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The sensorimotor transformations for visually guided reaching
were originally thought to take place in a series of discrete
transitions from one systematic frame of reference to the next
with neurons coding location relative to the fixation position
(gaze-centered) in occipital and posterior parietal areas, relative to
the shoulder in dorsal premotor cortex, and in muscle- or joint-
based coordinates in motor output neurons. Recent empirical
and theoretical work has suggested that spatial encodings that
use a range of idiosyncratic representations may increase compu-
tational power and flexibility. We now show that neurons in the
parietal reach region use nonuniform and idiosyncratic frames of
reference. We also show that these nonsystematic reference
frames coexist with a systematic compound gain field that modu-
lates activity proportional to the distance between the eyes and
the hand. Thus, systematic and idiosyncratic signals may coexist
within individual neurons.
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We are currently at a theoretical crossroads regarding how
the brain computes motor commands from sensory

information. The linear systems engineering tradition taught that
neural circuits are assembled to compute particular transfer
functions and that intermediate stages represent quantities with
straightforward physical interpretations (1). At each stage, neu-
rons encode information in a single frame of reference, which
facilitates simple pooling. Each cell has a unique receptive field
or preferred direction. This results in a distributed population
code where each neuron encodes similar information in a similar
manner. The vestibular–ocular reflex provides an example of this
approach. Head rotation, measured by the vestibular semi-
circular canals using a canal-centered frame of reference, was
believed to be transformed directly into oculomotor commands
by virtue of appropriate synaptic weights on vestibular and
oculomotor nuclei neurons (1). Visually guided reaching pro-
vides another example. Visual spatial information was originally
thought to undergo a series of discrete transformations from a
sensory (gaze-centered) frame of reference in the occipital and
parietal cortices to hand-centered in the premotor cortex
(extrinsic motor coordinates) and finally, to muscle commands in
the primary motor cortex (intrinsic motor commands) (2–6). The
parietal reach region (PRR) in the posterior parietal cortex
(PPC) was seen as a discrete processing stage in which reach-
related spatial information was encoded using a uniform gaze-
centered reference frame and passed on to dorsal premotor
cortex (PMd) (7, 8).
An alternative design borrows from connectionist principles

and the field of artificial intelligence. In a trained neural net-
work, the organizational principles may be obscure and individ-
ual nodes may encode information idiosyncratically (9, 10).
Flexibility and computational power are increased when indi-
vidual nodes code diverse, seemingly random permutations of
the input. Subsequent processing can pick and choose from these
diverse representations to perform arbitrarily complex oper-
ations on the inputs (11–17). Consistent with these ideas, recent
work has revealed brain areas in which neurons use multiple
complex reference frames. For example, cells in the superior

colliculus code auditory stimuli using complex representations
that are idiosyncratic to individual cells and neither purely gaze-
nor purely head-centered (18, 19). Similar complex and non-
uniform coding may occur in the ventral intraparietal area (VIP)
(20), the dorsal medial superior temporal area (MSTd) (21), the
lateral intraparietal area (LIP) (22, 23), and PMd (24, 25).
Modeling work suggests that these complex coding schemes may
help convert reference frames, optimally combine sensory
information from different modalities, or perform nonlinear
computations (15, 17, 26, 27). For example, MSTd cells non-
linearly combine signals encoding the head-centered position of
the focus of visual expansion, eye position, and pursuit direction
(28). Similarly, neurons in PMd, originally thought to use
shoulder-centered coordinates (3), represent targets for arm
movements in a variety of reference frames, including hand-
centered, gaze-centered, and a frame related to eye, hand, and
target positions, perhaps to flexibly compute optimal sensor-
imotor transformations for visually guided reaching (24, 25, 29).
In the present study, we revisited spatial coding in PRR during

visually guided reaching. We found that, when eye and hand gain
fields were explicitly differentiated from tuning shifts, PRR con-
tained gaze-centered, hand-centered, and intermediate neurons.
Thus, PRR neurons use idiosyncratic, nonsystematic reference
frames, which are similar to those in PMd and other cortical areas.
Yet, these same neurons also show a uniform and systematic gain
field modulation. Eye and hand gain fields are systematically
arranged within each individual neuron to form a compound gain
field that encodes the distance between the point of the fixation
and hand position (30). We suggest that nonsystematic and idio-
syncratic organizational principles may increase computational
flexibility, whereas systematic organizational principles increase
computational efficiency. The brain simultaneously uses both
principles within individual neurons of a single cortical area.

