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We deeply sampled the organismal, genetic, and transcriptional
diversity in fecal samples collected from a monozygotic (MZ) twin
pair and compared the results to 1,095 communities from the gut
and other body habitats of related and unrelated individuals. Using
a new scheme for noise reduction in pyrosequencing data, we
estimated the total diversity of species-level bacterial phylotypes in
the 1.2-1.5 million bacterial 16S rRNA reads obtained from each
deeply sampled cotwin to be ~800 (35.9%, 49.1%detected in both).
A combined 1.1 million read 16S rRNA dataset representing 281
shallowly sequenced fecal samples from 54 twin pairs and their
mothers contained an estimated 4,018 species-level phylotypes,
with each sample having a unique species assemblage (53.4 ±
0.6% and 50.3 ± 0.5% overlap with the deeply sampled cotwins).
Of the 134 phylotypes with a relative abundance of >0.1% in the
combined dataset, only 37 appeared in >50% of the samples, with
one phylotype in the Lachnospiraceae family present in 99%. Non-
gut communities had significantly reduced overlap with the deeply
sequenced twins’ fecal microbiota (18.3 ± 0.3%, 15.3 ± 0.3%). The
MZ cotwins’ fecal DNAwas deeply sequenced (3.8-6.3 Gbp/sample)
and assembled reads were assigned to 25 genus-level phylogenetic
bins. Only 17% of the genes in these bins were shared between the
cotwins. Bins exhibited differences in their degree of sequence var-
iation, gene content including the repertoire of carbohydrate active
enzymes present within and between twins (e.g., predicted cellu-
lases, dockerins), and transcriptional activities. These results pro-
vide an expanded perspective about features that make each of
us unique life forms and directions for future characterization of
our gut ecosystems.
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Human microbiome projects are being initiated throughout the
world, with the goal of correlating human physiological phe-

notypes with the structures and functions of their indigenous
microbial communities. Substantial insight into the patterns of
variation in the microbiota between body habitats and individuals
has been gained using shallow sequencing of 16S rRNA gene
amplicons and community DNA. Because of limitations imposed
by sequencing costs and throughput, these studies have examined
the more abundant species or genes. A timely question is this:
What additional insights about the microbial diversity present
within a body habit are obtained with deeper sequencing? More-
over, how much of the observed organismal diversity is an artifact
of noise introduced during PCR and sequencing of 16S rRNA
genes (1–3)? Therefore, in the current study we use a variety of
experimental and computational approaches to explore the level
of diversity and interpersonal variation in bacterial phylotypes,
microbial genes, and their expressedmRNA transcripts within the
human gut, home to our largest community of microorganisms.

Results and Discussion
Study Design and Data Collection. Total communityDNAandRNA
was initially isolated from two fecal samples, each obtained from
26-year-old, obese, MZ female cotwins (body mass index, 39 and
45 kg/m2). Both cotwins (designated TS28 and TS29) had been
vaginally delivered; neither cotwin had any history of intestinal
disease, and neither had used antibiotics at least 6 months before
providing fecal samples, at which time the cotwins lived 5 km apart
(4). A 454 pyrosequencing method was used to obtain 1.2–1.5
million sequencing reads from PCR-amplified V2 regions of bac-
terial 16S rRNA genes present in each fecal sample (average read
length ∼232 nt), and 3.8–6.3 Gbp of single- and paired-end shot-
gun reads from total fecal community DNA (Table S1). Using a
method for rRNA depletion based on a combination of size
selection (to remove 5S rRNA and tRNA), and streptavidin bead-
based pull-down of biotinylated oligonucleotides hybridized to
domains conserved among gut bacterial rRNA genes (5), we
enriched for fecal mRNA and then generated 12–16 million
sequencing reads representing expressed genes in their micro-
biomes (Table S2).

