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Abstract
Dendritic spines are actin-rich structures that accommodate the postsynaptic sites of most excitatory
synapses in the brain. Although dendritic spines form and mature as synaptic connections develop,
they remain plastic even in the adult brain, where they can rapidly grow, change, or collapse in
response to normal physiological changes in synaptic activity that underlie learning and memory.
Pathological stimuli can adversely affect dendritic spine shape and number, and this is seen in
neurodegenerative disorders and some forms of mental retardation and autism as well. Many of the
molecular signals that control these changes in dendritic spines act through the regulation of
filamentous actin (F-actin), some through direct interaction with actin, and others via downstream
effectors. For example, cortactin, cofilin, and gelsolin are actin-binding proteins that directly regulate
actin dynamics in dendritic spines. Activities of these proteins are precisely regulated by intracellular
signaling events that control their phosphorylation state and localization. In this review, we discuss
how actin-regulating proteins maintain the balance between F-actin assembly and disassembly that
is needed to stabilize mature dendritic spines, and how changes in their activities may lead to rapid
remodeling of dendritic spines.

1. INTRODUCTION
Excitatory postsynaptic sites in the brain are usually formed on dendritic spines, small
protrusions on the surface of dendrites that are enriched in actin [1–5]. Dendritic spines form
and mature as synaptic connections develop in the brain, and their morphogenesis directly
correlates with synapse formation and maturation. The most widely-held view of dendritic
spine formation suggests that dendritic spines originate from dendritic filopodia-like
protrusions both in vitro and in vivo [6–15]. Although mature dendritic spines can also emerge
from the dendritic shaft, it is widely accepted that long, thin filopodia-like morphologies are
features of immature pre-cursors to spines, while mature spines are characterized by
mushroom-like or stubby shapes [16–18]. Several studies have demonstrated a correlation
between dendritic spine morphology and synaptic function [19–26]. While immature thin
spines with smaller heads are flexible and can rapidly enlarge or shrink in response to changes
in synaptic activity [19–22], mature mushroom-shaped spines with larger heads are less likely
to change, but show higher sensitivity to glutamate than immature thin spines [23–26]. These
differences in synaptic strength are suggested to relate to the number of neurotransmitter
receptors. Mature spines have a large spine head area that is proportional to postsynaptic density
(PSD) and synapse size, as well as receptor complement (Fig. 1). Two-photon glutamate
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uncaging studies have shown that the mature mushroom-like spines have large PSDs with a
high number of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors
[23]. Indeed, numbers of AMPA receptors and N-methyl-D-aspartate (NMDA) receptors
directly correlate with PSD size [27,28]. Spine head volume and PSD size are also proportional
to the number of neurotransmitter-containing vesicles at the presynaptic bouton [29] and the
amount of neurotransmitter released at the synapse [30]. Mature dendritic spines also contain
elements of endoplasmic reticulum, called the spine apparatus, and provide means for
compartmentalization within the neuron, which results in localized control over factors such
as intracellular Ca2+ concentration [31] and local protein synthesis [32].

Dendritic spines remain plastic in the adult brain and can rapidly grow, change, or collapse in
response to normal physiological changes in synaptic activity that underlies learning and
memory. Long-term potentiation (LTP) can result in spine head enlargement [19,20], whereas
long-term depression (LTD) has been reported to induce shrinkage of dendritic spine heads
and spine elimination [33]. Synaptic activity was also shown to shape dendritic spines in area
CA1 of the hippocampus [8], and long-lasting synaptic enhancement leads to new spine
development [34]. Although changes in synaptic activity may not always lead to structural
remodeling [35], experience-dependent motility of spines and change in their morphology has
been reported using various learning paradigms in developing rat barrel cortex [36], motor
cortex [37], and hippocampus [38,39]. Pathological stimuli can also lead to changes in dendritic
spine shape and number in the developing and adult brain. Immature dendritic spine profiles
are found in subjects with Fragile X, Down and Rett syndromes, whose brains exhibit many
long, thin spines and filopodia-like protrusions [40,41]. Moreover, dendritic spine loss is a
hallmark of several neurodegenerative diseases, and may also contribute to impaired brain
function in these diseases [42]. The ability of spines to rapidly turnover can lead to recovery
from damage [43] and stressors such as sleep deprivation [44].

2. ACTIN DYNAMICS IN DENDRITIC SPINES
Many molecular signals that control the changes in dendritic spine morphology act through
the regulation of F-actin, some through direct interaction with actin, and others via downstream
effectors [5]. Actin dynamics at the leading edge in motile cells [45] and in growth cones
[46] control cell locomotion and axon pathfinding, respectively. There is also a tight regulation
of actin dynamics within dendritic spines and filopodia-like protrusions. While the stabilization
of mature spines is required for synapse maintenance, F-actin remodeling underlies synaptic
plasticity and may result in spine turnover, triggering both formation of new spines and
filopodia, as well as pruning of existing spines [47,48]. As globular actin (G-actin) monomers
join together to form actin filaments (F-actin), there is a bidirectional polymerization that is
biased toward what is known as the plus end or barbed end [49]. In this way, the F-actin barbed
end is fast-growing, while the opposite pole of the filament, the minus end or pointed end,
elongates more slowly. The constant turnover of the actin filaments in spines results from a
steady-state of actin treadmilling, in which G-actin monomers are added quickly to the barbed
end and are disassembled from the pointed end of F-actin filaments, while exchanging ATP
for ADP [50–53]. However, this F-actin treadmilling may or may not lead to changes in
dendritic spine shape and size.

3. PROTEINS REGULATING ACTIN DYNAMICS IN DENDRITIC SPINES
Actin assembly regulatory proteins are responsible for shifting the balance between spine
assembly and disassembly that is required for normal synaptic function. Some regulate spine
morphology through direct interaction with actin, while others control actin dynamics
indirectly [54–56]. It is the interplay among many of these proteins that defines the rate of
growth or disassembly of actin, and ultimately the morphology of dendritic spines and
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development of synapses. In this review, we discuss the role of actin-binding proteins that are
found in dendritic spines and influence dendritic spine formation, maintenance or remodeling,
including proteins that regulate elongation, branching, and bundling of actin filaments and
those that trigger actin severing and depolymerization.