Results
We recorded from 259 isolated neurons in PRR (Fig. 1D and Fig.
S1A) while monkeys planned and executed reaching movements.
Our behavioral task and analyses were designed to identify the
frames of reference used by cells in PRRand to distinguish shifts in
tuning from gain field effects (30–32). Making this distinction
requires that full tuning functions be obtained (Fig. 1A) (32). To
accomplish this efficiently, we aligned awide target array with each
cell’s preferred direction to capture the peak and both sides of the
tuning function. Reaches were performed from different starting
eye and hand positions to dissociate target position relative to
fixation (gaze) from target position relative to the hand (Fig. 1B).
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We fitted cell activity to a nonlinear model with separate terms for
linear eye and hand gain fields and a Gaussian tuning function for
target position that could be gaze-centered, hand-centered, or
intermediate (Eq. 1). Animals successfully completed 89% and
96% of initiated trials (monkeys G and S, respectively), with
median reach-response latencies of 238 ± 76 ms and 246 ± 55 ms
(± SD). Table S1 summarizesmedian gaze and hand distance from
the initial gaze targets, initial hand targets, and final reach targets.

Multiple Frames of Reference. Some neurons encoded target
location relative to eye position (gaze-centered), others relative
to initial hand position (hand-centered), and still others relative
to a point lying along a line connecting the eye and hand posi-
tions (intermediate).
Consistent with previous reports (7, 24, 33), many PRR cells

coded reach targets using a gaze-centered frame of reference
(Fig. 2A). When the eyes and hand were aligned at the central
position (Aligned), the delay period activity for the example
neuron was strongest for the center target [T3; peak delay
activity = 35.0 ± 5.8 sp/s (spikes/sec, mean ± SEM)]. When the
starting eye position was displaced to the left (Eyes Left) or right
(Eyes Right), peak delay activity was evoked by a target on the
left (T2) or right (T4), respectively (53.9 ± 3.3 sp/s and 29.3 ± 4.4
sp/s). In contrast, when the starting hand position was displaced
left or right, the peak remained at the center [Hand Left and
Hand Right (19.1 ± 3.0 and 45.4 ± 5.2 sp/s, respectively)]. Tuning
that shifts with eye position but not hand position is consistent
with a gaze-centered representation (7, 24, 33).
We fitted the data to a nonlinear model that distinguishes gain

fields from shifting reference frames (Eq. 1 and Fig. 2A Upper

Right). A weight parameter identifies the location of the origin of
each cell’s frame of reference. A weight of 1 corresponds to an
origin at fixation and therefore, describes a gaze-centered cell. A
weight of 0 corresponds to an origin at the starting hand position
and therefore describes a hand-centered cell. Finally, fractional
weights correspond to origins lying along a line connecting the
point of fixation with the starting hand position (a line inter-
secting P1 and P3 in Fig. 1B). For example, a weight of 0.5
corresponds to an origin midway between the eye and hand.
The weight parameter for the cell in Fig. 2A was 1.06 (not

significantly different from 1; bootstrap test; P < 0.05). A step-
wise regression analysis revealed that a purely gaze-centered
model (retaining both eye and hand gain fields) (Eq. 2) fit the
data just as well as the full model (Eq. 1) (F test; P = 0.51). The
fit to the gaze-centered model included a 0.98 sp/s increase in
firing for each degree of leftward eye position displacement (an
eye position gain field) and a 1.01 sp/s per degree decrease for
leftward hand displacement (a hand position gain field). The
gaze-centered modulation had an amplitude of 34.7 sp/s. This
reduced model accounts for 93.1% of the variance in firing (r2).
Multiplying the gaze-centered modulation by variance explained
yields a “spike-variance explained” of 32.3 sp/s (Methods) (30).
In comparison, the full model accounted for essentially the same
amount of variance (93.3%), whereas a purely hand-centered
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Fig. 1. Task design. (A) The importance of complete tuning curves when
characterizing reference frames. Imagine that a complete curve is obtained
in one condition (blue line), but only two data points are obtained in a
second condition (orange points). The data could reflect a shift in reference
frame (top dotted curve), a gain modulation (bottom dashed), or a combi-
nation of the two (middle dashed). The ambiguity would be resolved by
collecting complete tuning curves or at least, the peak responses (arrows).
(B) Behavioral task. Animals reached to one of eight target locations from
one of five configurations of initial eye and hand positions (box). [Only five
targets (T1–T5) near the neuron’s preferred direction (PD) are shown]. P1–P3
show potential starting eye and hand positions. All conditions and targets
were fully interleaved. (C) The temporal sequence of the task, aligned on
reach target onset (time 0). Start, onset of initial eye and hand targets;
target (T ), reach target onset; Go, go signal. (D) Recording sites from animal
G shown on a map of inflated cortex (http://brainmap.wustl.edu/caret).
Cortical areas are color coded according to Lewis and Van Essen (45). Inset
shows the dorsal view. Green, PO/V6A (46); blue, MIP; yellow, dorsal area 5
(5D); red, lateral occipitoparietal area (LOP). Fig. S1A shows animal S.
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Fig. 2. Single cells. (A) Example PRR neuron with a gaze-centered frame of
reference. Peri-stimulus time histograms and rasters are color coded for five
test conditions and five target locations (box in Fig. 1B). Delay activity is
shown with data aligned to the time of go cue (vertical line). (Upper Right)
Color-coded mean firing rates (circles), SEM (bars), and fitted tuning curves
are shown versus target locations in screen-centered coordinates. (B) An
example neuron that encodes targets relative to the hand (hand-centered).
(C) An example neuron using an intermediate representation (neither gaze-
nor hand-centered). Fig. S2 shows target-aligned data.
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model (retaining both eye and hand gain fields) (Eq. 3)
accounted for only 70.4%.
If PRR neurons are involved in transforming gaze-centered