Analysis of Bacterial Diversity Present in the Gut Microbiota. Algo-
rithms for denoising pyrosequencing data: tests using mixtures of bacte-
rial strains. We analyzed test datasets composed of an unequal
mixture of DNA from 90 cloned bacterial 16S rRNA gene
sequences (2) or DNA purified from 67 bacterial strains cultured
from the human gut and pooled together over a range of relative
concentrations (Table S3). These test datasets were used to
establish a set of procedures for removing noise from 16S rRNA
datasets that arise from PCR and pyrosequencing (SI Text).
Comparison of the fecal microbiota of the deeply sampled MZ co-twins.
Using these procedures, we determined that most species-level
phylotypes were present at low abundance [species defined as
organisms sharing ≥97% sequence identity (%ID) in their 16S
rRNA genes; Fig. S1]; ∼100,000 16S rRNA sequences were
required to observe 60% of the total phylotypes (Fig. 1A). At the
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95%ID and 97%ID phylotype cutoffs, rarefaction curves did not
completely saturate even when >106 sequences were collected
(Fig. 1A), indicating that additional phylotypes remain unchar-
acterized even at this high level of coverage.
The total estimated diversity of species-level bacterial phylotypes

(97%ID) in the TS28 and TS29 datasets was lower than expected
(878 and 768, respectively; Table 1 andTable S4), basedonprevious
studies that did not account for noise. There was notable variation
even between these genetically identical cotwins: 35.9% and 49.1%
of the species-level phylotypes found in the fecal communities of
TS28 and TS29, respectively, were shared between the two samples
(39.0% and 52.8% were shared at the 95%ID level).
However, these values do not account for phylotypes that may be

abundant in one sample and rare in another. Overall, shared phy-
lotypes showed a small but positive correlation in relative abun-
dance between samples, and rarely varied by more than two orders

ofmagnitude (R2=0.18 for 97%IDandR2=0.27 for 95%ID). This
observation allowed us to define a normalized overlap between the
samples by considering only phylotypes found at a sufficient relative
abundance ineach sample that they areunlikely tohavebeenmissed
because of variations in their relative abundance (“Normalized
overlap” in SI Text). With this normalization, 68% and 79% of 97%
ID phylotypes in TS28 and TS29 were designated as being shared
in the other cotwin’s microbiota (76.7% and 86.0% at 95%ID).
Comparisons to more shallowly sampled fecal samples obtained from
other twin pairs. To test whether the deep sampling of these cotwins
allowed us to capture the bacterial diversity present in fecal sam-
ples obtained from other families containing twins, we extended
our survey to include 1.1 million bacterial V2 16S rRNA
sequencing reads from 281 fecal samples procured from 31 MZ
and 23 dizygotic (DZ) twin pairs and their mothers [3,984 ± 232
(mean ± SEM) reads/sample] (4). Like the deeply sampled cot-
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Fig. 1. Measurements of bacterial diversity in the human fecal microbiota. (A) Rarefaction curves at 97%ID and 95%ID phylotype cutoffs are shown for the
deeply sequenced TS28 and TS29 MZ cotwin (“Deep Twins”) datasets. Sequences were classified as chimeric at the 50% probability cutoff. (B) Comparison of
diversity within and between gut microbial communities. Curves at 97%ID phylotype cutoff are shown for 250 fecal samples taken from 146 individuals
(“Shallow twins”; 1,000 16S rRNA gene sequences were randomly selected from each sample), 250 samples taken frommultiple body habitats (“Whole body”;
1,000 randomly selected sequences per sample), and the two deeply sequenced fecal samples (“TS28-Deep” and “TS29-Deep”). Phylotypes found in multiple
fecal samples are labeled “co-occurring.” (C) Plot of proportion of 97%ID phylotypes found in TS28 and TS29 across 277 fecal samples (black circles) and 814
samples taken from multiple body habitats in nine individuals [habitat groups are colored green (fecal), purple (skin), red (external auditory canal; EAC), blue
(hair), orange (nostrils), and light blue (oral cavity)]. Four EAC and one skin sample did not contain any shared phylotypes with TS28 and TS29. (D) The
proportion of the 250 fecal samples containing each 97%ID phylotype plotted as a function of the relative abundance (%) of each phylotype in the combined
dataset. Phylotypes are colored according to phylum: Bacteroidetes (red), Firmicutes (green), and other (black). The expected proportion of samples con-
taining each phylotype, assuming a random distribution across samples, is shown (median ± 95% confidence interval).