3.1. Actin Polymerization and Elongation
3.1.1. Arp2/3 Complex Promotes Nucleation and Branching of Actin Filaments
—The Actin-Related Protein (Arp) 2/3 complex is comprised of seven proteins [57–59] and
is responsible for nucleating branches from the sides of existing actin filaments and capping
the pointed ends, thus creating additional fast-growing barbed ends for further actin
polymerization and elongation (Fig. 2) [60–62]. The Arp2/3 complex contributes to the
cytoskeletal rearrangements necessary for a variety of cellular functions, including cell
migration and outgrowth [63]. It can be found in protruding lamellipodia of fibroblasts [64]
and at the leading edge of carcinoma cells, where its branching activity is needed for
lamellipodia extension [65]. In dendritic spines, Arp2/3 is sparsely distributed in the PSD, and
more concentrated in a specific domain that lies midway between the plasma membrane, the
spine center, the PSD, and the spine neck [66]. This specificity of Arp2/3 localization suggests
a restricted spine region dedicated to actin branching. In cooperation with members of the Ena/
VASP family, Arp2/3 nucleates actin polymerization and branching for pathogenic bacteria
motility [67] and growth cone protrusion [68]. Other cell functions that rely on F-actin
assembly, including endocytosis [69], internal receptor trafficking [70], integrin-mediated cell
adhesion [71], and phagocytosis [72] are also mediated by the Arp2/3 complex.

In maintaining the balance between assembly and disassembly of actin filaments, there are
some proteins and factors that compete against the Arp2/3 complex, while others work in
cooperation (Fig. 3). Tropomyosin inhibits the branching activity of Arp2/3 [73], and ATP
hydrolysis also acts to antagonize its activity by de-branching older actin filaments [74].
Conversely, the Arp2/3 complex acts in cooperation with gelsolin as it polymerizes actin in
the presence of gelsolin-capped filaments [75]; and cortactin activates Arp2/3 and stabilizes
new branch points on actin filaments [76]. The actin-severing protein ADF/cofilin dissociates
Arp2/3 from actin filaments [77], but also uses its severing activity to increase the number of
preferred ends for Arp2/3 nucleation [78]. Moreover, the Arp2/3 complex acts in opposition
to ADF/cofilin in lamellipodia by cross-linking actin filaments and capping pointed ends, thus
stabilizing actin filaments and preventing depolymerization [79].

Phosphorylation of the Arp2/3 complex is necessary for its nucleating activity and cellular
localization [80]. Phosphorylation of Arp2/3 can be achieved by such proteins as MAPK-
activated protein kinase 2 (MAPKPK2) [81] and the p21-activated kinase (PAK) [82]. Proteins
of the Wiskott-Aldrich Syndrome protein (WASP) family, Neural-WASP (N-WASP), Scar,
and the WASP-family verprolin-homologous protein (WAVE), are well-known to bind to and
activate the Arp2/3 complex [83], each stimulating a different rate of actin nucleation [84].
Cdc42, a member of the Rho family of small GTPases, and Phosphatidylinositol 4,5
bisphosphate (PIP2) stimulate Arp2/3 nucleation activity through WASP activation [85–88].
Moreover, the overexpression of actin-binding protein Abp1, which is similar to cortactin in
structure [89] and can activate N-WASP [90] or phosphorylate Arp2/3 directly, increased the
length and density of mature spines and synapses, whereas RNA interference (RNAi)-mediated
knock-down of Abp1 reduced the number of mushroom-shaped spines and synapses in cultured
hippocampal neurons [91]. In addition, EphB receptors were found to promote dendritic spine
maturation through the Cdc42-N-WASP pathway, suggesting an involvement of the Arp2/3
complex in dendritic spine development [92].

The role of N-WASP in regulating spine morphogenesis was further supported by findings that
show a decrease in the number of dendritic spines in hippocampal neurons with reduced N-
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WASP expression [93]. The changes in spine number and morphology following N-WASP
knock-down were similar to those of the RNAi-mediated decrease of the Arp3 protein [93],
suggesting that activation of the Arp2/3 complex is a mechanism by which N-WASP promotes
the formation of mature spines and synapses. A decrease in number of mature dendritic spines
was also seen with knockdown of WAVE1 by RNAi in primary hippocampal neurons, and in
mouse striatal sections of WAVE1 knock-out mice [94]. Synaptic plasticity, as well as learning
and memory, were also impaired in mice with a targeted WAVE1 mutation and in WAVE1
knock-out mice [95,96], suggesting a role of the WAVE1 pathway in regulating synaptic
plasticity.

Knock-down of Arp2/3 through siRNA-targeting of the p34 subunit was recently shown to
promote filopodia-like protrusions, while decreasing the number of mushroom, thin, and
stubby spines and the overall protrusion density in hippocampal neurons [97]. This is similar
to the effect seen when Arp2/3 localization was altered by expression of the Scar1-WA
fragment, which further suggests an important role of the Arp2/3 complex in promotion of
mature dendritic spine phenotype [97]. It will be interesting to determine whether the Arp2/3
complex and its regulatory proteins are also involved in the assembly of the postsynaptic
scaffold and in glutamate receptor trafficking. Taken together, these results suggest that the
Arp2/3 complex is tightly regulated in dendritic spines and contributes to spine morphogenesis,
inducing formation of mature dendritic spines and synapses, as well as regulating synaptic
plasticity.

3.1.2. Cortactin Promotes Branching and Stabilization of Actin Filaments—
Another protein that can bind to and activate the Arp2/3 complex is cortactin [76,98]. It was
discovered as a cortical protein that binds to actin [99] and promotes branching and stabilization
of actin filaments [100]. Cortactin is located at sites of actin assembly in lamellipodia [101],
and is likely involved in endosomal movement in fibroblasts [102]. It is also implicated in
controlling shape-changes of folliculostellate cells of the anterior pituitary [103], and in
aberrant cell motility, such as cancer cell migration and invasion [104,105].

In the brain, cortactin is enriched in dendritic spines, where it co-localizes with F-actin. There
is a large cortactin pool in the actin core within the dendritic spine, which is implicated in
regulating its shape, and a smaller pool near the PSD that may be involved in the regulation of
synaptic function [106]. Cortactin has been implicated in spine morphogenesis in studies using
gain- and loss-of-function approaches [107]. While overexpression of cortactin in hippocampal
cultures led to spine elongation, knock-down of cortactin with small-interfering RNA (siRNA)
resulted in loss of spines [107]. Cortactin interaction with the large GTPase dynamin-3 variant,
Dyn3baa, also promoted filopodial extension in cultured rat hippocampal neurons [108]. The
ability of cortactin to use its actin-branching and elongation activity for filopodia formation
and outgrowth suggests its important role in spine morphogenesis.

