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Abstract
Use of microarray technology often leads to high-dimensional and low-sample size (HDLSS) data
settings. A variety of approaches have been proposed for variable selection in this context. However,
only a small number of these have been adapted for time-to-event data where censoring is present.
Among standard variable selection methods shown both to have good predictive accuracy and to be
computationally efficient is the elastic net penalization approach. In this paper, adaptations of the
elastic net approach are presented for variable selection both under the Cox proportional hazards
model and under an accelerated failure time (AFT) model. Assessment of the two methods is
conducted through simulation studies and through analysis of microarray data obtained from a set
of patients with diffuse large B-cell lymphoma where time to survival is of interest. The approaches
are shown to match or exceed the predictive performance of a Cox-based and an AFT-based variable
selection method. The methods are moreover shown to be much more computationally efficient than
their respective Cox- and AFT-based counterparts.
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1 Introduction
Analysis of high-dimensional and low-sample size (HDLSS) data is increasingly an objective
of interest. Such analyses are of particular interest in the analysis of DNA microarray data
where the number of genes typically far exceeds sample size. In this setting, a frequent objective
is the identification of a subset of genes whose expression levels are significantly correlated
with a given clinical outcome or classification. Estimation of the effect of each identified gene
is also usually desired. Identified genes are then often employed to build a predictive model in
which prediction of outcome for new patients is conducted.

A number of variable selection and estimation methodologies based on the maximization of a
penalized likelihood have been proposed. Methods of penalization include traditional
approaches such as AIC (Akaike et al., 1973) and BIC (Schwarz, 1978) as well as more recent
developments including bridge regression (Frank and Friedman, 1993), the LASSO
(Tibshirani, 1996), SCAD (Fan and Li, 2001), LARS (Efron et al., 2004), the elastic net (Zou
and Hastie, 2005), and MM algorithms (Hunter and Li, 2005). Implementation of a number of
these methods, however is not feasible in HDLSS environments.

Microarray data analysis is further complicated when the outcome of interest is a time to an
event. In these cases, either dropout or study termination may occur prior to event occurrence
for a number of subjects. Typically, then, a number of the outcome variables are censored.
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Several authors have proposed variable selection methods for HDLSS time-to-event data under
the Cox proportional hazards model (Cox, 1972). For example, Cox-based methods utilizing
kernel transformations (Li and Luan, 2003), threshold gradient descent minimization (Gui and
Li, 2005a), and lasso penalization (see Gui and Li, 2005b; Segal, 2005; Park and Hastie,
2007) have been proposed.

Likewise, a few authors have proposed variable selection methods based on accelerated failure
time models (see Wei, 1992). Methods based on the lasso penalization and the threshold
gradient descent (Huang et al., 2006) have been proposed as well as an approach based on
Bayesian variable selection (Sha et al., 2006).

There are a number of drawbacks to current methods of variable selection in HDLSS settings
when censored data is present. The Li and Luan (2003) method is limited, for example, in that
for prediction, all genes in the data set are included; a straightforward method of gene selection
for prediction is not outlined. The TGD approaches of Gui and Li (2005a) and Huang et al.
(2006) seem to be limited in that, at least in initial data analyses, very small changes in the
threshold parameter dramatically altered the number of variables selected. Hence, effective
identification of the optimal threshold might be unwieldy. A second drawback is that in the
same analyses, the TGD method appeared to have less predictive power than alternative
methods (see Gui and Li, 2005a; Gui and Li, 2005b). Use of the lasso in the methods proposed
by Gui and Li (2005b) and Huang et al. (2006) might also lead to difficulties. For one, when
the number of variables p is larger than the number of subjects n, the number of variables
selected by the lasso is at most n. This restriction may be problematic for gene expression data
where p ≫ n. A second drawback of the lasso is a result of its convexity. Zou and Hastie
(2005) show that for non-strictly convex penalty functions such as the lasso, performance is
suboptimal when highly correlated variables are present. Given a set of highly correlated
variables associated with outcome, procedures that employ a penalty function that is not strictly
convex often will identify only one of the variables and ignore the others. This limitation might
be particularly problematic in the analysis of gene expression data where identification of an
entire set of correlated genes may lead to an improved understanding of the biological pathway.
It should be noted that the adaptive lasso, a recent improvement to the lasso, has been proposed
by Zhang and Lu (2007) for censored data. While the approach overcomes a number of the
drawbacks of lasso, use of the adaptive lasso may not be appropriate in high-dimensional data
settings without reliance upon ridge regression (see Zhang and Lu, 2007; Lu and Zhang,
2007).