Table 1. Number of species-level (97%ID) and 95%ID bacterial phylotypes in the deep and shallow sequenced fecal microbiota of
twins, and in the whole body sampling datasets

Dataset 16S rRNA seqs
Observed phylotypes

(97%ID)
Estimated phylotypes

(97%ID Chao)a
Observed phylotypes

(95%ID)
Estimated phylotypes

(95%ID Chao)

TS28-Deep 848,512 473 627 413 538
TS29-Deep 553,416 344 558 307 514
TS28-Shallow 3,288 135 375 121 329
TS29-Shallow 1,178 81 127 70 130
TSAll-Shallow 250,000 2,815 4,018 1,974 2,498
TSAll-Co-occur 250,000 1,898 2,043 1,221 1,283
WholeBody 250,000 3,869 4,949 2,957 3,646

aChao’s nonparametric total diversity estimates are given. Phylotypes are grouped based on the degree of sequence identity in the V2 regions of their 16S
rRNA genes.

TS28- and TS29-Deep, deeply sequenced cotwin fecal samples; TS28- and TS29-Shallow, shallow sequenced cotwin fecal samples; TSAll-Shallow, 1,000
randomly selected sequences from 250 fecal samples; TSAll-Co-occur, restricted to co-occurring sequences from 250 fecal samples; WholeBody, 250 randomly
selected samples from a total of 814 samples obtained from 27 body sites from 9 individuals, 1,000 sequences/sample).
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wins, these other twin pairs were born in Missouri, ranged in age
from25 to 32 years, did not have a history ofGI pathology, and had
not consumed antibiotics before sampling. All 16S rRNA pyro-
sequencing reads were preprocessed as done above to remove
noise and chimeras.
A comparison of the total bacterial diversity found across these

fecal samples and the two deeply sequenced samples underscored
the much higher level of inter- compared with intrapersonal var-
iation when considering a single body habitat (Fig. 1B). The com-
bined “Shallow” fecal datasets had an estimated 4,018 97%ID
phylotypes and 2,498 95%ID phylotypes (2,815 and 1,974
observed, respectively). These values are ∼5-fold higher than in
each deeply sequenced fecal microbiota (Table 1). In addition,
each sample had a unique collectionof 97%IDphylotypes (mean±
SEM, 53.4 ± 0.6% and 50.3 ± 0.5% overlap with TS28 and TS29),
whereas the fraction of phylotypes from each sample that were
shared with TS28 correlated with the fraction shared with TS29
(R2 = 0.73; Fig. 1C).
Our initial analysis of these fecal samples had indicated that

there was no core set of abundant species-level phylotypes found
in all individuals (4); this was confirmed after removing PCR and
sequencing noise. The proportion of samples containing each
phylotype was lower than expected by chance at all levels of
relative abundance (Fig. 1D), but within each level of abundance
there was a large spread. Only a few phylotypes appeared in the
majority of samples: of the 134 species-level phylotypes that had
a relative abundance in the combined dataset >0.1%, only 37
appeared in >50% of the samples (28% of the phylotypes,
compared with 100% expected by chance). Phylotypes assigned
to the Firmicutes phylum were more evenly spread than the
Bacteroidetes: 33% with >0.1% relative abundance appeared in
50% of samples, compared with only 12% of the Bacteroidetes
phylotypes (Fig. 1D). In addition, one nearly ubiquitous phylo-
type belonging to the family Lachnospiraceae (phylum Firmi-
cutes) was found in 99% of the samples, representing 5.7% of
the sequences in the combined dataset.
Comparisons to bacterial phylotypes present in other human body habitats.
To determine whether phylotypes present in the gut microbiota
were detectable in other body habitats, we surveyed V2 16S rRNA
sequencing reads obtained from nine unrelated healthy individu-
als (male and female) who had been sampled at 27 sites, including
feces, twice over a 24-h period on two occasions, each occasion
separated by 3 months (age range, 30–35 years with the exception
of one individual 60 years of age; no recent history of antibiotic
use; mean ± SD 1,315 ± 420 reads per sample) (6). All data were
subjected to the same denoising procedures described above.
A comparison of the total diversity found across the 27 body