In addition, cortactin regulates spine morphology by mediating the interaction between actin
and microtubules. While stable microtubules that express microtubule-associated protein 2
(MAP2) are concentrated in dendritic shafts [109], dynamic microtubules can enter dendritic
spines and affect actin dynamics [110]. Microtubule-associated protein EB3, which is located
on the plus-end of dynamic microtubules, may act through a p140Cap-Src pathway to promote
cortactin activity and mature dendritic spines. Knock-down of EB3 with shRNA induced a loss
of F-actin in dendritic protrusions, as well as a reduction of mature mushroom spines and an
increase in filopodia-like structures [110], which is similar to the result seen with RNAi-
mediated loss of p140Cap or cortactin [107]. These effects of EB3 knock-down were reversed
by overexpression of p140Cap or cortactin. In this way, dynamic microtubules may contribute
to the arrangement and activity of actin-regulating proteins such as cortactin, thus shaping
dendritic spines.
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Cortactin influences actin organization through interactions with several proteins that promote
F-actin assembly, and these interactions are negatively regulated by cortactin phosphorylation
[111,112]. For example, cortactin’s ability to activate WASP and induce actin branching
through Arp2/3 is inhibited by its phosphorylation, which is mediated by Src non-receptor
tyrosine kinase, and results in loss of cortactin from postsynaptic sites [113]. δ-Catenin can
interact with cortactin, and this interaction was shown to promote F-actin elongation without
branching, which was also inhibited by Src-mediated phosphorylation of cortactin [114].
Cortactin has the ability to link actin dynamics to the cell membrane through interaction with
several PSD scaffolding proteins. In addition to Dyn3, cortactin interacts with the Shank family
of proteins that are localized to the PSD of excitatory synapses [115]. Shank binds to Homer,
which has been shown to anchor metabotropic glutamate receptors (mGluR) 1 and 5 [116]. It
seems that cortactin’s association with Shank and Homer could act to stabilize postsynaptic
clusters of glutamate receptors during synaptogenesis.

Cortactin can be regulated by synaptic activity, as a decrease in overall cortactin level was
observed in rat hippocampus 4 hours following Morris water maze learning [117]. This
decrease in cortactin is dependent on NMDA receptor activity, and may mediate the actin
reorganization that is necessary for learning-induced spine remodeling. In contrast, rats
exposed to a novel environment exhibited an increase in cortactin levels in the hippocampus
12 hours later, but this upregulation of cortactin was abolished by 48 hours of Rapid Eye
Movement Sleep (REMS) deprivation [118].

Cortactin localization within neurons is regulated by NMDA receptor activity and brain-
derived neurotrophic factor (BDNF). NMDA receptor activation induces cortactin
redistribution from dendritic spines to the shaft [107], which is mediated by Src non-receptor
tyrosine kinases in hippocampal cultures [119]. Activation of Src kinases induces cortactin
phosphorylation and cortactin depletion from the postsynaptic sites. Conversely, BDNF
application stimulates a mitogen-activated protein (MAP) kinase-dependent redistribution of
cortactin from the dendritic shaft to the spines [119,120]. This shift in cortactin localization
may play an important role in activity-dependent spine remodeling. A reduction in the level of
cortactin in spines may allow for actin remodeling triggered by NMDA receptor activation,
whereas BDNF-induced accumulation of cortactin in spines may increase actin stability
necessary for the maintenance of mature spines and synapses. As BDNF itself is regulated by
synaptic activity [121], it seems that these converse pathways indeed work together to regulate
transient changes in dendritic spine morphology in response to changes in synaptic activity.
The control exerted over cortactin activity by regulating its localization within neurons seems
to have a critical role in spine development and synaptogenesis, as well as synaptic plasticity.

3.1.3. α-Actinin Promotes Bundling and Extension of Actin—α-Actinin induces
bundling and cross-linking of actin networks in a concentration-dependent manner [122,123]
by forming anti-parallel homodimers that exhibit an actin-binding domain at each end [124–
126]. This dimer formation may also target α-actinin to the cell membrane, as phospholipids
and cytoplasmic regions of transmembrane receptors have an affinity for the exposed acidic
surface of α-actinin rods [123,127,128]. α-Actinin can form short branched actin filaments or
elongate existing ones, depending on certain conditions and factors, such as the α-actinin/actin
ratio, Ca2+ concentration, and binding partners [129]. α-Actinin was first recognized as a
protein that enhances the contraction of actomyosin fibers [130,131], and several muscular
pathologies have been linked to α-actinin [132,133,134]. It is implicated in maintaining cellular
shape and adhesion in epithelial cells [135] and human neutrophils [136]. α-Actinin was also
found in leading lamella of smooth muscle cells (A10) [137], in growth cones of PC12 cells
[138] and in spinal cord neurons [139], and is suggested to play a role in cell and growth cone
motility.
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The muscle form of α-actinin is Ca2+-insensitive, but the activity of the non-muscle form is
controlled by Ca2+ concentration [140,141]. At low Ca2+ levels, the actin-bundling activity of
α-actinin is high, whereas an increase in Ca2+ levels inhibits the cross-linking activity by
inducing a structural change in α-actinin [142]. In the brain, this has implications for the control
of α-actinin by synaptic activity that regulates Ca2+ influx through NMDA receptors and
voltage-gated Ca2+ channels. α-Actinin is also regulated by other actin-binding and signaling
proteins. For example, tropomyosin and dre-brin competitively inhibit α-actinin binding to
actin [143], whereas focal adhesion kinase (FAK) reduces α-actinin affinity for actin by
phosphorylation [144]. Conversely, PIP2 binds to α-actinin and increases its gelation activity
[145], and the protein actophorin promotes α-actinin bundling activity by severing and
positioning actin filaments favorably for α-actinin interaction [146]. Moreover, α-actinin acts
in cooperation with profilin, as it promotes the actin-polymerizing activity of the profilin-actin
complex (profilactin; [147]).

The brain isoform of α-actinin [148] is enriched at the PSD of excitatory synapses and promotes
the elongation of dendritic spines [149]. α-Actinin depends on F-actin for its spine localization,
as actin depolymerization with latrunculin A disrupts its postsynaptic localization in cultured
hippocampal neurons [150]. There is evidence that α-actinin may also be involved in the
assembly of the spine apparatus via interaction with the postsynaptic protein synaptopodin
[151]. Synaptopodin was shown to shift α-actinin activity from branching to elongation of
existing actin filaments, and synaptopodin-deficient mice lack a spine apparatus and exhibit
deficiencies in activity-dependent LTP [152].