Modification of the elastic net penalization approach may be useful for the analysis of HDLSS
time-to-event data. First, the elastic net approach is not limited in the number of variables
selected by the number of available subjects. That is, the number of variables selected can be
greater than the number of subjects. Second, the elastic net penalty function is strictly convex
and therefore will more frequently identify an entire set of correlated genes than do methods
based on penalty functions that are not strictly convex. Finally, as shown by Zou and Hastie
(2005), the elastic net is computationally efficient. To date, the only attempt to employ the
elastic net penalization approach to HDLSS censored data under the AFT model (Wang et al.,
2008) employs an imputation approach based on the Buckley and James algorithm (Buckley
and James, 1979). However, the Buckley-James approach entails an iterative least squares
procedure that is known to suffer from convergence problems (see Wu and Zubovic, 1995)
and is more computationally intensive than other methods.

In this paper, two elastic net based variable selection methods for high-dimensional low sample
size time-to-event data are presented. First, a Cox elastic net (EN-Cox) approach is outlined
that is based on the Cox proportional hazards model and utilizes modifications of the algorithms
proposed by Tibshirani (1997) and Gui and Li (2005b). Second, an accelerated failure time
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elastic net (EN-AFT) approach is presented which employs a mean imputation approach for
the estimation of AFT model parameters. The approaches are shown to be an improvement
over existing methods in terms of prediction accuracy and computational efficiency.

2 Methods
2.1 Elastic Net

In the linear regression setting, the elastic net objective function is defined (Zou and Hastie,
2005) as

(1)

for some fixed, non-negative λ1 and λ2, where y = (y1, …, yn) is the centered response vector
for n subjects and X is the design matrix based on p standardized (i.e., location and scale
transformed) variables. Notably, for 0 < λ2 ≤ 1, the penalty function is strictly convex and hence
is not restricted in its ability to identify entire sets of highly correlated variables. The elastic
net estimator of β, then, is the minimizer of (1).

To adjust for HDLSS data settings (and the resultant difficulties in the estimation of β), Zou
and Hastie employ two simple modifications to the elastic net model. First, an augmentation
of X and y is utilized which leads to a sparse data matrix X* with rank p. Hence, through use
of the augmentation, selection of up to p variables is possible even when p ≫ n. Additionally,
the sparse data matrix X* leads to a computationally efficient algorithm. Second, a scaled 
is employed to overcome a problem of double shrinkage (i.e., the shrinking of coefficient
estimates to increase stability). Following data augmentation and the rescaling of , the
resultant elastic net estimator  is defined as

(2)

Of interest, then, is the elastic net estimator when the outcome is time to an event and censoring
is present. Let time ti for subject i = 1, …, n depend upon p gene expression levels xi = (xi1,
…, xip). Due to censoring, yi = min(ti, ci) is observed where ci is the time to the first censoring
event (e.g., study conclusion, date of final follow up) for subject i. Let δi = 0 indicate censoring
and δi = 1 otherwise.

2.2 A Cox-based Adaptation of Elastic Net
Under the Cox proportional hazards model, the hazard function for individual i is specified as
λ(ti) = λ0(ti)exp(β’xi), where covariate matrix X = (x1, …, xn)’ and where baseline hazard
λ0(t) is common to all subjects but is unspecified or unknown. Let ordered risk set at time
t(r) be denoted by Rr = {j ∈ 1, …, n : yj ≥ t(r)}. Assume that censoring is noninformative and
that there are no tied event times. The Cox log partial likelihood can then be defined as

(3)
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where D denotes the set of indices for observed events. The Cox elastic net estimate of β in
this setting can be obtained through adaptation of a quadratic programming approach outlined
by Tibshirani and Hastie (see Hastie and Tibshirani, 1990; Tibshirani, 1997). Namely, let η =
Xβ, u = ∂ℓ/∂η, A = −E[∂2ℓ/∂ηη’], and z = ( η + A−1u). A modified Newton-Raphson iterative
procedure can then be employed to optimize (3). Specifically, the usual Newton-Raphson
update is expressed as an iterative reweighted least squares step. The weighted least squares
step is then replaced by a constrained weighted least squares procedure. Let, for each step,
z0 = (η0 + A−1u), where η0 is based on the β estimate of the previous step. A one-term Taylor
series expansion for each step can then be represented as (z0 − η)’A(z0 − η).