habitats to the shallowly sequenced fecal samples and the two
deeply sequenced fecal samples demonstrated higher levels of
diversity when comparing across multiple body habitats vs. com-
parisons of the same habitat across multiple individuals (Fig. 1B).
The combined 27-body habitats dataset contained an estimated
4,949 species-level phylotypes (97%ID) and 3,646 95%ID phylo-
types (3,869 and 2,957 observed, respectively) (Table 1). Although
the range of overlapping species-level phylotypes for the fecal
samples from the 27-body habitat survey was comparable to the
twin fecal cohort (mean± SEM 45.1 ± 1.9% and 41.7 ± 1.4%), the
other nongut body habitats showed a significantly reduced overlap
(mean± SEM18.3± 0.3%and 15.3± 0.3%withTS28 andTS29;P
< 10−17, Student’s t test; Fig. 1C). As with the fecal samples from
the shallowly sampled twins, the fraction of phylotypes from each
sample that were shared with TS28 correlates with the fraction
shared with TS29 (R2 = 0.42).
Conclusions. Together, these results emphasize the following: (i)
despite large interpersonal variations in the composition of the gut
microbiota and the absence of a core set of abundantly represented
universally shared phylotypes, common phylotypes can be identi-
fied through deep sequencing of a small number of individuals; (ii)

a surprising amount of phylotypes are shared between distinct body
habitats across unrelated individuals (i.e., only five samples did not
contain any phylotypes from the deeply sequenced TS28 and TS29
gut microbial communities); and (iii) it seems feasible that future
studies that broadly sample humans living in distinct cultural set-
tings will be able to define population-wide gut phylotypes and, as a
result, provide a rationale for selecting cultured representatives of
these phylotypes for genome sequencing (e.g., start with phylotypes
in the top right portion of Fig. 1D).

Deep Shotgun Sequencing of the Fecal Microbiome of the MZ Cotwins:
Analyses of Genus-level Phylogenetic Bins. We turned next to the
followingquestions:Doesdeep sequencing enable the assembly and
binning of “population genomes” from complex microbial com-
munities? How diverse is the gut microbiome in terms of gene
content. and how unique are these genes relative to those contained
in 122 genomes from cultured human gut isolates? What can we
infer about the similarities and differences between MZ cotwins
when interrogating their deeply sequenced microbiomes?
Deep shotgun sequencing of total fecal communityDNAallowed

us to assemble and bin large scaffolds from the TS28 and TS29
microbiomes (Tables S5 and S6 and Phylogenetic binning of micro-
biome scaffolds in SI Text). A combined assembly of single- and
paired-end pyrosequencing reads from TS28 and TS29 yielded
92,104 and 61,460 contigs >500 bp per sample, with 11,780 and
6,392 scaffolds, respectively (scaffolds represent one or more con-
tigs ordered and oriented using paired-end reads). PhyloPythia, a
phylogenetic classifier that uses a multiclass Support Vector Ma-
chine (SVM) for composition-based characterization of sequence
fragments at different taxonomic ranks (7), was trained on 1,775
finished or draft microbial genomes, in addition to 5,548 and 3,391
contigs from TS28 and TS29, respectively, that mapped with high
confidence to gut microbial genomes (Table S7). After training,
PhyloPythia was used to accurately bin all scaffolds >2 Kbp at the
genus- and family-level, resulting in 24–25 bins of scaffolds per fecal
sample; these bins contained from 2.0 Kbp to 22.4 Mbp of total
sequence (Figs. S2B and S3 and Table S6).
The total number of genes across all microbiome bins from the

TS28 and TS29 fecal samples was 88,316 and 64,453, respectively.
Clustering of protein sequences from these bins and the 122 gut
microbial genomes, revealed 180,550, 257,823, and 334,211 total
protein-coding gene clusters at 40%, 60%, and 80% identity cut-
offs, respectively (Fig. 2A and Fig. S2A). The largest group of gene
clusters at all cutoffs was unique to the reference genomes,
whereas 25% of the clusters were found only in the TS28 or TS29
microbiome bins. Overall, 36% of the gut microbiome gene clus-
ters had a representative (60%ID) in the 122 gut microbial
genome database, indicating that although sequencing reference
genomes from culturable members of the microbiota has already
uncovered a substantial proportion of the gene content present in
the fecal communities of these cotwins, more reference genome
and microbiome sequencing is clearly needed.
A total of 25 genus- and family-level bins were identified in the

