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We introduce a new approach to constructing networks with
realistic features. Our method, in spite of its conceptual simplicity
(it has only two parameters) is capable of generating awide variety
of network types with prescribed statistical properties, e.g., with
degree or clustering coefficient distributions of various, very differ-
ent forms. In turn, these graphs can be used to test hypotheses or
as models of actual data. The method is based on a mapping
between suitably chosen singular measures defined on the unit
square and sparse infinite networks. Such a mapping has the great
potential of allowing for graph theoretical results for a variety of
network topologies. The main idea of our approach is to go to the
infinite limit of the singular measure and the size of the corre-
sponding graph simultaneously. A very unique feature of this con-
struction is that with the increasing system size the generated
graphs become topologically more structured. We present analytic
expressions derived from the parameters of the—to be iterated—
initial generating measure for such major characteristics of graphs
as their degree, clustering coefficient, and assortativity coefficient
distributions. The optimal parameters of the generating measure
are determined from a simple simulated annealing process. Thus,
the present work provides a tool for researchers from a variety of
fields (such as biology, computer science, biology, or complex
systems) enabling them to create a versatile model of their
network data.

complex networks ∣ sparse graphs ∣ singular measures

As our methods of studying the features of our environment
are becoming more and more sophisticated, we also learn to

appreciate the complexity of the world surrounding us. The cor-
responding systems (including natural, social, and technological
phenomena) are made of many units, each having an important
role from the suitable functioning of the whole. An increasingly
popular way of grabbing the intricate structure behind such com-
plex systems is a network or graph representation in which the
nodes correspond to the units and the edges to the connections
between the units of the original system (1–3). It has turned out
that networks corresponding to realistic systems can be highly
nontrivial, characterized by a low average distance combined with
a high average clustering coefficient (4), anomalous degree dis-
tributions (5, 6), and an intricate modular structure (7–9). A bet-
ter understanding of these graphs is expected and, in many cases
has been shown, to be efficient in designing and controlling com-
plex systems ranging from power lines to disease networks (10).

As increasingly complex graphs are considered, a need for a
better representation of the graphs themselves has arisen as well.
Sophisticated visualization techniques emerged (11), and a series
of parameters have been introduced over the years (1–3). Very
recently one of us (L.L.) proved that, in the infinite network size
limit, a dense graph’s adjacency matrix can be well represented by
a continuous function W ðx; yÞ on the unit square (12, 13). A sim-
ilar approach was introduced by Bollobás et al. (14, 15) and used
to obtain convergence and phase transition results for inhomo-
geneous random (including sparse) graphs. This two-variable
symmetric function (which can have a very simple form for a vari-
ety of interesting graphs and was supposed to be either contin-
uous or almost everywhere continuous) predicts the probability
whether two nodes are connected or not. (The nontrivial relations

between the limiting objects of graph sequences and 2D functions
are discussed in more detail in SI Text). In this paper we develop
the above ideas further in order to obtain simple and analytically
treatable models of random graphs with a level of structuredness
growing together with their size. Thus, we make an important
conceptual step forward by acknowledging a rather natural expec-
tation: The internal organization of larger networks is more com-
plex than those of the smallest ones (e.g., the social contacts in
large universities are much more structured than in an elemen-
tary school, which is in part because of the underlying hierarchical
organization of almost every large networks we know of).

In a sense, using a function to represent a network is very much
like using a model to describe a network. Models in the context of
networks have been playing a crucial role because they are ideal
from the point of view of singling out the simplest aspects of com-
plex structures and, thus, are extremely useful in understanding
the underlying principles. Models are also very useful from the
point of testing hypotheses about measured data. Indeed, many
important and successful models have been proposed over the
past 10 years to interpret the various aspects of real world
networks. However, a considerable limitation of these models
is that they typically explain a particular aspect of the network
(clustering, a given degree distribution, etc.), and for each new
—to be explained—feature a new model had to be constructed.