Modifying the approach of Gui and Li (2005b), this approximation can be rewritten as

, where  and , where Q = A1/2. An estimate, , of A can
be obtained using the observed Fisher information. Under this formulation, the problem of
obtaining an elastic net estimate for β is akin to the problem posed in (2). That is, the optimal
β is formulated as

(4)

Estimation of  is accomplished through the following algorithm:

1. Set tuning parameters and initialize .

2. Compute η, u, , and Q based on the current value of .

3. Let z0 = z for the first iteration, otherwise compute z0.

4. Compute  and .

5.
Minimize  subject to the elastic net constraints.

6. Update .

7. Repeat steps 2–6, subject to the elastic net constraints, until  does not change.

Of note, Q can then be obtained through the Cholesky decomposition of . Selection of tuning
parameters in Step 1 and their effect on the elastic net constraints in Steps 5 and 7 is discussed
in Section 2.5.

2.3 An AFT Adaptation of Elastic Net
When the assumption of proportional hazards is not tenable, the accelerated failure time (AFT)
model can be utilized. The AFT model is a linear regression model in which the logarithm of
response ti is related linearly to covariates xi:

(5)

where h(·) is the log transformation or some other monotone function. In this case, the Cox
assumption of multiplicative effect on hazard function is replaced with the assumption of
multiplicative effect on outcome. In other words, it is assumed that the variables xi act
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multiplicatively on time and therefore affect the rate at which individual i proceeds along the
time axis.

Because censoring is present, the standard least squares approach cannot be employed to
estimate the regression parameters in (5) even when p < n. One approach for AFT model
implementation entails the replacement of censored yi with imputed values. One such approach
is that of mean imputation in which each censored yi is replaced with the conditional expectation

of ti given ti > ci. The imputed value  can then be given (see Datta, 2005) by

(6)

where  is the Kaplan-Meier estimator (Kaplan and Meier, 1958) of the survival function and
where the  is the step of  at time t(r).

Datta et al. (2007) recently assessed the performance of several approaches to AFT model
implementation, including reweighting the observed ti, replacement of each censored ti with
an imputed observation, drawn from the conditional distribution of t (multiple imputation),
and mean imputation. Datta et al. found that in the HDLSS setting, the mean imputation
approach outperformed reweighting and multiple imputation under the lasso penalization.

Of interest, then, is the elastic net estimate of β for settings when p ≫ n. Using the imputed
values (6), estimation of the elastic net parameters can be conducted through use of the
following algorithm:

1. Set tuning parameters and initialize .

2.
Minimize  subject to the elastic net constraints.

3. Update .

4. Repeat steps 2–3, subject to the elastic net constraints, until  does not change.

Selection of tuning parameters in Step 1 and their effect on the elastic net constraints in Steps
2 and 4 is discussed in Section 2.5.

2.4 The Grouping Effect in EN-Cox and EN-AFT
Zou and Hastie (2005) show that the elastic net is superior to the lasso in its ability to identify
entire groups of highly correlated variables in the linear regression setting. This characteristic
can be referred to as a grouping effect. A variable selection method, then, that exhibits the
grouping effect will assign non-zero coefficients to an entire set of highly correlated variables.
This characteristic is especially important in analysis of gene expression data where
identification of an entire set of correlated genes may lead to an improved understanding of
the biological pathway.

Both EN-Cox and EN-AFT exhibit the grouping effect. Because EN-AFT is based on a linear
regression model, this follows by the same reasoning outlined by Zou and Hastie (2005). By
similar reasoning, it is also easy to show that EN-Cox exhibits the grouping effect for 0 < λ2
≤ 1. Proposition 1 describes the expected behavior of EN-Cox for an extreme case and
Proposition 2 provides a general property of EN-Cox when correlated variables are present.
Derivation of Proposition 1 and 2 is provided in the Appendix.
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Proposition 1—Let xi = xj for some i, j ∈ {1, …, p}. Let  be the EN-Cox estimate of the
Cox regression parameter β. Then .

