in
the mass range of 1500–5500 Da. To reduce their dimension, the spectra were first binned with
the size of 0.2 Da. The mean of the intensities within each bin was used as the intensity variable.
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Using this binning method, the dimension of each spectrum was reduced to 20 000. Baseline-
corrected spectra were then used to indentify peaks by using a wavelet-based peak detection
method.24 After peak identification, the spectra were normalized with the highest peak as 100
and the lowest peak as 0.

After the alignment of the 203 mass spectra from the peak lists,25 3397 peaks were identified.
Since there are artifacts in the aligned intensity, the intensity of each aligned m/z value was
treated as the maximum intensity in the original spectra within ±0.5 Da. The average intensities
of the aligned peaks were used to determine possible clusters of isotopic distributions. With
this approach, the number of peaks was further reduced to 447 assuming that each isotopic
cluster contains only one glycan molecule. The 447 peaks were utilized to build classifiers and
to select the most discriminant peaks.

Classification Method
Support vector machines (SVM), a supervised machine learning method proposed by Vapnik,
was used in this study as the classification tool.26 SVM-based classifiers are shown to prove
excellent classification performance and have been successfully applied in microarray data
analysis16 and mass spectrometry data analysis.27,28

There are two types of SVM: linear and nonlinear. In linear SVM, a hyperplane in the feature
space is directly constructed. This hyperplane, which separates two different classes of feature
vectors with a maximum margin, is generated by finding a vector w and a variable b that
minimizes ∥w∥2, which satisfies the following conditions: w · xi + b ≤ −1, for yi = −1 (cancer
patients) and w · xi + b ≤ −1, for yi = −1 (noncancer people). Here, xi is a feature vector, yi is
the group index, w is a vector normal to the hyperplane, |b|/∥w∥ is the perpendicular distance
from the hyperplane to the origin, and ∥w∥ is the Euclidean norm of w. This optimization
problem can be described as to minimize 0.5∥w∥2 subject to yi(w · xi + b) ≥ 1. With the
introduction of Lagrangian multiplier ai, this problem can be rewritten as

 where αi ≥ 0, and efficiently solved by

maximizing  under the constraints  and αi ≥
0, i = 1, 2, …, n. After the determination of w and b, a given vector x can be classified by using
sign [(w · x) + b]. A positive or negative value indicates that the vector x belongs to the positive
or negative class, respectively.

Nonlinear SVM, by using a kernel function, projects both positive and negative examples into
a higher-dimensional feature space and then the linear SVM procedure can be applied to the
feature vectors in this feature space. In our experiments, Gaussian kernel K(X,X′) = exp (−
(∥X − X′∥)/(2σ2)) was used since this kernel performs similar with linear kernel and sigmoid
kernel under certain parameters,29-31 and few parameters were needed to be tuned when
comparing with the polynomial kernel.

The performance of SVM classification can be measured by true positive TP (number of cancer
patients correctly predicted as cancer patient), false negative FN (number of cancer patients
incorrectly predicted as noncancer people), true negative TN (number of noncancer people
correctly predicted noncancer people), and false positive FP (number of noncancer people
incorrectly predicted as cancer patients). Three indicators, sensitivity Qp = TP/(TP + FN),
specificity Qn = TN/(TN + FP), and overall accuracy Q = (TP + TN)/(TP + FN + TN + FP),
were used to measure the predictive performance.

Peak Selection Method
The recursive feature elimination-SVM (RFE-SVM) method has been successfully used for
feature selection from high dimensional microarray and mass spectrometry data.16,27,28
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Briefly, RFE-SVM uses the prediction accuracy from SVM to assess the goodness of each
peak and to determine a peak ranking. The peak ranking criterion of RFE-SVM is based on
the change in the objective function upon removing each peak. This objective function can be
represented by a cost function J = 0.5aTHa − aT1, where H is the matrix with elements H(i,j)
= yiyjK(xi,xj), computed by using the training set only. When a given peak k is removed or its
weight wk is reduced to zero, the change in the cost function J(k) is given by DJ(k) = 0.5(∂2J/
∂wk

2)(Dwk)2. The change in weight Dwk=wk−0 corresponds to the removal of peak k. Hence,
the change in the cost function can be written as DJ(k) = 0.5aTHa−0.5a*TH(−k)a*, where H
is the matrix with elements yiyjK(xi,xj). H(−k) is the matrix computed by using the same method
as that of matrix H but with its kth component removed. For the sake of complicity and to
reduce computational complexity, α* is supposed to be equal to α, under the assumption that
the removal of one peak will not significantly influence the values of αs. The change in the
cost function indicates the contribution of the peak to the decision function and serves as an
indicator of peak ranking position.