In dendritic spines, α-actinin was shown to promote both actin filament elongation and
branching depending on its interacting proteins. For example, α-actinin has been shown to
interact with the Spine-Associated Rap GTPase-activating protein (SPAR), which promotes
mature dendritic spines. α-Actinin2 appears to cooperate with SPAR in creating dendritic
spines with large heads [153]. This study supports the role for α-actinin in promoting actin
branching in the heads of mature dendritic spines. α-Actinin could also indirectly contribute
to actin-branching activity not only in spines, but in dendrites and axons as well, through its
interaction with the guanine nucleotide exchange factor EFA6A [154]. EFA6A was shown to
activate ADP ribosylation factor 6 (ARF6), which regulates axonal and dendritic branching in
cultured rat hippocampal neurons [155]. Conversely, α-actinin can promote filopodia-like
extensions through its actin-elongating activity, as overexpression of α-actinin2 increased the
length and number of dendritic filopodia-like protrusions in cultured hippocampal neurons
[156]. The ability of α-actinin to promote dendritic filopodia-like extensions may be
accomplished through its co-localization and interaction with telencephalin (TLCN), a
telencephalon-specific cell adhesion molecule, which is known to promote development of
filopodia-like protrusions and to slow the maturation of dendritic spines [157,158].

α-Actinin was also shown to interact with the NMDA receptor in dendritic spines, promote its
anchoring to the postsynaptic membrane [159], and regulate NMDA receptor activity [160,
161]. Both Ca2+/calmodulin and Ca2+/calmodulin-dependent protein kinase II (CaMKII)
compete with α-actinin for binding of the NR1 subunit of the NMDA receptor [162,163]. While
α-actinin binding to the NMDA receptor increases the receptor open probability, Ca2+/
calmodulin interaction with the NMDA receptor reduces it, resulting in NMDA receptor
inactivation [164–167]. The role of α-actinin in enhancing NMDA receptor activity is
consistent with its ability to induce dendritic filopodia-like protrusions, as NMDA receptor
activation also leads to spine remodeling. It would be interesting to see if NMDA receptor
anchoring is also affected by α-actinin binding to actin filaments or whether α-actinin can
regulate NMDA receptor interactions with postsynaptic scaffolding proteins, such as PSD-95
[168]. Perhaps α-actinin can contribute to NMDA receptor anchoring by stabilizing the
dendritic spines through its actin-branching and bundling activity.
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There is evidence that may link α-actinin to several neural pathologies. For example, α-actinin2
levels were shown to be decreased in an Alzheimer’s disease mouse model expressing mutant
hAPP [169]. α-Actinin was accumulated in Hirano bodies, neuronal inclusions that increase
with aging and are found in patients with Alzheimer’s disease [170]. It is possible that the
cross-linking activity of α-actinin contributes to the formation of these structures, which may
deplete the postsynaptic pool of α-actinin. A decrease in postsynaptic α-actinin was also seen
in the Huntington’s disease mouse model R6/2 [171]. Through its actin branching and
elongating activity, as well as its ability to regulate NMDA receptor activity, α-actinin is well
positioned for modulating synaptic plasticity.

3.1.4. Drebrin Regulates Actin Assembly in Dendritic Spines—Drebrin is a
developmentally regulated neuron-specific protein that competes with tropomyosin, fascin,
α-actinin, gelsolin, cofilin, and myosin for actin-binding [172–175]. Drebrin was shown to
bundle actin filaments into thick winding fibers in fibroblasts [176]. The embryonic drebrin
isoform, drebrin E, exists in several cell types including neurons, while adult drebrin A is
exclusively expressed in neurons [177], and was found to be accumulated in the head area of
mature mushroom-shaped dendritic spines with large PSDs and a high number of NMDA
receptors in adult mouse cerebral cortex [178]. Interestingly, drebrin A is specifically localized
at postsynaptic sites of excitatory synapses and barely detectable in presynaptic terminals,
neuronal cell bodies, or axons [174,179]. Deletion of the actin-binding domain of drebrin A
[180] or depolymerization of F-actin with latrunculin A [150] leads to drebrin A re-distribution
throughout various domains of dendrites, suggesting that it is dependent on F-actin for its
postsynaptic localization.

Drebrin A has been implicated in the development of dendritic spines and synapses [179,
181,182]. In support of this, it was found in submembranous zones of dendrites prior to the
assembly of PSDs, formation of dendritic spine heads, and aggregation of presynaptic vesicles
[179]. Furthermore, drebrin A overexpression in immature neurons induced accumulation of
F-actin and PSD-95 at postsynaptic sites [181], whereas suppression of drebrin A expression
decreased spine width and the density of spines and filopodia in developing hippocampal
neurons in cultures [183]. Drebrin clustering was found to precede PSD-95 accumulation at
postsynaptic sites and suppression of drebrin A expression disrupted PSD-95 postsynaptic
localization [184]. Moreover, drebrin can also regulate NMDA receptor localization, as
membrane targeting of NMDA receptors in cultured hippocampal neurons after AP5 treatment
was abolished following reduction of drebrin A expression by antisense treatment [183].

Drebrin A postsynaptic localization is regulated by synaptic activity, and drebrin was shown
to change its localization upon AMPA and NMDA receptor activation [182,185]. While
NMDA receptor activation induced a loss of drebrin from dendritic spines, an increase in
drebrin A-immunoreactive spines was observed following NMDA receptor blockade in vivo,
which occurred in the large mushroom-shaped spines [186]. On the other hand, drebrin
clustering at postsynaptic sites was induced by AMPA receptor activation during spine
morphogenesis and diminished with AMPA receptor blockade [182]. Together, these studies
show that drebrin A induces postsynaptic differentiation, accumulates in mature dendritic
spines, and stabilizes existing actin filaments. Therefore, the re-localization of drebrin seen
upon NMDA receptor activation may be necessary to allow for spine remodeling.

Besides promoting dendritic spine formation and postsynaptic differentiation, drebrin was also
implicated in learning and memory and the regulation of dendritic spine plasticity [180,183].
For example, drebrin overexpression was shown to induce dendritic spine elongation in
cultured cortical neurons [180]. Drebrin overexpression may promote spine elongation by
inhibiting myosin association with actin filaments, thereby reducing actin contractility [174]
or by competing with actin-stabilizing proteins for actin binding. Recent study has also

Pontrello and Ethell Page 7

Open Neurosci J. Author manuscript; available in PMC 2010 May 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



suggested that drebrin-induced dendritic spine remodeling may involve activation of Ras
family of small GTPases [187]. The significance of drebrin in normal synapse development
and synaptic plasticity is further supported by observations that decreased levels of both drebrin
isoforms were found in the hippocampi of Alzheimer’s patients [188] and following cerebral
ischemia [189], as well as in the frontal and temporal cortex of patients with Down syndrome
[190]. In the future, it would be interesting to determine the interplay between drebrin and other
actin-binding proteins in promoting postsynaptic differentiation and spine maturation, or in
regulating spine remodeling and synaptic plasticity.