In the recent years, generating graphs with desired properties
has attracted great interest. A few remarkable methods have been
proposed, including various hidden variable models (16, 17). The
basic idea of this general framework is to characterize each node
by a hidden variable h drawn from a given probability distribution
ρðhÞ and link the pair of nodes I and J with a probability given by a
symmetric function rðhI; hJÞ. By appropriate choice of ρðhÞ and
rðh; h0Þ, one can generate random networks with an a priori
specified degree distribution and degree correlation structure.
Furthermore, nonequilibrium growing networks can be mapped
to networks with hidden variables depending on the age of the
nodes. The hidden variable methods are also related to the
systematic study of the entropy of randomized network ensembles
with fixed degree distribution, degree correlations, or community
structure by Bianconi (18) (e.g., the ensemble of networks with a
given degree sequence corresponds to a hidden variable model
where the hidden variables are given by Lagrangian multipliers
of the node connectivities).

Another systematic approach for analyzing network topologies
was introduced by Mahadevan et al., by using the dK series of
probability distributions (19). These distributions specify all
degree correlations within d-sized subgraphs of a given graph,
with 0K reproducing the average degree, 1K the degree distribu-
tion, 2K the joint degree distribution, etc. Several methods for
generating random graphs having a predefined finite dK series
were also given in (19) (with typically d ≤ 3). Most important
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of these techniques is based on rewiring of the links, because this
turned out to be the only efficient tool in practice.

The concept of characterizing a network via the frequencies of
given subgraphs (forming a series with increasing size) is at the
heart of the exponential random graph model as well (20–22). In
this approach a possible subgraph g (e.g., a pair of connected
nodes, a “two-star” of a pair of links sharing a node, a triangle,
etc.) is assigned a parameter ηg related to the frequency of the
subgraph, and the probability of a given network configuration
is assumed to be proportional to expð∑ ηgngÞ, where ng denotes
the number of subgraphs occurring in the network. The η para-
meters for a studied network are usually estimated by using
maximal likelihood techniques. For the particular case of the
two-star model a nonperturbative analytical solution was derived
by Park and Newman (23), showing an interesting phase transi-
tion between high and low density phases.

The dK-series method and the exponential random graph
model can be viewed as bottom-up approaches: In the first-order
approximation of the studied network we concentrate on the
frequency of the most simple object (an edge); when this is
reproduced correctly we move on to a slightly more complex sub-
graph, and so on. The series of subgraphs from small/simple to
large/complex are ordered into a sort of hierarchy. However,
in a realistic scenario we stop in the above process at a relatively
early stage, because on one hand most important properties of
the networks are usually reproduced already, on the other hand
including “higher order” subgraphs becomes computationally
very expensive.

Hierarchy, self-similarity, and fractality are very important
concepts when describing complex systems in nature and society
and turned out to be relevant in network theory as well (24–26).
Very recently, two important network models have been intro-
duced that are intrinsically hierarchical yet show general features.
Avetisov et al. proposed in ref. 27 the construction of random
graphs having an adjacency matrix equivalent to a p-adic rando-
mized locally constant Parisi matrix, one of the key objects in the
theory of spin glasses (28) This symmetric matrix has a hierarchic
structure, and its elements are Bernoulli distributed random
variables (taking the value of 1 with probability qγ and the value
0 with probability 1 − qγ , where γ counts the hierarchy levels). An
interesting feature of this construction is that any subgraph
belonging to a specific hierarchy level γ is equivalent to an
Erdös–Rényi random graph (29); nevertheless, the overall degree
distribution can be scale-free.