Peak Elimination Procedure
To present statistical meaning, peak selection is conducted based on a multiple random
sampling strategy. Each random sampling divides all MALDI-TOF spectra into a training set
that contains half of the samples and an associated test set, which contains the remaining half.
By using this random sampling strategy, 5000 training-test sets, each containing a unique
combination of samples, are generated. These 5000 training-test sets are randomly divided into
10 sampling groups, with 500 training-test sets in each group (Figure 1). Every sampling group
is then used to derive a signature by RFE-SVM.

In every training-test sampling group generated by multiple random sampling, each training
set (totally 500 training sets) is used to train a SVM class-differentiation system and the peaks
are ranked by using RFE according to the contribution of peaks to the SVM classifier. The
performance of each peak subset which selected in every iteration step is evaluated on the
associated 500 test sets. Two typical variables used in RBF kernel, σ and C, are kept constant
during all iterations in the peak elimination procedure and among all the 500 training set in
this group, in order to derive a peak ranking criterion consistent for all iterations and different
combination of samples. Different combinations of variables σ and C are scanned. One
combination of the two variables can be defined as a universal set of globally optimized
variables, if the best average class differentiation accuracy over the 500 test sets in this group
is achieved by a SVM class differentiation system using these variables and on a peak subset
which selected in a certain iteration step. The peak subset can be determined as one discriminant
peak set.

To further reduce the chance of erroneous elimination of predictor-peaks, additional peak-
ranking consistency evaluation steps are implemented on top of the normal RFE procedures
in each group:

(1) For every training-set, subsets of peaks ranked in the bottom (which give least
contribution to the SVM classification procedure) with combined score lower than the first
few top-ranked peaks (which give highest contribution to the SVM classification
procedure) are selected such that collective contribution of these peaks less likely
outweighs the top-ranked ones.

(2) For every training-set, the step (1) selected peaks are further evaluated to choose those
not ranked in the upper 50% in previous iteration so as to ensure that these peaks are
consistently ranked lower.

(3) A consensus scoring scheme is applied to peaks selected in step (2) such that only those
appearing in most of the 500 testing-sets were eliminated.
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For each sampling group, different SVM parameters are scanned, various RFE iteration steps
are evaluated to identify the globally optimal SVM parameters and RFE iteration steps that
give the highest average class-differentiation accuracy for the 500 testing-sets. The 10
discriminant peak sets derived from these sampling-groups are then applied to evaluate the
stability and performance.

Computational Complexity Estimation
The computational complexity of SVM is of O(nm2) where m is the number of training samples
and n is the number of peaks. In the feature selection procedure, SVM will be retrained many
times with a decreasing number of features. The number of iterations is n if we remove the
peaks one by one. When the multiple randomly sampling strategies are applied, the RFE-SVM
needs to be executed l times, where l is the number of training sets used in each sampling group.
Hence the overall computational complexity is O(ln2m2).

3. Results and Discussion
The 203 MALDI glycan spectra were obtained from 73 HCC cases, 52 CLD cases, and 78
healthy samples from Egyptian population.14 The 52 CLD cases included 21 fibrosis patients,
25 cirrhosis patients, and 6 patients with unknown clinical information. Each mass spectrum
contained approximately 121 000 data points in the mass range of 1500–5500 Da. After the
preprocessing procedure of binning, baseline correction, peak identification, and peak
alignment, the dimension of glycan spectra was reduced to 3397 m/z peaks.

The average intensities of the 3397 peaks in 203 spectra were used to determine a cluster of
peaks that can represent an isotopic distribution. Figure 2 shows the average peak intensities
of the 203 spectra in the mass range from 2800 to 2900. A close examination of the peaks in
the figure reveals that individual glycans are represented by a cluster of peaks. This is due to
the high resolution MALDI-TOF instrument used in this study that has the capability to resolve
isotopes of individual glycans. We assumed that each cluster contains only one glycan molecule
in order to simplify the problem, and reduced the number of peaks to 447 by selecting the local
maximum peaks.