TS28 fecal microbiome dataset, and 24 in the TS29 dataset; 22 of
these bins were found in both samples (bins unique to one sample
only contained nine of the 16,554 total scaffolds). There were strong
correlations between the two fecal microbiomes with respect to the
number of scaffolds, their aggregate length, and the number of genes
found in each bin (R2 = 0.94, 0.74, and 0.69, respectively; Table S6).
As expected from our bacterial 16S rRNA analyses, the genus-level
bins with the largest number of scaffolds were the Ruminococcus,
Bacteroides, Clostridium, and Eubacterium (members of the Bac-
teroidetes and Firmicutes phyla). However, substantial assemblies
were also obtained from Methanobrevibacter [M. smithii is repor-
ted to be the dominant archaeon in the human gut microbiome;
(8)] and from Bifidobacterium (the former is missed with primers
for amplification of bacterial 16S rRNAgenes, whereas the current
version ofV2-directed bacterial primersmissmembers of the latter

Turnbaugh et al. PNAS | April 20, 2010 | vol. 107 | no. 16 | 7505

M
IC
RO

BI
O
LO

G
Y

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1002355107/-/DCSupplemental/stxt.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1002355107/-/DCSupplemental/stxt.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1002355107/-/DCSupplemental/stxt.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1002355107/-/DCSupplemental/stxt.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1002355107/-/DCSupplemental/stxt.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1002355107/-/DCSupplemental/stxt.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1002355107/-/DCSupplemental/stxt.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1002355107/-/DCSupplemental/stxt.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1002355107/-/DCSupplemental/stxt.pdf


taxa; Fig. S4). When sequencing reads from each sample were
mapped to the microbiome bins from that sample to identify high-
confidence sequence variants in each bin, we found that the Fae-
calibacterium had the highest relative level of variation, whereas
the Methanobrevibacter had the lowest (Fig. 2B).
Taken together, these results suggest that “population genomes”

can be constructed and reliably binned even from diverse microbial
communities given enough sequencing depth, although rare mem-
bers of the community will be missed (e.g., the TM7 phylum). The
bins provided the basis for amore in-depth analysis, annotation, and
transcriptional profiling than a standard gene-centric (i.e., sequenc-
ing read–based) approach, revealing 36,151 and 24,134 gene clusters
unique toTS28 andTS29, respectively, and not represented in any of
the 122 reference gut genomes (Fig. 2A). Comparisons of the
abundance of shared clusters between TS28 and TS29 revealed a
stronger average correlation than the shared species-level phylotypes
(mean R2 = 0.37 vs. R2 = 0.18). Rarefaction analysis disclosed that
the number of genes and gene clusters in the gut microbiomes con-
tinues to increase even after 2 million mapped reads (Fig. 2C), with
an estimatedplateauof 242,023 and 234,661 genes, corresponding to
115,216 and 112,522 gene clusters in the TS28 and TS29 fecal
microbiomes, respectively (Table S8).

The Diversity of Carbohydrate Active Enzymes in the Human Gut
Microbiome and Evidence of Genes with Predicted Cellulolytic Activity.
The human genome lacks the large repertoire of glycoside hydro-
lases and polysaccharide lyases required to cleave the many glyco-
sidic linkages present in complex dietary polysaccharides (9).
Because processing of these polysaccharides is a major function
of the distal gut microbiota (10), we annotated the predicted pro-
teins from each genus- and family-level microbiome bin using pro-
cedures described in the Carbohydrate-Active EnZyme database

[CAZy (9)] (Table S9andS10 andFig. S5). In total,weobserved143
CAZy families representing 5,145 genes in the gut microbiomes of
these cotwins.
In general, the relative abundance of genes assigned to each CAZy

family was consistent across genus-level bins from both individuals
(Fig. 3A and Table S10). However, one notable exception was found:
the Faecalibacterium bin from TS28 contained 42 genes predicted to
encodedockerins,whichare small proteins involved in theassemblyof
extracellular cellulosomes (11).Noneof these geneswere identified in
the Faecalibacterium bin from her cotwin’s fecal microbiome, nor in
the genome of F.prausnitzii isolate M21/2. However, 30 dockerins
were identifiedacross theRuminococcusandEubacteriumbinsof the
two samples (Table S9). In agreementwith thepredicted formationof
cellulosomes, the Faecalibacterium dockerins from TS28 were found
with a number of genes predicted to encode cellulases (GH5,GH9,
GH44,GH48), beta-mannanases (GH26), xyloglucanases (GH74),
and polysaccharide lyases (PL), none of which were observed in the
Faecalibacteriumbin fromTS29 (χ2 test,P< 10−4). Finally, a cohesin-
encoding gene (the cognate molecule for dockerins) was identified in
the Faecalibacteriumbin fromTS28, further supporting the existence
of human gut cellulosomes.
To assess the distribution of genes predicted to encode dockerins