Proposition 1 states that given identical covariate vectors xi and xj, the EN-Cox estimate of β
will assign identical values to  and .

Proposition 2—Let transformed response vector  and covariate matrix  be mean-centered
and standardized. Let original covariate vectors xi and xj be highly correlated. Without loss of
generality, assume ρ > 0. Let  be the EN-Cox estimate of the Cox regression parameter β and

assume . Then for fixed λ1 and λ2

(7)

where  is equal to the correlation between transformed covariate vectors  and .

Proposition 2 states that the standardized difference between the EN-Cox estimates  and 
corresponding to correlated variables xi and xj is bounded above by a function of the correlation
between transformed covariate vectors . Of note, Proposition 1 and 2 extend the results
of Zou and Hastie (2005) to settings in which censored data is present. Further examination of
the grouping effect of EN-Cox and EN-AFT is provided in Section 3.2.

2.5 Selection of Tuning Parameters
The elastic net requires the selection of two tuning parameters, λ1 and λ2. Alternatives to λ1 are
possible. The various choices correspond to different methods of identifying the stopping point
of the procedure and hence affect Steps 4 and 6 of the algorithms outlined in Sections 2.2 and
2.3. Among those alternatives proposed is the maximum number of steps k allowable in the
entire solution path where one iteration of the above algorithms constitutes a single step. The
choice of k is useful as its selection requires no prior knowledge (or guesswork) regarding the
actual values of the regression coefficients and is employed in both EN-Cox and EN-AFT.

Evaluation of the two parameters λ2 and k across a two-dimensional surface of parameter values
is required. Potential values of λ2 should span a wide range, e.g., λ2 = (0, 0.01, 0.1, 1, 10, 100).
The potential values of k will depend on the size of the data set. Tuning parameter selection
can be implemented through use of cross-validation methods over a rough grid of candidate
values for λ2 and k. In the current setting, selection of λ2 and k under both EN-Cox and EN-
AFT is conducted through use of a cross validation score (CVS) (Huang, 2006; see also Verwij
and Van Houwelingen (1993), Huang and Harrington (2002)):

(8)

where  consists of the coefficient estimates (for a given variable selection approach)
obtained while excluding the ith subject for fixed values λ2 and k and where X−(i) denotes the
complete data set, absent the ith subject. Under the Cox-based models, the function ℓ(·)
represents the negative log partial likelihood (3). Under the AFT-based models, ℓ(·) represents
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the AFT objective function (i.e., ). Values of λ2 and k that
correspond to the minimization of (8) are identified and selected.

Potentially viable alternatives to the above approach include, but are not limited to, BIC (see
Wang et al., 2007) as well as the approaches outlined by Zhang and Lu (2007) and by Wang
et al. (2008).

2.6 Predictive Performance
Assessment of EN-Cox and EN-AFT can be conducted through analysis of predictive
performance using time-dependent receiver operator characteristic (ROC) curves (Heagerty et
al., 2000). In general, for dichotomous disease-status indicator D and continuous diagnostic
test outcome X, an ROC curve is defined as the plot of the sensitivity of the test X > c versus
(1 − specificity) over c ∈ (−∞, ∞). Heagery et al. extend this formulation to time-to-event data
when censoring is present. Given linear risk score function f(X) = β’X, sensitivity and
specificity for cutoff c at time t are defined as

(9)

(10)

where δ(t) is the event indicator at time t. At each time t, an ROC curve is generated for 
and an associated area under the curve (AUC) is calculated. The plot of AUC over time is then
helpful in assessing the predictive performance of a given variable selection method.

2.7 Software
Analyses were performed using the R software package (http://www.r-project.org). The R
implementation of the Cox-based and AFT-based elastic net models presented in this paper is
available at http://statweb.byu.edu/engler/ENET.

3 Results
3.1 Data Analysis

Diffuse large-B-cell lymphoma (DLBCL) is a common type of non-Hodgkin’s lymphoma in
adults. Heterogeneity in response to treatment has suggested the existence of clinically distinct
subypes. Rosenwald et al. (2002) utilized Lymphochip DNA microarrays to collect and analyze
gene expression data from 240 biopsy samples of DLBCL tumors. For each subject, 7399 gene
expression measurements were obtained. During the time of follow-up, 138 patient deaths were
observed (i.e., 42.5% censoring).