Hierarchical clustering analysis32 based on the 447 peaks grouped the 203 samples into three
clusters (Table 1). The first cluster was dominated by HCC samples; it included 67 HCC, 4
CLD and 27 healthy samples. We call this cluster HCC Cluster. The second cluster, named as
CLD Cluster, was dominated by CLD cases, including 3 HCC, 24 CLD and 14 healthy samples.
The third cluster, named as Healthy Cluster, contained 3 HCC, 24 CLD and 37 healthy samples.
Ninty-two percent of the HCC samples were found in the HCC Cluster, whereas 92% of the
CLD samples and 65% of the healthy samples were present in the CLD or the Healthy Clusters,
respectively. These results suggest that the 447 peaks have a certain discriminating ability to
differentiate cancer patient from noncancer individuals (CLD and healthy) through an
unsupervised clustering method.

Using supervised SVM classifier and 447 peaks through the LOOCV evaluation method, 95%
accuracy to separate HCC from CLD samples and 96% accuracy to separate HCC from
noncancer samples (CLD and healthy) were achieved. These results suggest that the 447 peaks
could perform perfectly in separating HCC from CLD or healthy individuals by supervised
analysis.

To determine the peaks most pertinent to differentiating HCC spectra from CLD spectra, 10
peak subsets were obtained using integrated RFE-SVM from 5000 training-test data sets with
447 peaks. These 5000 training-test data sets were generated through a random sampling
method, with each training set containing 36–37 HCC and 26–27 CLD, and their associated
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test set consisting of the remaining HCC and CLD samples (36–37 HCC and 25–26 CLD).
These data sets were divided into 10 groups, with 500 training-test data set in each group. For
each group, one peakset was obtained. Subsequently, totally 10 peaksets were generated. There
were 7 to 12 peaks for each peak set. The stability of the peak sets was estimated from the
percentage of the peaks shared by all of the 10 peak sets. From Table 2, it is obvious that seven
peaks were selected by all of the 10 peak sets. This indicates that 58–100% of all the peaks in
each peak set were shared by all of 10 sets, suggesting that our method is quite stable. The
overall accuracy ranging from 99.79 to 99.99% were obtained using the associated test sets
(Table 2). We utilized backward elimination method, in which feature selection was started
with the full-dimensional peakset (447 peaks) and sequentially deleted the least important
peaks. We also applied forward elimination method, in which feature selection was started
with an empty peakset and sequentially added the most important peaks, on the RFE-SVM
with multiple randomly sampling strategy, ranking consistency evaluation, and consensus
scoring system. Similar results can be obtained from both methods and the overall accuracies
and consistency rates from both methods were significantly higher than those obtained using
a typical RFE-SVM procedure (Table 3).

Hierarchical clustering analysis was performed on the 10 peak sets and 203 samples. The 78
samples from healthy individuals were not used in the peak selection procedure. Instead, they
were employed in the evaluation step, together with the CLD and HCC samples. Table 1 shows
the cluster analysis results obtained using the 10 peak sets derived in this study. Each peak set
has the ability to stratify the samples into HCC Cluster, CLD Cluster and Healthy Cluster.
HCC Clusters included 66–72 HCC, 0 CLD and 7–27 healthy samples. CLD Clusters included
0 HCC, 25–48 CLD and 10–21 healthy samples. Healthy Clusters included 1–7 HCC, 4–27
CLD and 49–62 healthy samples. These results indicate that 90–99% of HCC, 48–92% of CLD
and 63–80% of healthy samples were grouped into correct clusters, suggesting that the peaks
for differentiating HCC and CLD can also help to stratify HCC, CLD, and healthy people.

Hierarchical clustering analysis on the 7 peaks that were shared by all of the 10 peak sets shows
three clusters (Table 1), including HCC Cluster (66 HCC and 7 healthy), CLD Cluster (48 CLD
and 21 healthy), and Healthy Cluster (50 healthy, 4 CLD and 7 HCC). It can be conclude that
90% of HCC were in HCC cluster, 92% of CLD were in CLD cluster, and 64% of healthy
sample were in healthy cluster. These results are encouraging since the 78 healthy samples
were not involved in the peak selection procedure. Using the 7 peaks, 96% accuracy was
obtained in distinguishing HCC from noncancer individuals (CLD and healthy), and 100%
accuracy was obtained in separating HCC from CLD patients, by LOOCV evaluation from
SVM classifiers. Only 8 healthy samples were misclassified despite the fact that all of the 78
healthy samples were not involved in the peak selection procedure. These results demonstrate
that the selected 7 peaks can predict the sample groups accurately.