3.1.5. Opposing Effects of Profilin on Actin Polymerization—Profilin was first
identified as an actin monomer-sequestering protein that can inhibit actin polymerization and
elongation [191–193] by forming a 1:1 complex with G-actin, thus decreasing its free
concentration available to form F-actin polymers [194–197]. Conversely, profilin or the
profilin-actin complex (profilactin) can promote actin polymerization by binding the barbed
ends of actin filaments and directly elongating it (Fig. 4) [198,199]. A dose-dependent decrease
in the amount of F-actin and lamellipodial size were seen upon microinjection of profilin into
normal rat kidney (NRK) cells, whereas profilactin increased F-actin and lamellipodial ruffling
[200]. Further, while profilin-bound actin monomers may be removed from the free actin pool
and cannot nucleate new filaments, they can be added to F-actin barbed but not pointed ends,
contributing to actin filament elongation [201]. While profilin can promote depolymerization
by binding and sequestering actin monomers, it induces polymerization by lowering the critical
concentration of ATP-actin and decreasing actin monomer affinity for its bound nucleotide,
thereby favoring ATP-actin formation [202]. Profilin can also promote the stability of actin
filaments, as F-actin concentration was shown to increase with stable expression of profilin in
Chinese hamster ovary (CHO) cells [203].

The ability of profilin to promote or inhibit actin polymerization under different circumstances
can result in diverse cellular responses [204]. Profilin is implicated in cell motility, as it is
localized with dynamic actin in fibroblast lamellipodia [205] and it was shown to regulate the
movement of Listeria monocytogenes in infected host cells [206]. Profilin I mRNA was up-
regulated in reactive hippocampal microglia following entorhinal deafferentation [207], which
could also indicate a role for profilin in microglial migration following injury. Profilin regulates
cell morphology, as it is involved in thrombin-induced platelet shape change [208] and
endocytosis [209,210]. Moreover, several abnormalities, including slow growth and loss of
normal cell shape were seen with disruption or deletion of the profilin gene in yeast [211],
whereas profilin gene deletion in Drosophila was lethal [212]. Profilin II was detected in
neurons and its localization in dendritic spines was shown to be regulated by Ca2+ levels
[213].

Profilin activity is also regulated by phosphorylation and its interaction with PIP2. Profilin
interaction with PIP2 [214–216] inhibits PIP2 hydrolysis by phospholipase C (PLC) [217], and
dissociates the profilin-actin complex [218], which could lead to release of free G-actin
monomers and polymerization near the cell membrane. Conversely, PIP2 binding to cofilin
can stimulate profilin phosphorylation by protein kinase C (PKC) [219,220]. Profilin
phosphorylation, which can also be achieved by phosphatidylinositol 3-kinase (PI3-K),
increases its affinity for G-actin and poly (L-proline) [221]. While PIP2 binding can lead to
increased actin polymerization, profilin phosphorylation would increase its association with
G-actin and inhibit actin polymerization. Further, an increased affinity for poly (L-proline)
may lead to enhanced profilin binding to membrane-associated proteins of the Mena/VASP
family, resulting in F-actin elongation [213,222]. It would be interesting to determine how
profilin-PIP2 binding and PKC phosphorylation of profilin regulate F-actin polymerization in
dendritic spines.
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Profilin expression is developmentally regulated in rat cerebellum [223] and is detected at
synaptic sites in the adult cerebellar cortex [224], suggesting that it may play a role in
synaptogenesis. Indeed, profilin associates with gephyrin and Mena to form a postsynaptic
cortical scaffolding complex [225]. Upon NMDA receptor activation and Ca2+ influx, profilin
is recruited to and stabilizes dendritic spines in a VASP-dependent manner [213,226,227].
Moreover, electrical stimulation that is known to produce LTP promoted similar recruitment
of profilin to dendritic spines and spine stabilization [213], suggesting that profilin may be
involved in regulation of dendritic spine and synapse dynamics underlying experience-
dependent plasticity.

Besides the role of profilin II in normal dendritic spine development and plasticity, several
studies have suggested that profilin II may mediate cytoskeletal changes in response to
pathological conditions and disease processes. For example, profilin interacts with the
Huntington Disease protein Huntingtin (Htt), and could be involved in causing the pathological
aggregation of Htt. [228]. Inhibition of Rho-kinase (ROCK), which forms a complex with
profilin II [229], reduces Htt aggregation [230]. On the other hand, profilin depletion can lead
to neuronal deficits, as some patients with Miller-Dieker syndrome have been shown to exhibit
partial profilin gene deletions [231]. The Fragile X mental retardation protein in Drosophila
(dFMRP) was shown to regulate the neuronal cytoskeleton through profilin, as dFMRP binds
mRNA of the profilin homolog and decreases its protein expression [232]. Profilin II knock-
out mice demonstrated a lack of an actin polymerizing response to depolarization, which led
to increased synaptic excitability due to increased vesicle exocytosis in glutamatergic neurons
[233]. These studies correlate well, as some Fragile X phenotypes could also be explained by
increased synaptic excitability, perhaps from decreased profilin levels. These studies show the
remarkably diverse functions of profilin in controlling actin dynamics in dendritic spines.
Depending on cellular signals and interacting proteins, profilin may promote actin
polymerization or depolymerization, which could lead to formation, stabilization, or
remodeling of dendritic spines.

3.1.6. Spinophilin (Neurabin II) and Neurabin I Promote cross-Linking of Actin
—Spinophilin derives its name from its localization in the heads of dendritic spines [234], and
neurabin I is a neural tissue–specific actin–binding protein [235]. Both proteins are structurally
related and display actin cross-linking and bundling activity. Spinophilin is expressed
ubiquitously, but most abundantly in the brain, where it is localized in PSDs [236]. Neurabin
I is accumulated in dendritic spines, as well as in growth cone lamellipodia of developing
neurons.

A multitude of binding partners have been identified for spinophilin [237], including those
with implications for synaptic function, such as protein phosphatase 1 (PP1). Spinophilin
participates in targeting PP1 to the postsynaptic membrane (Fig. 5) [234,238], which allows
PP1 to dephosphorylate its synaptic substrates. In this way, spinophilin can indirectly modify
the activities of AMPA and NMDA receptors, two known substrates of PP1. In vivo, spinophilin
takes part in the anchoring of AMPA receptors to the plasma membrane and promotes its
dephosphorylation through PP1 [239]. Spinophilin knock-out mice exhibited an increased
density of dendritic filopodia and immature spines, abnormal regulation of AMPA receptor
activity by PP1, and impaired LTD, suggesting that spinophilin may regulate excitatory
synaptic transmission and spine morphogenesis through PP1-mediated regulation of AMPA
receptor activity [240]. Further, phosphorylation of spinophilin by protein kinase A (PKA)
[241] or CaMKII [242] reduces the affinity of spinophilin for F-actin and causes a change in
its cellular localization, which may also alter its binding with PP1 due to spatial segregation.
Spinophilin phosphorylation by CaMKII is Ca2+-dependent and may play a role in synaptic
plasticity. In addition, a downregulation of the expression of spinophilin and GluR1 were
observed during sleep following unilateral LTP induction in the prefrontal cortex of rats
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[243]. Taken together, these studies demonstrate that phosphorylation of spinophilin regulates
its expression and specific localization within dendritic spines, where it is positioned to regulate
synaptic activity and spine morphogenesis.