The Kronecker-graph approach introduced by Leskovec et al.
is centered around hierarchic adjacency matrices as well; how-
ever, in this case the self-similar structure is achieved by Kroneck-
er multiplication as follows (30). Starting from a small adjacency
matrix A1 (where A1

ij ¼ 1 if nodes i and j are linked; otherwise,
A1
ij ¼ 0), at every iteration we replace each current matrix

element by A1 multiplied by the matrix element itself, hence
enlarging the matrix by a factor given by the size of A1. In the
stochastic version of this model the elements of A1 are replaced
by real numbers between 0 and 1, and at the final stage of the
multiplication process we draw a link for each pair of nodes with
a probability given by the corresponding element in the obtained
stochastic adjacency matrix. According to the results, the
Kronecker graphs obtained in this approach can mimic several
properties of real networks (heavy tails in the degree distribution,
and in the eigenvalue spectra, small diameter, densification
power law) simultaneously. Furthermore, in ref. 31 Leskovec
and Faloutsos presented a scalable method for fitting real
networks with Kronecker graphs.

We note that link probability matrices similar to the previous
examples can be also used for community detection as pointed
out by Nepusz et al. in refs. 32 and 33. In their approach [inspired
by Szemerédy’s regularity lemma (34)] the diagonal elements
of the matrix give the link density inside the corresponding

communities, whereas the off-diagonal elements correspond to
the link probabilities between the groups.

In summary, a plausible classification of the emerging graph
generating procedures/approaches involves the following types:
generating graphs as (i) stochastic growth processes (e.g., ref. 1),
(ii) as a process of connecting or rewiring nodes according to
prescribed probabilities (4, 16, 17, 35–38), (iii) accepting varying
configurations with a prescribed probability (19–22), (iv) by
deterministically or stochastically obtaining its adjacency matrix
from simpler initial matrix (27, 30, 31), and (v) from a function
W ðx; yÞ on the unit square providing a value for the probabilities
of node pair connections (12–14).

Rewiring and the related construction techniques do not
provide a clue how a complex network emerges from a simple
rule. On the other hand, generating a graph from a fixed func-
tion/measure does not result in networks with increasing
structuredness. Our approach can be considered as a combina-
tion of (iv) and (v) (thus, combining their advantages), assuming
that in the infinitely large network limit the right representation is
a singular measure (nowhere continuous function).

Thus, here we discuss a method to construct random graphs
inheriting features from real networks. The main idea of our
approach is to replace W ðx; yÞ by a fractal (singular) measure
(also called multifractal) and go to the limit of infinitely fine
resolution of the measure and the infinitely large size of the gen-
erated graph simultaneously. Consequently, the structuredness of
the obtained network is increasing with the size. Another advan-
tage of this approach is that the statistical features characterizing
the network topology, e.g., the degree distribution, clustering
coefficient, degree correlations, etc., can be simply calculated
analytically. For generating networks with a given prescribed
statistical feature (e.g., a given degree distribution), the optimal
parameters of the generating measure defining the multifractal
can be determined from a simple simulated annealing process.

Model
The network generation has three main stages in our approach:
We start by defining a generating measure on the unit square,
next we transform the generating measure through a couple of
iterations into a link probability measure, and finally, we draw
links between the nodes by using the link probability measure.
The generating measure is defined as follows. We identically
divide both the x and the y axis of the unit square to m (not
necessarily equal) intervals, splitting it to m2 rectangles, and
assign a probability pij to each rectangle (i; j ∈ ½1; m� denote
the row and column indices). The probabilities must be normal-
ized ∑ pij ¼ 1 and symmetric pij ¼ pji. Next, the link probability
measure is obtained by recursively multiplying each rectangle
with the generating measure k times (which is equivalent to taking
the kth tensorial product of the generating measure). The above
procedure is in complete analogy with the standard process of
generating a multifractal, resulting in m2k rectangles, each asso-
ciated with a linking probability pijðkÞ equivalent to a product of k
factors from the original generating pij given as

pijðkÞ ¼
Yk

q¼1

piqjq : [1]