Analysis of the Rosenwald et al. DLBCL data was conducted using both EN-Cox and EN-
AFT. For comparison purposes, analysis was also conducted using the Gui and Li (2005b)
lasso (LASSO-Cox) method. To assess the effect of differing imputation methods under the
AFT model, separate analyses were conducted using the mean imputation method described
in Section 2.3 and the Buckley-James imputation method (Wang et al., 2008). A training set
of 160 randomly selected subjects was utilized. Selection of tuning parameters for each method
was conducted using half of the training set while model fit (i.e., variable selection and
coefficient estimation) was conducted using the other half. Predictive performance was
assessed using a validation set composed of the 80 subjects not in the training set.
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The methods varied in the number of gene expressions identified as significantly associated
with survival. Both EN-Cox and EN-AFT identified a greater number of signficant features
than LASSO-Cox. EN-AFT computed under mean imputation (EN-AFT-M) identified 13
genes, EN-AFT computed under Buckley-James imputation (EN-AFT-BJ) identified 18 genes,
EN-Cox identified 16 genes, and LASSO-Cox identified 7 genes.

To assess predictive performance, the median AUC for each six month interval (for which
there was data) was then calculated and plotted for each method. Results are presented in Figure
1. For the first ten years of follow-up, the median AUC for EN-AFT-M is 0.61 and is 0.56 for
EN-AFT-BJ. Use of the Cox model results in a median AUC of 0.58 for both EN-Cox and
LASSO-Cox. Instability in AUC estimates for subsequent times (post year 10) appears to be
due to sparsity of event times. For this analysis, then, EN-AFT-M outperformed EN-AFT-BJ
(in terms of prediction) using a smaller set of identified genes. The predictive performance of
EN-AFT-M was also slightly superior to EN-Cox and LASSO-Cox in this data analysis.

Several features of the variable selection process for this data set are notable. First, EN-COX,
EN-AFT-M, and EN-AFT-BJ each select genes not identified by any of the other three variable
selection methods. In part, this is due to the noise of gene expression data. Such results are also
indicative of the stochastic nature of the variable selection process.

Second, the methods based on the elastic net penalization do exhibit the grouping effect
discussed in Section 2.4 while LASSO-Cox does not. For example, both EN-Cox and LASSO-
Cox select gene 5442, but EN-Cox also selects gene 5301 which is moderately correlated with
gene 5442 (ρ = 0.43). EN-AFT-M and EN-AFT-BJ each identify correlated gene expressions.
For example, gene 5254 and gene 5296 (uniquely identified by EN-AFT-M) are correlated
(ρ = 0.57). Likewise, genes 1671, 2154, and 5773 (uniquely identified by EN-AFT-BJ) are
correlated (ρ ≥ 0.51). With regard to LASSO-Cox, ρ ≤ 0.30 for any two identified gene
expressions.

In summary, both EN-Cox and EN-AFT-M (EN-AFT based on mean imputation) perform as
well or better than the lasso-based method and EN-AFT-BJ (EN-AFT based on the Buckley-
James imputation) in terms of predictive power. It is additionally important to note that the
elastic-net based methods are much more computationally efficient than their Cox-based and
AFT-based counterparts (see Section 3.3); completion of the Lasso-Cox method exceeded
several days while EN-AFT-M (including parameter selection through cross-validation)
completed in well under an hour.

3.2 Simulation Studies
In order to assess performance of EN-Cox and EN-AFT, several simulation studies were
conducted under different data scenarios. For each scenario, covariate data was simulated
following the strategy for generating gene expressions proposed by Gui and Li (2005b) which
allows for correlation between certain subsets of the data. In essence, an n × n array B is initially
generated from a uniform U(−1.5, 1.5) distribution. A second set of data C can then be generated
utilizing the normalized, orthogonal basis of the initial array. Gui and Li (2005b) demonstrate
that the maximum correlation between any two data vectors selected from B and C,
respectively, can be specified during the data generation process. Implementation of this
procedure can be conducted by prespecifying pγ genes significantly associated with outcome.
The gene expression data associated with these pγ variables are drawn from the initial array
B. The data for the remaining p − pγ variables are then drawn from the subsequent set of data
C.