Although spinophilin and neurabin I are structurally similar, are localized in dendritic spines,
and bind some of the same partners, they may have variable effects on dendritic spine
morphology. While the actin-bundling activity of spinophilin seems to suppress outgrowth of
immature dendritic filopodia-like protrusions [240], overexpression of neurabin I in immature
neuronal cultures induced these protrusions [244]. Neurite formation was also reversibly
abolished by neurabin I suppression following antisense oligonucleotide treatment of rat
hippocampal neurons [236]. In contrast to the effects of spinophilin depletion, knock-out of
neurabin I led to impaired LTP and enhanced AMPA receptor-mediated synaptic transmission;
however, LTD was not altered [245]. Neurabin I may act as a competitive inhibitor of
spinophilin, resulting in opposing effects on dendritic spines and synaptic activity, as they are
structurally similar and share the same binding partners.

3.2. Actin Filaments Severing and De-Polymerization
3.2.1. Cofilin Regulates Actin Filament Treadmilling—Cofilin is a member of the
ADF/cofilin family of actin-depolymerizing proteins that preferentially bind to ADP-actin
subunits in a minor twisted conformation of F-actin and sever filaments (Fig. 6). This increases
the pool of G-actin monomers used by actin polymerizing factors and also creates free barbed
ends that can nucleate filament growth [246–248]. Cofilin is expressed at high levels in the
adult brain [249] and is more abundant in mammalian neurons than ADF [250]; therefore in
this review, we will primarily discuss the role of cofilin in actin dynamics. Low levels of cofilin
activity are detected in resting cells and contribute to F-actin depolymerization at the “pointed”
ends and F-actin polymerization at the “barbed” ends, resulting in F-actin turnover at a slow
rate [251]. On the other hand, enhanced cofilin activity is often detected in ruffling membranes
at the leading edge of migrating cells and in neuronal growth cones, leading to fast F-actin
dynamics [252–254]. The local concentration of cofilin in specific subcellular compartments
determines the cofilin/actin ratio, thus influencing its effects on actin dynamics. While a low
cofilin/actin ratio was shown to result in the highest severing of actin filaments, at high ratios
cofilin can induce dissociation of the Arp2/3 complex and de-branching, resulting in formation
of long, unbranched filaments [77,255]. Therefore, the actions of cofilin in the cell largely
depend on its localization and the level of activity [255].

Cofilin activity is regulated by phosphorylation. LIM kinase (LIMK) suppresses cofilin activity
by phosphorylating cofilin at Serine 3, which inhibits its binding to F-actin [256,257]. The
cofilin-specific phosphatases slingshot (SSH) and chronophin (CIN) dephosphorylate and
activate cofilin [258–260]. The importance of cofilin phosphorylation in synaptic structural
plasticity during LTP induction and protective effects of the inactive phosphomimetic
cofilinS3D mutant against Aβ-mediated spine loss have been recently reported [261,262]. Our
studies have also shown that over-expression of inactive cofilinS3D promoted stabilization of
mature dendritic spines, whereas constitutively-active cofilinS3A induced remodeling and
elongation of actin-rich stable dendritic spines, and extension of new filopodia-like protrusions
[263]. Moreover, depletion of cofilin-1 in cultured hippocampal neurons by overexpressing
cofilin-1 siRNA was shown to decrease the number of mature dendritic spines and to induce
the formation of abnormal filopodia-like branches [97]. Immunoelectron microscopy studies
have found that cofilin accumulates near the PSD in the “shell” area of dendritic spines, a
specific region containing a dynamic F-actin pool, while avoiding the spine “core” with a stable
pool of F-actin [264]. The effect of actin-remodeling activity of cofilin on dendritic spine
morphology and its localization within spines suggest that cofilin may play a role in dendritic
spine plasticity.
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Several mechanisms that control cofilin activity in dendritic spines were recently proposed
involving Rho GTPase-dependent regulation of LIMK activity (Fig. 7) [263,265]. Members
of Rho family GTPases such as RhoA, Cdc42, and Rac can promote activation of LIMK
through Pak and ROCK, respectively [257,266,267]. Pak1 and ROCK2 were demonstrated to
regulate dendritic spine properties and synaptic density through LIMK-mediated regulation of
cofilin activity [268,269]. Moreover, the Rac-Pak-LIMK pathway was suggested to contribute
to SynGAP-mediated regulation of steady-state cofilin phosphorylation in dendritic spines
[265]. Our studies suggest that EphB2-mediated dendritic spine stabilization relies on the
ability of EphB2 receptors to activate the RhoA-ROCK-LIMK-1 pathway that works to
suppress cofilin activity by phosphorylation [263]. LIMK-1 is primarily expressed in neurons
and was shown to be involved in dendritic spine development. Neurons from LIMK knock out
mice formed morphologically immature dendritic spines with smaller heads and postsynaptic
densities compared to wild-type neurons [270], and the inhibition of LIMK translation by
microRNA-134 also resulted in smaller spine heads [271]. Cofilin phosphorylation can also
be regulated independently of Rho GTPases. NMDA receptor activation in cultured
hippocampal neurons was shown to trigger transient dephosphorylation and activation of
cofilin [265]. Ca2+-dependent changes in SSH activity were previously implicated in the
regulation of cofilin activity [272]. Ca2+ influx through NMDA receptors can rapidly activate
calcineurin [273], which in turn was shown to induce cofilin dephosphorylation through an
upregulation of SSH activity [272]. In addition, the NMDA receptor-calcineurin pathway was
shown to mediate reversible spine shrinkage in acute hippocampal slices following LTD by
regulating cofilin activity [33]. While LTD induction depended on PP1, the change in spine
morphology depended on cofilin, suggesting that these pathways may cooperate to regulate
activity-dependent synapse pruning. In summary, the spine-remodeling activity of cofilin can
be enhanced through a variety of signaling cascades that result in cofilin dephosphorylation
through suppression of LIMK activity and/or SSH activation.