across microbiomes from other twins, we compared 18 fecal
microbiome datasets (mean ± SEM 535,232 ± 23,294 sequencing
reads per sample; 118.7 ± 8.7 Mb/sample) obtained from six MZ
twin-pairs and their mothers (4) to the protein-coding gene
sequences from the microbiome bins obtained from the deeply
sampled MZ twins. This analysis revealed that the identified dock-
erin-encoding genes are widely distributed across gut microbiomes
but vary in abundance: all 18 microbiomes contained reads with
significant sequence similarity to these genes (mean number of
genes12.4, range1–55genes; andmeannumberof sequencing reads
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Fig. 2. Diversity of the human fecal microbiome and its metatranscriptome. (A) Distribution of gene clusters across gut microbial genomes and microbiome
bins. All protein sequences from 122 gut genomes and the microbiome bins were clustered using cd-hit at 60%ID. (B) Number of sequence variants in each
microbiome bin (values normalized by Gbp in bin; all genus-level bins with >100 scaffolds are shown). (C) Rarefaction analysis of the number of genes, gene
clusters, expressed genes, and expressed gene clusters in the fecal microbial communities of TS28 and TS29 as a function of sequencing depth. The total
number of protein-coding genes in the set of 122 gut genomes and the microbiome bins is 525,329, representing 257,823 gene clusters. (D) Ratio of gene
expression to gene abundance (relative abundance of cDNA sequences divided by relative abundance of DNA sequences) mapped to a subset of the bacterial
taxa in the fecal microbiome. Taxa with >1,000 mapped cDNA and DNA sequencing reads in both samples are shown.
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54.3, range 2–222 reads). However, only sequences from TS28
contained reads matching the identified cohesin-encoding gene.
Together, these results expand the known diversity of CAZymes

in the human gut microbiome and reveal a suite of genes with
predicted cellulolytic activity. The fact that the latter genes were
highly enriched in the Faecalibacterium bins found in the micro-
biome of TS28 and not in her genetically identical cotwin high-
lights another level of genetic variation between humans. Future
research will be necessary to characterize the enzymatic activity of
these systems, the breadth of their organismal distribution, the
host and environmental parameters (including diet) that deter-
mine their abundance in a given human gut microbiome, and their
contributions to host nutrient/energy harvest.

The Metatranscriptome Viewed from the Perspective of Phylogenetic
Bins. To characterize gene expression in the gut microbiome, we
analyzed cDNA and DNA datasets obtained from sequencing total
community cDNAandDNAprepared fromthe two fecal samplesof
TS28 and TS29. All sequencing reads were mapped against the
database of 122 gut microbial genomes and the microbiome bins
(Metatranscriptome analysis in SI Text). The results revealedmarked
differences in gene abundance and expression (Figs. S6 and S7). In
all cases, technical replicates of each microbiome and metatran-
scriptome (n=3–4) clustered together; this clusteringwas robust to
subsampling by COG functional categories (Fig. S6). Microbiome
profiles showed the highest average correlation between individuals
(R2 = 0.37), relative to metatranscriptomes (R2 = 0.12) and the
relative abundance of species-level phylotypes (R2 = 0.18). As with
the microbiome, rarefaction analysis of the metatranscriptome
revealed that the number of expressed genes and gene clusters
continues to increase even after 500,000 mapped reads (Fig. 2C),
with an estimated plateau of 85,099 and 173,309 genes, corre-
sponding to 35,781 and 58,339 gene clusters in TS28 and TS29,
respectively (Table S8).
We subsequently calculated the ratio of the relative abundance of

cDNA sequences in eachmicrobiome bin to the relative abundance
of DNA sequences in that bin, for each fecal community (12). Even
at the genus-level, there were detectable differences in relative gene
expression: six bins showed higher relative expression than gene
abundance, whereas the Bifidobacterium had the lowest level of
relative expression in both microbiomes (Fig. 2D).
We then compared cDNA and DNA profiles at the level of

individual genes to determine the relative expression of each gene
compared with its abundance (12). Genes were defined as “High
Relative Expression” (High-Expr) or Low-Expr based on the ratio
of cDNA to DNA relative abundance. A 10-fold difference was