For each of the following three data scenarios, 100 simulations were conducted in which, for
each simulation, data for n = 150 subjects and p = 200 gene expressions were generated. For

Engler and Li Page 8

Stat Appl Genet Mol Biol. Author manuscript; available in PMC 2010 May 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



each data set, subjects were randomly divided into two training sets of nt = 50 each and one
prediction set of np = 50. The first training set was utilized to select the tuning parameter(s)
for the respective variable selection methods. Model fit was conducted using the second
training set along with the identified tuning parameter(s). Additionally, it was assumed that
the first pγ = 6 genes were significantly associated with survival and that the remaining p −
pγ were not.

It was first of interest to establish baseline performance for EN-Cox and EN-AFT in a relatively
simple setting in which no correlation existed between any of the covariate vectors and where,
on average, about 40% of the event times were censored. For this first data scenario, then, data
for the first pγ gene expression were drawn from a uniform U(1.5, −1.5) distribution. That is,
x1, …, x6 were drawn from B. Data for the remaining p − pγ were drawn from the resultant
C matrix. A Weibull distribution with scale parameter 2 and shape parameter 5 was used for
the baseline hazard function and censoring times were generated using a uniform U(2, 10)
distribution, resulting in the desired level of censoring. Finally, half of the pγ coefficient vector
βγ was generated from a uniform U(−1, −0.1) distribution while the other half was generated
from U(0.1, 1). The remaining p − pγ coefficients were assigned a value of 0. Of note, use of
the Weibull distribution ensures the appropriate use of the Cox proportional hazards model
and the AFT model.

For the second data scenario, it was of interest to assess the grouping effect of EN-Cox and
EN-AFT. That is, the performance of EN-Cox and EN-AFT was assessed for a scenario in
which subsets of the pγ variables were highly correlated. First, data for x1 and x4 (two of the
six pγ) were drawn from B (i.e., from a uniform U(−1.5, 1.5) distribution). Using the
orthonormal basis of B, two sets of data, C1 and C2 were generated. For C1, data were generated
such that a number of the vectors in C1 were highly correlated with vectors in B. Alternatively,
vectors in B and C2 were uncorrelated. Data for x2 and x3 were randomly drawn from the subset
of C1 highly correlated (i.e., 0.85 < ρ < 0.95) with x1. Data for x5 and x6 were randomly drawn
from the subset of C1 highly correlated with x4. The correlation between {x2, x3} and {x5,
x6} was minimal (∣ρ∣ < 0.10). Data for the remaining p − pγ variables were drawn from C2.
Hence, for this scenario, the pγ genes were comprised of two groups of highly correlated
variables. Also, βγ was selected to reflect the high correlation between the pγ gene subsets: βj
= 0.9 for j = 1, …, 6. The baseline hazard function and level of censoring were identical to
Scenario 1.

Finally, it was of interest to assess the performance of EN-Cox and EN-AFT when an elevated
level of censoring was present. For this third data scenario, gene expression data were generated
as described above for Scenario 1. Likewise, the same βγ parameter vector was used. The level
of censoring, however, was increased to 60%.

For each of the three scenarios, performance of EN-Cox and EN-AFT was assessed in two
ways. First, the relative frequency of selection of significant variables (i.e., βj, j = 1, …, 6) was
assessed. The average (across the remaining p − pγ variables) relative frequency of the selection
of non-significant variables (i.e., βj = 0, j = 7, …, 200) was also assessed. Variable selection
results for the three scenarios are presented in Tables 1, 2, and 3. Listed in each table are the
non-zero coefficient values along with the relative frequency of selection across all simulations
for these coefficients. The average frequency of selection (across all simulations and across all
zero-valued coefficients) of the remaining coefficients is also listed.

Second, predictive performance was assessed as described in Section 2.6. For each simulation,
the AUC was calculated at each unique event time. Because unique times varied across
simulations, the time scale was divided into equal sized “bins”. The average AUC in each time-
bin was then calculated. Figure 3.2 contains the plotted average AUCs over time for each of
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the three scenarios. For comparison purposes, the same sets of data were also analyzed using
the Gui and Li (2005b) LASSO-Cox procedure for censored data. To assess the effect of
imputation method under the AFT model, separate analyses were conducted using the mean
imputation method of Section 2.3 and the Buckley-James imputation method of Wang et al.
(2008).