Besides regulation of cofilin activity by phosphorylation, there are other mechanisms that
influence the actin-severing ability of cofilin. Cofilin competes for actin binding with the actin-
stabilizing protein drebrin [274]. Therefore, increased drebrin levels could lead to stabilization
of actin filaments by preventing cofilin binding to actin filaments, whereas an increase in cofilin
concentration could result in release of drebrin from actin filaments and enhance cofilin-
mediated actin depolymerization. Cofilin-mediated actin depolymerization can also be
inhibited by phosphoinositides, especially PIP2, which interacts with the actin-binding domain
of cofilin and triggers its association with the plasma membrane [275,276]. On the other hand,
the EphA4 receptor was shown to regulate cofilin activity in spines through activation of
phospholipase Cγ, followed by hydrolysis of PIP2 and release of active cofilin from the
membrane [277]. PIP2 was also shown to inhibit cofilin’s ability to form cofilin-actin rods in
myotubes [278]. In neurons, formation of cofilin-actin rods has been observed in response to
neuronal stress [279,280]. Treatment of hippocampal neurons with amyloid beta (Aβ)1-42
peptide also led to the formation of cofilin-actin rods in dendrites and axons of neurons in both
dissociated hippocampal cultures [281] and organotypic hippocampal slices [280]. Similar
filamentous structures were detected in brains of subjects with Alzheimer’s disease [282].
Therefore, it is possible that recruitment of a large number of cofilin molecules to actin rods
would deplete the cofilin pool in dendritic spines, thus affecting dendritic spine maintenance
and synaptic plasticity. Taken together, these studies indicate that cofilin is regulated by
multiple mechanisms, which appear to be critical for dendritic spine maintenance and plasticity.

3.2.2. Gelsolin Severing Activity is Regulated by Ca2+—Gelsolin derives its name
from the process of “gelsol” transformation of F-actin in the cortical cytoplasm of motile cells,
which reversibly transitions from a highly cross-linked state (“gelation”) to a disassembled
state (“solation”) in order to promote cell movement [283]. Gelsolin has a variety of functions,
such as binding and severing F-actin and capping fast-growing barbed ends [284–287], as well
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as nucleating new filament polymerization [288]. Gelsolin binds selectively to ADP-actin
[289,290], introducing a conformational change, thus severing actin filaments [291,292]. In
combination with its capping activity, this leads to an increase in the number of pointed ends
and ADP-actin dissociation. The structure of gelsolin has been delineated [293,294], as well
as its interaction with actin [295–300]. Structural provisions for gelsolin actin-severing [301–
303] and polymerization activities [304] have also been well-studied in non-neuronal cells.
Gelsolin is involved in the regulation of cell motility [305,306] and phagocytosis [307], as well
as inhibition of axonal transport of membranous organelles [308]. Mutated gelsolin was shown
to inhibit fibroblast growth [309] and Rac-dependent motility was reduced in gelsolin-null
fibroblasts [310].

Gelsolin activity can be regulated by different factors, including protein interactions and pH
[311]. Tropomyosin competes with gelsolin for actin binding [312]. Moreover, phosphate
analogs and activated GTP-Rac1 can reduce F-actin susceptibility to severing by promoting
gelsolin dissociation from actin filaments [313,314]. The actin severing and nucleating
activities of gelsolin are inhibited by PIP2 [315,316]. Conversely, gelsolin can promote the
phosphorylation of PIP2 by activating PI3-K [317], and inhibit the hydrolysis of PIP2 through
competitive substrate binding [318,319]. This has implications for linking the cell membrane
with actin dynamics through gelsolin activity. Gelsolin-actin binding is also regulated by
micromolar concentrations of Ca2+ [283,320–323]. Ca2+ was shown to promote gelsolin
severing activity [320,324], and to increase the efficiency of its capping activity [325]. By
occupying the Ca2+-binding domain of gelsolin [326], Ca2+ ions induce structural changes in
gelsolin [327–329].

Gelsolin is detected in the brain, spinal cord, and in cultured neurons [330], where it is
implicated in plasticity. An upregulation in gelsolin mRNA [331] and gelsolin protein levels
[332] was found in the rat hippocampus following entorhinal deafferentation, suggesting that
gelsolin may play a role in brain remodeling following hippocampal injury. Filopodia and
lamellipodia are enriched with gelsolin [333,334], and gelsolin knock-out mice exhibit slower
filopodial retraction [335], further supporting the role of gelsolin in cell-protrusive activities.
Gelsolin knock-out mice exhibit increased Ca2+ influx following glutamate exposure [336]
and fail to display an NMDA receptor-dependent decrease in the actin turnover rate [337].
These studies implicate gelsolin’s severing and capping activity in mediating NMDA receptor-
induced spine stabilization.

Mutations in the gelsolin gene were found in subjects with familial amyloidosis [338–341].
This could partially explain the neuronal pathologies of the disease [342], including signs of
de-myelination reported in these patients [343], as high levels of gelsolin are detected in
myelin-forming cells and implicated in lamellipodial movement toward the axons during
myelination [344–346]. Gelsolin mutations are also linked to Alzheimer’s and Parkinson’s
diseases [347]. In addition, subjects with Down syndrome exhibited an increase in gelsolin
levels in developing frontal cortex, and levels of gelsolin were shown to rise with aging in
control subjects [348]. The ability of gelsolin to bind and sever F-actin and to cap fast-growing
barbed ends, as well as to nucleate filament polymerization, supports its role in mediating actin
remodeling in dendritic spines.

3.3. Myosins Influence Actin Dynamics at Synapses
Although F-actin assembly/disassembly determines actin dynamics, myosin motors posses
ATPase activity and can also influence actin dynamics in dendritic spines. The myosin II, V,
and VI isoforms were found in dendritic spines [349], and are suggested to regulate dendritic
spine shape and synaptic plasticity, at least in part through interaction with actin and modulation
of NMDA and AMPA receptor membrane insertion and function. Actin-myosin interaction is
known to regulate dendritic spine shape and is inhibited by drebrin, which is enriched in mature
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dendritic spines [174,178]. Although myosin IIB immunoreactivity was identified throughout
neuronal cell bodies and various dendritic domains that lack drebrin immunoreactivity, a small
pool of myosin IIB was also detected within the drebrin-positive fraction of F-actin in dendritic
spines [350]. Drebrin overexpression, on the other hand, has been shown to elongate dendritic
spines, so it may function here to inhibit actin-myosin contractility [174]. Myosin motors have
been suggested to contribute to the formation of mature short mushroom-shaped and stubby
spines. In support of this, myosin IIB depletion with RNAi causes a decrease in the number of
short mushroom-shaped spines and an increase in long filopodia-like protrusions [351].

Myosins can also interact with NR1 and NR2 subunits of NMDA receptors through the myosin
regulatory light chain [352] and control the trafficking of the GluR1 subunit of AMPA receptors
from the dendritic shaft to dendritic spines in a Ca2+-dependent manner [353]. Myosin Vb
associates with recycling endosomes and mobilizes them for AMPA receptor insertion and
spine growth upon LTP induction, whereas depletion of myosin Vb using RNAi prevents LTP-
induced AMPA receptor insertion into the postsynaptic membrane and spine growth [354].
Further, the PSD-95 interacting protein guanylate kinase domain-associated protein (GKAP)
interacts with the dynein light chain (DLC) of myosin V, which may implicate myosin V in
NMDA receptor regulation [355].