chosen as the threshold cutoff based on all pairwise comparisons
of technical replicate datasets obtained from cDNA or DNA se-
quencing of each sample (Fig. S8A, n = 3–4 replicates per sample
per method).
These comparisons revealed 6,961 genes with high or low rela-

tive expression in the fecal microbiome of TS28 (4,816 High-Expr
and 2,145 Low-Expr) and 7,893 genes in TS29 (5,476 High-Expr
and 2,417 Low-Expr; Tables S11 and S12). As expected, many of
these genes came from bins with an overall higher relative
expression (Fig. 2D), including Parabacteroides, Alistipes, Meth-
anobrevibacter, and Bacteroides, or bins with a lower relative
expression (the Bifidobacterium bin contained 962 Low-Expr
genes in sample TS29 and 112 in TS28). However, some notable
exceptions were found; the Bacteroides had 1,416 High-Expr
genes in theTS28microbiome, despite having overall similar levels
of cDNA and DNA assignments across the entire bin (ratio 1.5).
The distribution of genes assigned to COG functional categories

was then calculated using each set ofHigh- or Low-Expr genes (Fig.
3B), aswell as the set of genes thatwereobservedonlywith cDNAor
DNA sequencing (Fig. S9A). A disproportionate number of High-
Expr genes encoded hypothetical proteins without predicted func-
tions [33.9% (TS28) and 31.2% (TS29) of the High-Expr genes,
comprising 77.9% (TS28) and 75.1% (TS29) of the total hypo-
thetical genes with either a high or low relative expression]. High-
Expr genes from both microbiomes were more frequently assigned
to COG categories for translation (J), energy metabolism (C), and
chaperones (O) (Fig. 3B and Tables S11 and S12), whereas Low-
Expr genes were more frequently assigned to COG categories for
secretory systems (U), replication, recombination, and repair (L),
and membrane proteins (M) (Fig. 3B). In addition, many of these
High-Expr genes have predicted functions related to fermentation
and carbohydratemetabolism: e.g., ABC-type transport systems for
carbohydrate import and metabolism plus genes involved in meth-
anogenesis and acetogenesis (key pathways in the clearance of the
hydrogen end-product of fermentation, and thus important deter-
minants of fermentation efficiency).
To better characterize specific pathways represented by genes

with high or low relative expression, we annotated each gene in the
122 gut microbial genomes and the microbiome bins using the
KEGG annotation scheme (v52) (13). The relative abundance of
KEGGpathways was tallied across genes defined asHigh- or Low-
Expr in TS28 and TS29 or found to be unique to the cDNA or
DNA datasets, and used for UPGMA clustering. Both micro-
biomes showed consistent trends, including high relative expres-
sion of genes assigned to pathways for essential cell processes, e.g.,
“RNA polymerase,” “Ribosome,” “Pyruvate metabolism,” and
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Fig. 3. Clustering of fecal microbiome
bins and the annotation of differ-
entially expressed genes. (A) UPGMA
clustering was performed on the rela-
tive abundance of CAZy families across
eachmicrobiome bin. Number of genes
assigned to each CAZy family was nor-
malized to the total number of genes in
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“Glycolysis” (Fig. S8B). We extended these analyses to five addi-
tional samples from two sets of MZ cotwins and one unrelated
individual (Samples labeled “TSDA” in Fig. S9 and Additional
microbiomes andmeta-transcriptomes in SI Text) and found similar
results, including the higher relative expression of genes assigned
to COG categories for transcription, energy metabolism, defense
mechanisms, and chaperones (Fig. S9A), in addition to KEGG
pathways involved in carbohydrate metabolism (e.g., fructose/
mannose metabolism), nucleotide metabolism, and vitamin me-
tabolism/biosynthesis (e.g., folate biosynthesis) (Fig. S9B).