Results for the first scenario (i.e., independent covariates, 40% censoring) are presented in
Table 1 and in Figure 3.2 (under “Scenario 1”). For this simple scenario, the Cox-based methods
seem roughly equivalent in terms of performance results; both EN-Cox and LASSO-Cox have
a median AUC (across all times) of 0.80. With regard to the AFT-based methods, both EN-
AFT-M and EN-AFT-BJ appear to outperform the Cox-based models in this setting, more
frequently identifying variables of interest. The AFT approach based on mean imputation (EN-
AFT-M) performs particularly well. For coefficients with moderate or high absolute effects
(β1–5), the mean frequency of selection of EN-AFT-M is 0.986. With regard to the selection
of the remaining non-zero coefficient (β6), EN-AFT-M outperforms the Cox-based methods
as well as the method based on Buckley-James imputation (EN-AFT-BJ).

Results for the second scenario (i.e., grouped covariates with high correlation within groups,
40% censoring) are presented in Table 2 and in Figure 3.2 (under “Scenario 2”). With regard
to variable selection (Table 2), the AFT-based selection methods exhibit the highest accuracy,
followed by EN-Cox and then LASSO-Cox. The LASSO-Cox does not exhibit the grouping
effect but instead appears to select one of several highly correlated variables and ignores the
others. For example, in about half the simulations, LASSO-Cox selects β1, ignoring β2 and
β3 whereas in the remaining simulations, LASSO-Cox selects β2, ignoring β1 and β3. A similar
pattern is observed for the second group of correlated variables, β4, β5, and β6. As in the first
setting, the performance of EN-AFT-M with regard to frequency of variable selection is
superior to the Cox-based methods and to EN-AFT-BJ. Regarding predictive performance
(Figure 3.2), all three EN-AFT-M, EN-AFT-BJ and EN-Cox perform well both with a median
AUC (across all times) of 0.92. The over-time average AUC of LASSO-Cox in this setting is
0.82.

Results for the third scenario (i.e., independent covariates, 60% censoring) are presented in
Table 3 and Figure 3.2 (under “Scenario 3”). For this scenario in which a high level of censoring
is present, the three elastic net methods outperform LASSO-Cox in both variable selection
accuracy and in predictive performance. Interestingly, while the three elastic net methods are
roughly equivalent with regard to variable selection, EN-Cox (median AUC: 0.76) appears to
slightly outperform the two AFT-based methods (EN-AFT-M median AUC: 0.68, EN-AFT-
BJ median AUC: 0.66) in terms of predictive performance. The poorer predictive performance
of the AFT-based methods may be due, in part, to the fact that the required imputation in the
AFT models is based on fewer observed events and is therefore less accurate.

In summary, then, EN-Cox performs as well or better than LASSO-Cox in each of the three
scenarios. The improvement of EN-Cox is particularly notable when correlated covariates are
present. Moreover, the computational efficiency of EN-Cox exceeds that of LASSO-Cox. With
regard to the AFT-based methods, EN-AFT-M performs as well or better than EN-AFT-BJ in
all three scenarios, particularly wtih regard to frequency of variable selection. Additionally,
the improvement in computational efficiency is substantial.

3.3 Computational Efficiency
Use of the elastic net penalty leads to computationally efficient algorithms. Typical run times
(3.2Ghz Xeon Linux workstation) for EN-AFT-M, EN-AFT-BJ, EN-Cox, and LASSO-Cox
are listed in Table 4 for various data set dimensionalities.
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Note that the run times listed in Table 4 are for fixed tuning parameters and that differences in
run times are even more pronounced when time of cross-validation is included. For example,
a typical total run-time (cross-validation and model fitting) for N = 150 and p = 200 for EN-
AFT-M is 25.0 seconds whereas the EN-AFT-BJ time is 2716.6 seconds. For N = 150 and p
= 1000, the total run time for EN-AFT-M is 47.6 seconds and is 106280.7 seconds for EN-
AFT-BJ.