Myosin VI is also enriched in the brain and localized to PSDs in synapses. Spine loss was seen
upon myosin VI disruption through the expression of a dominant-negative mutant or in
hippocampal cultures of myosin VI deficient mice [356]. In addition, increase in AMPA
receptor internalization following AMPA or insulin stimulation was not observed in myosin
VI deficient neurons [356]. Myosin VI promotes the formation of mature spines and synapses,
but also allows for LTP termination by receptor internalization. Although myosin is perhaps
best studied for its role in generation of contractile forces in non-neuronal cells, myosin II, V,
and VI also exhibit important roles in promoting mature dendritic spine morphology and
regulating synaptic plasticity through NMDA and AMPA receptor trafficking at synapses.

4. INTEGRATION OF ACTIN-BINDING PROTEINS IN THE REGULATION OF
DENDRITIC SPINES AND SYNAPSES

There are many actin-binding proteins within the cell that directly regulate actin
polymerization, branching, cross-linking and bundling, or severing and depolymerization. By
affecting actin dynamics, actin-binding proteins have the ability to form, re-arrange, stabilize,
or remodel dendritic spines. These proteins also aid in clustering postsynaptic proteins and in
regulating neurotransmitter receptor activities to create functional synaptic connections. Some
actin-regulatory proteins like profilin have multiple functions in dendritic spines and pose
opposing effects on actin, depending on several factors and conditions, such as its subcellular
localization, Ca2+ levels, interactions with other proteins, and phosphorylation state. Other
proteins such as spinophilin and neurabin I are similar in structure and activity, but exhibit
opposing effects on dendritic spines through yet unknown mechanisms. Arp2/3 and cortactin
work together, each to promote the activity of the other, contributing to actin polymerization.
While α-actinin elongates dendritic spines, myosins induce the formation of short mushroom-
shaped spines by enhancing actomyosin contractility. Meanwhile, ADF/cofilin and gelsolin
work by severing F-actin filaments, which can promote spine elongation and remodeling by
increasing actin filament turnover, or lead to spine stabilization through gelsolin capping
activity.

These actin-binding proteins are regulated by signaling cascades that are initiated at the cell
surface through trans-synaptic interactions, neuronglia communications, and contacts with the
extracellular matrix [5]. Cell surface receptors, such as glutamate receptors, EphB receptors
and ephrins, neuroligins and neurexins, integrins, cell adhesion molecules, growth factor
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receptors, and some proteoglycans, mediate these interactions linking extracellular events to
the actin cytoskeleton in dendritic spines by initiating cytoplasmic signaling cascades.
Cytoplasmic signaling proteins such as PIP2 exhibit diverse control through a variety of
mechanisms, from promoting α-actinin activity through direct binding, to activating Arp2/3
through WASP, to dissociating the profilactin complex from actin. The Rho family of small
GTPases, such as Rac1, Cdc42, and RhoA, are also key regulators of actin-binding proteins in
dendritic spines and play an important role in dendritic spine formation, maintenance, and
remodeling. In addition to the structural role of actin in dendritic spines, actin assembly was
recently suggested to influence neuronal motility through a regulation of gene transcription
[357]. This may have implications for a role of actin-binding proteins in regulating gene
transcription and protein synthesis in spines.

Dendritic spine dynamics have been implicated in processes of learning and memory [358,
359], and abnormalities in the shape and number of spines are seen in neurodegenerative
diseases, as well as some forms of mental retardation and autistic spectrum disorders [41,42].
While the role of various actin-binding proteins in regulating spine dynamics has been studied,
a challenge for future research is to understand the interplay between different actin-regulating
factors under an array of physiological and pathological conditions.
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ABBREVIATIONS

AMPA α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid

ARF6 ADP ribosylation factor 6

Arp2/3 Actin-Related Protein

BDNF brain-derived neurotrophic factor

CaMKII Ca2+ calmodulin-dependent protein kinase II

CIN chronophin

dFMRP Drosophila Fragile X mental retardation protein

DLC dynein light chain

F-actin filamentous actin

FAK focal adhesion kinase

G-actin globular actin

GKAP guanylate kinase domain-associated protein

Htt Huntingtin

LIMK LIM kinase

LTD long-term depression

LTP long-term potentiation

MAP mitogen-activated protein

MAPKPK2 MAPK-activated protein kinase 2

mGluR metabotropic glutamate receptors
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NMDA N-methyl-D-aspartate

N-WASP Neural-WASP

PAK p21-activated kinase

PI3-K phosphatidylinositol 3-kinase

PIP2 Phosphatidylinositol 4,5 bisphosphate

PKA protein kinase A

PKC protein kinase C

PLC phospholipase C

PP1 protein phosphatase 1

PSD postsynaptic density

REMS Rapid Eye Movement Sleep

RNAi RNA interference

ROCK Rho-kinase

siRNA small-interfering RNA

SPAR Spine-Associated Rap GTPase-activating protein

SSH slingshot

TLCN telenceplalin

WASP Wiskott-Aldrich Syndrome protein

WAVE WASP-family verprolin-homologous protein
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Fig. 1.
(A) A GFP-expressing hippocampal neuron at day 14 in vitro displays dendritic filopodia-like
protrusions and spines with different shapes and sizes (B, C) The high magnification image of
the dendrite (B) and a drawing show examples of main categories of dendritic protrusions:
filopodia-like protrusions, mushroom spine, thin spine, and stubby spine. (C) Filopodia-like
protrusions are precursors of dendritic spines. Mature mushroom spines display the largest
heads and thin necks.
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Fig. 2.
Arp2/3 nucleates new branches from existing actin filaments, creating fast-growing barbed
ends.
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Fig. 3.
Regulatory proteins affecting the activity of Arp2/3.
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Fig. 4.
Opposing actions of profilin on actin. G-actin-sequestering promotes F-actin
depolymerization, while profilin-actin complex induces polymerization by binding to F-actin
barbed ends and promoting formation of ATP-actin monomers.
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Fig. 5.
Spinophilin participates in localization of PP1 to the cell membrane, where it dephosphorylates
NMDA and AMPA receptors, down-regulating their activity. The actin-bundling activity of
spinophilin prevents outgrowth of filopodia-like protrusions.
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Fig. 6.
Actin-severing activity of cofilin promotes F-actin and spine remodeling.
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Fig. 7.
Regulatory proteins that enhance or inhibit the activity of cofilin.
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