Prospectus. Our results indicate that a majority of species-level
phylotypes are shared between these deeply sampled MZ cotwins,
despite large variations in the abundance of each phylotype. The
genetic and transcriptional diversity of thehumangutmicrobiome is
remarkable.Muchof this diversity hasnot beenpreviously identified
through sequencing cultured human gut isolates; 64% of the gene
clusters present in our microbiome bins had no representative in a
set of 122 human gutmicrobial genomes, and only 17%were shared
between the two cotwins. This diversity, even between genetically
identical individuals, provides an expanded view of our multi-
cellularity and interpersonal genetic variation. Features of the
genus-level bins within the gut microbiome were distinctive inmany
ways, ranging from differences in gene content and transcriptional
activity, to the extent of sequence variation within each population.
Identifying the factors that determine such between-taxon differ-
ences will provide an important step toward understanding the
functions (niches) of these organisms in the human gut microbial
community, with the ultimate goal of linking thepresence of specific
organisms to gene content and activity. Our results and the
accompanying datasets also provide a framework for future studies
of human and environmental microbiomes. As noted above, 16S
rRNAgene sequence datasets can be used to prioritize genomes for
isolation and sequencing, starting with the most abundant phylo-
types found across themost individuals, andworking toward the rare
members of the gut microbiota. The reduced level of organismal
diversity in a single individual implies that it may be soon be possible
to identify all strains present in a single gut (fecal) microbiota. The
fraction of shared phylotypes between MZ cotwins, between unre-
lated individuals, and between body habitats provides an important
context for designing studies of the assembly, dynamic operations,
and host effects of “model” human gut microbiota/microbiomes,
composed of sequenced cultured gut isolates, in gnotobiotic mice.
Finally, the application of transcriptional profiling to the study of
human body habitat-associated microbial communities will enable
correlations to be made between genes expressed by our micro-
biomes and our physiologic and metabolic phenotypes.

Materials and Methods
Sequencing of 16S rRNA Gene Amplicons. Fecal samples were stored at −80°C
before processing. DNA was extracted by bead beating followed by phenol-
chloroform extraction as described previously (4). The V2 region was tar-
geted for amplification by PCR (with primers 8F-338R) and multiplex GS FLX
pyrosequencing (4). In addition, six control pools were constructed with
equimolar or variable concentrations of purified genomic DNA from 67
cultured reference human gut–derived strains; the V2 regions of 16S rRNA
genes present in these pools were then amplified and sequenced.

Assembly of the Human Gut Microbiome. Shotgun sequencing runs were per-
formed on libraries prepared from total fecal community DNA using the 454
GS FLX Titanium single- and paired-end protocols. For all analyses involving
unassembled reads, sequencing reads with degenerate bases (“Ns”) were
removed along with all replicate sequences using the following parameters: 0.9
(90%ID), length difference requirement = 0, and 3 beginning bases checked
(14). Each deeply sequenced dataset (TS28 and TS29) was assembled separately
using the 454 GS de novo assembler software (Newbler v2.0.00.22), and all
scaffolds were used for subsequent analysis. High-confidence sequence variants
were identified using the 454 GS Reference Mapper software (v2.0.00.20).

Metatranscriptome Analysis. Microbial RNA sequencing (RNA-Seq) was per-
formed as described previously (5). Briefly, total RNA was extracted from each
fecal sample. The sample was subjected to rigorous DNase digestion to remove
residualgDNA,depleted for rRNAand tRNA,converted to cDNA,and sequenced
using the Illumina GAII platform. A total of 36 nucleotide reads produced from
the each runwere trimmed at their beginning and ends to remove bases with a
quality score <20. Adapter sequences and sequencing reads with a length <20
nucleotides were subsequently eliminated from further analysis. All trimmed
reads were mapped with SSAHA2 (15) to phylogenetic bins constructed from
microbiome scaffolds and to 122 sequenced human gut-associated microbial
genomes (SSAHA2 parameters: -best 1 -score 20 -solexa). Gene clusters were
defined by grouping all protein sequences from the database using the pro-
gram cd-hit [parameter -c 0.6 -n 4 (16)]. Gene and gene cluster counts were
normalized based on the total number of mapped sequencing reads. Genes
from the database with significant homology (BLASTN e-value <10−30) to non-
coding transcripts from the 122 gut microbial genomes were excluded from
subsequent analysis. Ties representing sequences matching multiple reference
genes with the same score were split evenly, whereas ties matching multiple
gene clusters were weighted according to the frequency of unique (nontie)
matches to each cluster.

Details concerning (i) phylogenetic binning of microbiome scaffolds, (ii)
analysis of gene, bin, and transcript abundance, (iii) development and vali-
dation of methods for 16S rRNA gene sequence analysis, and (iv) additional
cohorts of humans analyzed are given in SI Text.
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