In our convention k ¼ 1 stands for the generating measure; thus,
a link probability measure at k ¼ 1 is equivalent to the generating
measure itself. The indices of the factors in [1] are given by

iq ¼ ⌊
ði − 1ÞQq−1

r¼1 ∘ modmk−r

mk−q ⌋þ 1; [2]

where ⌊a∕b⌋ denotes the quotient (integer part) of a∕b, the
term

Qq−1
r¼1 ∘ modmk−r stands for subsequent calculation of the
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remainder after the division by mk−r , and an analogous formula
can be written for the indices jq as well. (For q ¼ 1, Eq. 2 simpli-
fies to iq ¼ ⌊ði − 1Þ∕mk−1⌋þ 1; in SI Text we show the explicit
form of the above expressions in a specific example.)

Finally, we distribute N points independently, uniformly at
random on the ½0; 1� interval, and link each pair with a probability
given by the pijðkÞ at the given coordinates. The above process of
network generation is illustrated in Fig. 1, whereas in Fig. 2. we
show a small network obtained with this method.We note that the
above method can be viewed as a special case of the hidden vari-
able models, where the coordinates of the nodes correspond to
the hidden variables and the link probability measure pijðkÞ to the
rðh; h0Þ function. However, when k is increased, the complexity of
this rðh; h0Þ function is increasing exponentially.

Our construction could be made more general by replacing the
“standard” multifractal with the kth tensorial product of a sym-
metric 2D function 0 ≤ W ðx; yÞ ≤ 1 defined on the unit square.
Although the resulting Wkðx1;…; xk; y1;…; ykÞ ¼ W ðx1; y1Þ…
W ðxk; ykÞ function is ½0; 1�2k → ½0; 1� instead of ½0; 1�2 → ½0; 1�,
with the help of a measure preserving bijection between ½0; 1�
and ½0; 1�k it could be used to generate random graphs in the same
manner as with our multifractal.

The diversity of the linking probabilities pijðkÞ (and,
correspondingly, the structuredness of the generated graph) is in-
creasing with the number of iterations, just like in the case of a
standard multifractal. In order to keep the generated networks
sparse, we must ensure that the average degree hdi of the nodes
does not change between subsequent iterations, which can be
achieved by an appropriate choice of the number of nodes as
a function of k, using the following relation:

hdi ¼ N∑
mk

i¼1
∑
mk

j¼1

pijðkÞaijðkÞ; [3]

where aijðkÞ denotes the area of the box i; j at iteration k. In the
special case of equal-sized boxes aijðkÞ ¼ m−2k, and because of
the normalization of the linking probabilities the above expres-
sion simplifies to hdi ¼ Nm−2k. Thus, to keep the average degree
constant when increasing the number of iterations for a given
generating measure, the number of nodes has to be increased
exponentially with k.

Statistical Methods
One of the main advantages of our model is that the statistical
properties characterizing the network topology can be calculated
analytically. An important observation concerning our model is

that nodes having coordinates falling into the same row (column)
of the link probability measure are statistically identical, which
means that, e.g., the expected degree or clustering coefficient
of the nodes in a given row is the same. Consequently, the dis-
tributions related to the topology are composed of subdistri-
butions associated with the individual rows.

Let us concentrate on the degree distribution first, which can
be expressed as

Fig. 1. Schematic illustration of the multifractal graph generator. (A) The construction of the link probability measure. We start from a symmetric generating
measure on the unit square defined by a set of probabilities pij ¼ pji associated tom ×m rectangles (shown on the left). In the example shown herem ¼ 2, the
length of the intervals defining the rectangles is given by l1 and l2, respectively, and the magnitude of the of the probabilities is indicated by both the height
and the color of the corresponding boxes. The generating measure is iterated by recursively multiplying each box with the generating measure itself as shown
in the center and on the right, yielding mk ×mk boxes at iteration k. The variance of the height of the boxes (corresponding to the probabilities associated to
the rectangles) becomes larger at each step, producing a surface that is getting rougher and rougher; meanwhile, the symmetry and the self-similar nature of
the multifractal are preserved. (B) Drawing linking probabilities from the obtained measure. We assign random coordinates in the unit interval to the nodes in
the graph and link each node pair I; J with a probability given by the probability measure at the corresponding coordinates.