To further evaluate the predictive capability of the selected peaks, we generated 19 new
MALDI-TOF spectra from Egyptian population using a similar protocol as described in
previous studies.14,20 The 19 new spectra, which included 9 CLD and 10 HCC cases, were
generated by different institute, by different people and at different time from the spectra used
for peak selection. The preprocessing steps including binning, baseline correction, peak
identification, peak alignment and isotopic distribution analysis were performed in the same
way as the previous 203 samples. The peaks in the new data set were chosen if the m/z values
of the peaks in new data set were within the ±0.5 Da differences with the m/z values of seven
peaks we derived. We built an SVM model by using the seven peaks and the 73 HCC and 52
CLD spectra we previously generated,14 and predicted the 19 spectra we newly generated. Five
CLD and 10 HCC cases were predicted correctly. Four CLD cases were misclassified as HCC
cases, while no HCC case was misclassified as CLD case. This indicates that 79% of the newly
generated samples were predicted correctly, suggesting good performance of the selected 7
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peaks in predicting this new data set. The reason why the four CLD cases were predicted as
HCC cases whereas all of the HCC cases were predicted correctly might be because of the
unbalanced data set we used in building the SVM model, where the training data contained
spectra derived from 73 HCC and 52 CLD cases. In order to keep the balance, we reduced the
HCC sample size in the training set to 52, and rebuilt the model. The HCC accuracy (sensitivity)
was decreased from 100% to 80% and CLD accuracy (specificity) was increased from 56 to
78%. The overall accuracy was 79%, the same as what we obtained in the first model. Another
solution to improve the predictive accuracy is to increase the CLD sample size in the training
set.

Association of the glycans and covariates (gender, smoking, HCV infection, and HBV
infection) with HCC was analyzed by univariate logistic regression using the 78 healthy and
73 HCC spectra (Table 4). The analysis shows that five of the seven selected glycan markers
(m/z values as 1580, 1996, 2186, 4311, and 4502) and serological markers of viral infections
(HBV and HCV viral infections) were strongly associated with HCC. Table 4 also shows that
the seven selected glycan peaks have no association with smoking and gender.

Figure 3 shows the glycan intensity analysis of the seven peaks among HCC patients, CLD
patients, and healthy individuals. Structural composition of 4 out of 7 glycans, with the m/z
values at 1580, 2040, 2187 and 2851, were characterized by a combination of enzymatic
sequencing and MALDI-TOF/TOF tandem mass spectrometry18,33 (Table 5). The structural
analysis of the glycan at m/z 4502 is underway. On the basis of its molecular weight and isotopic
distribution, a possible structure match of this glycan was found in the database
http://www.functionalglycomics.org/static/index.shtml. The glycan with the m/z value at 4052
was selected by all of our previous studies.14,18-20 The glycan with the m/z value at 2040 was
chosen by two of our previous studies.18,19 The glycan with the m/z values at 2187 was selected
in one of our previous studies.18 However, neither the m/z value at 1580 nor the m/z value at
2851 was discovered by our previous studies.

Literature search indicates that some cancer-related proteins have glycan compositions as the
four glycans we selected with known structure. The high mannose glycan at MW 1580 could
be enzymatically released from a research anticancer target beta-glucuronidase (hCG)34,35
and a successful anticancer target cytochrome P450.34,36 Glycan at MW 2187 could be
released from a research anticancer target chorionic gonadotrophin.34,37 The expressions of
these two glycans were gradually increased from healthy people, CLD to HCC cases (Figure
3), implicating possibly important involvement of these two glycans and their associated
glycoproteins in the HCC progression. The two fucosylated glycans at MW 2040 and 2851
could be enzymatically released from human immunoglobulin IgG.38-41 A comprehensive
determination of the glycan composition at glycosylation sites in these proteins is needed to
reveal post-translational modifications of glycoprotein, analyze specific function to the
carbohydrate moiety, and determine the potential clinical utility of the glycan markers for early
diagnosis of HCC.