4 Discussion
Adaptation of the elastic net penalization criterion for use in high-dimensional and low-sample
size censored data settings leads to computationally efficient variable selection methods with
good predictive performance. Through simulation studies, EN-Cox and EN-AFT were shown
to perform well in comparison to the Gui and Li (2005b) LASSO-Cox approach in simple
settings with low censoring and independent covariates. The two methods were also shown to
outperform LASSO-Cox in settings with a high degree of censoring and in settings where sets
of highly correlated variables were present. The EN-AFT approach entailing mean imputation
was also shown to outperform the approach based on Buckley-James imputation (Wang et al.,
2008) in terms of both frequency of variable selection and computational efficiency.

Several features of the EN-Cox and EN-AFT implementations may warrant further
investigation. Some have proposed methods for improving the computational efficiency of the
LASSO-Cox (Segal, 2005). While EN-Cox was shown to perform efficiently in comparison
to LASSO-Cox, improvements might be made. For example, utilization of the penalized
likelihood approach of Park and Hastie (2007) may be of particular interest under the Cox
model.

The presented models can also be adapted to situations in which it is of interest to assign
separate penalty functions to different coefficients or groups of coefficients. That is, equation
(1) can be extended to

(11)

where the Wmj, m = 1, 2 are covariate-specific weights. For example, if it is a priori known
that a group of genes are associated with outcome and identification of additional genetic
regions is desired, optimization in EN-Cox and EN-AFT can be modified to allow separate
penalization of the two groups. To date, such an approach has not been investigated, however,
and may not be optimal. An alternative approach might entail modification of the adaptive
elastic net (see Ghosh, 2007; Zou and Zhang, 2009) for censored data settings. In HDLSS
settings, the Zou and Zhang approach may be of particular interest. Likewise, assessment of
the performance of the adaptive lasso of Zhang and Lu (2007) in high-dimensional data settings
is warranted.

It may also be of interest to obtain standard error estimates for the EN-Cox or EN-AFT
regression coefficients. One possible approach is based on an adaptation of the lasso local
quadratic approximation (LQA) proposed by Fan and Li (2001) (see also Zou, 2006). First,
assume the nonzero elements of β have been identified, perhaps through an initial EN-Cox or
EN-AFT analysis. Let β0 be an estimate of (presumably close to β), again perhaps obtained
through an initial EN-Cox or EN-AFT analysis. Equation (2) can be rewritten as

Engler and Li Page 11

Stat Appl Genet Mol Biol. Author manuscript; available in PMC 2010 May 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(12)

where y and X are replaced with  and  for EN-Cox and where y is replaced with y* for EN-
AFT. Let βm consist of the m nonzero elements of β and let Xm consist of the corresponding
columns of X. By differentiating (12), a closed form solution for β can be written as

(13)

where . Equation (13) can then be utilized to obtain the sandwich
estimator for the covariance matrix for βm.

Finally, a current drawback of the elastic net is that, like the lasso, it may not always yield
consistent results (see Ghosh, 2007). The adaptive elastic net, proposed by Zou and Zhang
(2009), resolves this issue for HDLSS data. Adaptation of this new approach for HDLSS
censored data settings will be of future interest.

5 Appendix

Proposition 1

Assume that . Define estimator  : let  for all k ≠ i,j, otherwise let
 for p = 1/2. Since xi = xj, clearly ,  and

. However, because the elastic net penalization function

 is strictly convex, it is the case that

Because  for i ≠ j, and because f(·) is additive,  and it therefore cannot
be the case that  is a minimizer. Hence, .

Proposition 2
By definition,

(14)

Also, note that

(15)

Engler and Li Page 12

Stat Appl Genet Mol Biol. Author manuscript; available in PMC 2010 May 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



By (14) (for non-zero  and ),

and

Hence,

where . By (15),

since  is centered. Hence,

where  is the correlation between standardized variables  and .
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Figure 1.
Comparison of predictive performance (area under the ROC curve, over time) for the
Rosenwald DLBCL data set.
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Figure 2.
Comparison of predictive performance (area under the ROC curve, over time) for Scenario 1:
independent covariates, 40% censoring, Scenario 2: correlated subsets of covariates (i.e.,
grouping effect), 40% censoring. Scenario 3: independent covariates, 60% censoring
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