Fig. 2. A small network generated with the multifractal network generator.
(A) The generatingmeasure (on the left) and the link probability measure (on
the right) after k ¼ 3 iterations. (Note that k ¼ 1 corresponds to the
generating measure in our convention.) (B) A network with 500 nodes
generated from the link probability measure. The colors of the nodes were
chosen as follows. Each row in the final linking probability measure was
assigned a different color, and the nodes were colored according to their
position in the link probability measure. (Thus, nodes falling into the same
row have the same color.)
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ρðkÞðdÞ ¼ ∑
mk

i¼1

ρðkÞi ðdÞliðkÞ; [4]

where ρðkÞi ðdÞ denotes the subdistribution of the nodes in row i
and liðkÞ corresponds to the width of the row (giving the ratio
of nodes in row i compared to the number of total nodes). These
ρðkÞi can be calculated by using the generating function formalism
as shown in the Appendix, resulting in

ρðkÞi ðdÞ ¼ hdiðkÞid
d!

e−hdiðkÞi; [5]

where hdiðkÞi ¼ N∑jpijðkÞljðkÞ denotes the average degree of
nodes in row i. Eqs. 4–5 are analogous to the results for the
degree distribution in a general hidden variable model derived
in ref. 17. Even though the degree distribution of nodes in a given
row follows a Poisson distribution according to [5], the overall
degree distribution of the generated graph can show nontrivial
features, as will be demonstrated later.

Similarly to the degree distribution, the clustering coefficient
and the average nearest neighbors degree can be calculated
analytically as well in a rather simple way (as given in SI Text).
According to Fig. 3 B–D, the analytical results for the quantities
above are in very good agreement with the empirical distributions
(obtained by generating a number of sample graphs for the
chosen parameters). The use of analytic formulas instead of
empirical distributions can significantly speed up the optimiza-
tion of the generating measure with respect to some prescribed
target property.

Results
Depending on the choice of the generating measure and the box
boundaries, our method is capable of producing graphs with
diverse properties. However, to generate a random graph with
prescribed features in our approach, we need to optimize the
generating measure with respect to the given requirements.
Let us suppose that the number of nodes in the graph to be
generated is given. In this case we have two parameters: the
number of boxes in the generating measure (given by m2)
and the number of iterations k. The actual pij and box bound-
aries are “self-adjusting,” as we shall describe in the following.

Let us denote the property to which we are optimizing the
generating measure byF. A conceptually simple example is when
our goal is to obtain a network with a given degree distribution; in
this caseF is equivalent to pðdÞ. In principle,F depends on pij, li,
k, and N (and in an implicit way on m, through the box sizes and
linking probabilities). However, asm, k, and N are kept constant,
we discard them from the notation and write the “value” of the
property corresponding to a given choice of pij and li as Fðpij; liÞ.
[Note that in most cases Fðpij; liÞ is actually a high dimensional
object, e.g., a degree distribution, and not a real number.] The
target value of the property to which we would like the system
to converge is denoted by F�.

In order to be able to make the studied property of the
generated network converge to the goal F�, we have to define
a way to judge the quality of the actual Fðpij; liÞ. In other words,
we have to define a sort of distance or similarity betweenFðpij; liÞ
andF�. This distance/similarity measure can be used as an energy
function during a so-called simulated annealing procedure, and
we shall denote it by E½Fðpij; liÞ;F��. The actual form of this
function depends on the actual choice of the property; e.g., in
the case of optimizing the degree distribution, a plausible choice
is the sum of the relative differences between the degree
distributions:

Fig. 3. Comparison between the analytical and empirical result for a ran-
domly chosen generating measure. (A) The generating measure (Left) and
the link probabilitymeasure (Right) after k ¼ 4 iterations. Thenumber of rows
in the generating measure was set to m ¼ 3 with equal box lengths li ¼ 1∕3;
the corresponding initial linking probabilities pij were chosen randomly. (B)
The degree distribution obtained by averaging over 100 samples with
N ¼ 5; 000 nodes each (symbols), plotted together with the analytical result
obtained from Eq. 5 (continuous line), showing very good agreement. The
error bars (showing the standard error of the mean) are smaller than the sym-
bols. (C) The average clustering coefficient hCi of nodes falling into the same
row of the final link probability measure plotted in function of the row index.
Similarly to the previous panel, the symbols correspond to the empirical result
(the error bars show the standard error of themean), whereas the continuous
line was obtained from analytical calculations. (D) The nearest neighbors
average degree in function of the node degree obtained both empirically
by averaging over the samples (symbols, with the error bars corresponding
to the standard error of the mean) and analytically (continuous line).
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E½Fðpij; liÞ;F�� ¼ −∑
d

jρðkÞðdÞ − ρ�ðdÞj
maxðρðdÞ; ρ�ðdÞÞ ; [6]

where d runs over the degrees, ρðkÞðdÞ is the value of the actual
degree distribution at degree d, and ρ�ðdÞ is the value of the target
degree distribution at the same degree. In the simulating anneal-
ing we also define a temperature T, which is decreased slowly
during the process. The process itself consist of many Monte
Carlo steps, and in one step we try to change one of the linking
probabilities or one of the box boundaries by a small amount,
following the Metropolis algorithm (39). If the energy E2 after
the change is smaller than the energy E1 before, the change is
accepted. In the opposite case, the change is accepted by a
probability given by P ¼ exp½−ðE2 − E1Þ∕T�.

The above procedure can be generalized in principle to
optimizing with respect to multiple properties simultaneously
as well. Another option is to use maximum likelihood techniques
in a similar fashion to the KronFit algorithm shown in ref. 31,
making it possible to optimize with respect to a given network
as a whole. However, such an approach would be more compli-
cated both at the level of formulation and at the level of imple-
mentation. Thus, for simplicity here we consider the optimization
of the different properties separately, using the simple scenario
for the optimization described above. In Fig. 4A we show the
results for optimizing the generating measure with respect to var-
ious target degree distributions. Although the three chosen tar-
gets are rather different (a scale-free distribution, a log-normal
one, and a bimodal distribution), our method succeeded in find-
ing a setting of pij and li producing a degree distribution suffi-
ciently close to the target. Similarly, in Fig. 4B the results
from optimizing with respect to three clustering coefficient dis-
tributions are displayed, showing again a reasonable agreement
between the targets and the results.

Discussion
Our approach raises a number of fundamental graph theoretical
and practical questions. Should we expect that large real graphs
converge to some limiting network in a strict sense of the conver-
gence? Or, alternatively, their structure cannot be mapped onto a
fixed function, and only an ever-changing (with the size of the
network) measure (in the infinite network size limit becoming sin-
gular) can be used to reflect the underlying structural complexity?
This picture would be in contrast with the consequences of the
renowned Szemerédi lemma (34) valid for arbitrary dense graphs.

Although it can be shown analytically (see SI Text) that in the
infinitely large network size limit our construction converges to a
relatively simple graph, the convergence to this structure is extre-
mely slow. According to our numerical studies, there is a very
extensive region between the small and infinite regimes in which
a well-defined, increasingly complex structure emerges as our
method is applied. Details about aspects of the slowness of
convergence involving an extremely slow growth of the relative
number of isolated nodes and the appearance of oscillations
are given in SI Text.