4. Conclusion
Changes in glycosylation are associated with physiological and pathophysiological conditions
of cells. Glycan marker discovery would be helpful to determine the physiological state of
patients. We identified 7 N-glycan serum markers associated with HCC from mass
spectrometry data. We used the 7 glycans to achieve good performance in distinguishing HCC
patients from CLD patients and healthy people with unsupervised clustering and supervised
classification methods and with newly generated data set. The structures of 4 glycans could be
identified in the important cancer-related glycoproteins. Further analysis and evaluation of
these marker candidates are needed to validate their clinical utility for early diagnosis of HCC.
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Figure 1.
Overview of the peak selection procedure.
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Figure 2.
Average peak intensities from 203 glycan MALDI spectra (a snapshot of m/z ranges from 2800
to 2900). Local maximum points (marked by star) were used in subsequent analyses assuming
that they adequately represent clusters of peaks that may be an isotopic distribution of
individual glycans.
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Figure 3.
Relative intensity of the seven peaks shared by all of the 10 groups in HCC cases, CLD cases
and healthy people. (Inset) Relative intensity of peaks in m/z of 1996, 4311, and 4502.
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Table 1

Results from Linkage Hierarchical Clustering Analysis by Using the Each of the 10 Peak Sets We Obtained and
the 7 Most Frequently Selected Peaksa

number of samples in each cluster
(percentage in the sample group)

peak sets
(number of peaks)

sample
groups

HCC
cluster

CLD
cluster

healthy
cluster

447 peaks (447) HCC 67 (92%) 3 (4%) 3 (4%)

CLD 4 (8%) 24 (46%) 24 (46%)

Healthy 27 (35%) 14 (18%) 37 (47%)

Peak set 1 (9) HCC 72 (99%) 0 (0%) 1 (1%)

CLD 0 (0%) 36 (69%) 16 (31%)

Healthy 12 (15%) 16 (21%) 50 (64%)

Peak set 2 (9) HCC 69 (95%) 0 (0%) 4 (5%)

CLD 0 (0%) 32 (62%) 20 (38%)

Healthy 9 (11%) 14 (18%) 55 (71%)

Peak set 3 (12) HCC 70 (96%) 0 (0%) 3 (4%)

CLD 0 (0%) 25 (48%) 27 (52%)

Healthy 10 (13%) 10 (13%) 58 (74%)

Peak set 4 (11) HCC 72 (99%) 0 (0%) 1 (1%)

CLD 0 (0%) 37 (71%) 15 (29%)

Healthy 9 (11%) 20 (26%) 49 (63%)

Peak set 5 (11) HCC 71 (97%) 0 (0%) 2 (3%)

CLD 0 (0%) 32 (62%) 20 (38%)

Healthy 12 (15%) 17 (22%) 49 (63%)

Peak set 6 (9) HCC 69 (95%) 0 (0%) 4 (5%)

CLD 0 (0%) 32 (62%) 20 (38%)

Healthy 9 (11%) 14 (18%) 55 (71%)

Peak set 7 (7) HCC 66 (90%) 0 (0%) 7 (10%)

CLD 0 (0%) 48 (92%) 4 (8%)

Healthy 7 (9%) 21 (27%) 50 (64%)

Peak set 8 (9) HCC 70 (96%) 0 (0%) 3 (4%)

CLD 0 (0%) 26 (50%) 26 (50%)

Healthy 8 (10%) 8 (10%) 62 (80%)

Peak set 9 (7) HCC 66 (90%) 0 (0%) 7 (10%)

CLD 0 (0%) 48 (92%) 4 (8%)

Healthy 7 (9%) 21 (27%) 50 (64%)

Peak set 10 (9) HCC 70 (96%) 0 (0%) 3 (4%)

CLD 0 (0%) 47 (90%) 5 (10%)

Healthy 13 (16%) 10 (13%) 55 (71%)

7 peaks selected by all 10 sets (7) HCC 66 (90%) 0 (0%) 7 (10%)

CLD 0 (0%) 48 (92%) 4 (8%)

Healthy 7 (9%) 21 (27%) 50 (64%)
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a
For each of the three clusters, the sample group with the highest number of samples is marked in boldface.
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Table 3

Predictive Performance and Consistency Rates of Peaksets by Using Different Peak Selection Procedures

procedure
number of peaks

in 10 peaksets

number of peaks
(percentage of peaks)
selected by all 10 peaksets

accuracies of
each peakset

peaks selected
by all 10 peaksets

RFE-SVM with multiple randomly
sampling
strategy, ranking consistency evaluation,
and consensus scoring system, backward
elimination 7–12 7 (58–100%) 99.79–99.99%

1580, 1996, 2040, 2187,
2851, 4311, 4502

RFE-SVM with multiple randomly
sampling strategy, ranking consistency
evaluation, and consensus scoring system,
forward elimination 4–9 4 (44–100%) 99.00–99.26% 2040, 2241, 2851, 4502

RFE-SVM, the number of features was
reduced by a factor of 2 at every iteration 4–7 2(29~50%) 77.42–88.71% 1580, 2040
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