In summary, our results demonstrate that it is possible to use
simple models to construct large graphs with arbitrary distribu-
tions of their essential characteristics, such as degree distribution,
clustering coefficient distribution, or assortativity. In turn, these
graphs can be used to test hypotheses or as models of actual data.
The combination of the tensorial product of a simple generating
measure and simulated annealing technique leads to small (in
practice, 3 × 3 to 5 × 5) matrices representing the most relevant
statistical features of observed networks. A very unique feature of
this construction is that with the increasing systems size the
generated graphs become topologically more structured. In
addition, the multifractal measure we propose is likely to result

in networks displaying aspects of self-similarity in the spirit of the
related findings by Song et al. (25).

Appendix
The degree distribution of the nodes falling in row i of the link
probability measure, ρðkÞi ðdÞ, can be calculated as follows. In our
construction we draw links for a node in row i pointing to nodes in
row j altogether njðkÞ times with a probability pijðkÞ, where njðkÞ is
the number of nodes in row j, given by njðkÞ ¼ NljðkÞ. The dis-
tribution of the number of links from a node in row i to nodes
in row j can be approximated by a Poisson distribution when
nj is sufficiently large as

ρðkÞij ðdÞ ¼ hdijðkÞid
d!

e−hdijðkÞi; [7]

where hdiji denotes the average number of links from a node in
row i to nodes in row j given by hdiji ¼ njðkÞpijðkÞ. The degree of a
node in row i is given by the sum over the links towards the other
rows as diðkÞ ¼ ∑jdijðkÞ. Therefore, the generating function of
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Fig. 4. Optimizing the generating measure with respect to different target
properties. During the optimization process the number of nodes N, the
number of rows in the generating measure m, and the number of iterations
k are kept constant; only the probabilities pij and the length of the intervals li
defining the generating measure are adjusted. The typical value of the con-
stant parameters in our experiments were N ¼ 10; 000–20; 000, m ¼ 3–4, and
k ¼ 3–5. (A) Optimizing with respect to different degree distributions. The
target distributions are shownwith circles, whereas the corresponding results
at the end of the optimization procedure are marked by squares. The black
symbols come from an experiment where the target was a power-law degree
distribution (the Inset shows this on log scale), and the gray symbols
correspond to a setting with a log-normal target, whereas the white symbols
show the results of an experiment with a bimodal target distribution. (B)
Optimizing with respect to different clustering coefficient distributions.
Similarly to the previous panel, the circles correspond to the target distribu-
tion, whereas the squares to the result of the optimization, and the different
colors mark three different settings of the target distribution.
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ρðkÞi ðdÞ is the product of the generating functions of the ρðkÞij ðdÞ
distributions:

GðkÞ
i ðxÞ ¼

Y

j

GðkÞ
ij ðxÞ; [8]

where GðkÞ
ij ðxÞ is defined as

GðkÞ
ij ðxÞ ¼ ∑

∞

d

ρðkÞij ðdÞxd ¼ ∑
∞

d¼0

hdijðkÞid
d!

e−hdijðkÞixd ¼ ehdijðkÞiðx−1Þ:

[9]

(A summary of the most important properties of the generating
functions is given in SI Text). By substituting [9] into [8] we
arrive at

GðkÞ
i ðxÞ ¼

Y

j

ehdijðkÞiðx−1Þ ¼ e
ðx−1Þ

∑
j

hdijðkÞi
¼ eðx−1ÞhdiðkÞi; [10]

where we used the fact that, because of the independence of the
links, the expected degree of a node in row i can be written as

hdii ¼ ∑jhdiji. The degree distribution of the nodes falling into
row i can be obtained by transforming back the generating
function in [10], resulting in

ρðkÞi ðdÞ ¼ hdiðkÞid
d!

e−hdiðkÞi: [11]

Because hdiji ¼ njðkÞpijðkÞ, the expected degree of a node in row
i, denoted by hdii in the above expression, can be given as

hdii ¼ N∑
j

pijðkÞljðkÞ: [12]

The distributions associated with the clustering coefficients and
the degree correlations can be derived analogously as described
in SI Text.
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