into hand-centered representations, we might expect to find an
explicit encoding of the latter in PRR. Consistent with this
notion, although contrary to several previous reports (7, 24, 33)
(but see ref. 34 and figure 4e in ref. 33), we found hand-centered
representations in some cells (Fig. 2B). For the example cell,
peak delay activity occurred for targets T1 and T2 for Aligned,
Eyes Left, and Eyes Right conditions. In contrast, the tuning
functions for Hand Left and Hand Right were shifted left and
right, respectively. Tuning that shifts with hand but not eye
position is consistent with a hand-centered representation of
target position.
The weight parameter for this cell was 0.03 (not significantly

different from 0; bootstrap test; P < 0.05). A stepwise regression
analysis revealed that a purely hand-centered model (with eye
and hand gain fields, Eq. 3) fit the data just as well as the full
model (F test; P = 0.89). There was a 0.45 sp/s per degree eye
position gain field to the left and a 0.16 sp/s per degree hand
position gain field to the right. The hand-centered modulation
(15.7 sp/s) plus the eye and hand gain fields explain 82.2% of the
variance or 12.9 sp/s of the spike-variance. In comparison, the
full model accounted for essentially the same amount of variance
(82.3%), whereas a purely gaze-centered model (with gain fields)
(Eq. 2) accounted for only 65.3%.
We also encountered cells that represented target locations in

neither gaze- nor hand-centered coordinates (Fig. 2C). For the
example cell, peak delay activities on both Eyes Left (9.5 ± 2.7)
and Hand Left (25.0 ± 4.1) conditions were shifted slightly to the
left compared with the Aligned condition, and peak activities on
both Eyes Right and Hand Right conditions were shifted slightly
to the right. The weight parameter for this cell was 0.63, corre-
sponding to an intermediate representation (significantly differ-
ent from both 0 and 1; bootstrap test; P < 0.05). A stepwise
regression revealed that the full model (Eq. 1) fit the data signi-
ficantly better than either gaze- (Eq. 2) or hand-centered (Eq. 3)
models (P < 0.001 for each F test). The full model revealed a
20.4 sp/s Gaussian modulation based on target position that was
modulated by a 1.26 sp/s per degree rightward eye position gain
field and a 0.81 sp/s per degree leftward hand position gain field.
The mixed eye- and hand-centered modulation (20.4 sp/s) plus
the eye and hand gain fields accounted for 85.3% of the total
variance or 17.4 sp/s of the spike-variance. The gaze- and hand-
centered models accounted for only 70.9% and 62.9%.

Population Analysis of Reference Frames. Fig. 3A shows the pop-
ulation distribution of the fitted reference frame (weight) pa-
rameter from all cells with at least 5 sp/s of spike-variance
explained (103 of 259 cells). The modal value is just under 1 with
a skew to the left and a median value of 0.72. The distribution of
the fitted weights for all 255 cells for which the model converged
looks similar to Fig. 3A and yields a similar median of 0.68 (Fig.
S5). We classified cells by comparing fits to the full model (Eq. 1)
versus a gaze-centered (Eq. 2) or hand-centered (Eq. 3) model
(stepwise regression). We found that 41% of 103 cells were gaze-
centered (gaze model fit significantly better than the full model;
F test; P < 0.05), 18% were hand-centered (hand model fit sig-
nificantly better than the full model), and 21% were inter-
mediate (neither reduced model fit significantly better than the
full model). The remaining 20% of cells fit both reduced models
better than the full model and therefore could not be classified
(indeterminate).
Previous studies have reported different results at the pop-

ulation level (7, 24, 33). We, therefore, applied several alternative
analyses to check our results. A Bayesian Information Criterion
(BIC) analysis yielded similar results as the stepwise regression
(42% gaze-centered, 21% hand-centered, and 37% intermediate

cells) as did nonparametric permutation tests on the weight
parameter (38% gaze, 12% hand, 24% intermediate, and 26%not
classifiable). Similar results were obtained when the data from
each animal were analyzed separately. Monkey G, with a right
hemisphere chamber, showed a median weight of 0.70 with 39%
gaze-centered, 18% hand-centered, and 20% intermediate cells
(stepwise regression). Monkey S had a left hemisphere chamber
and showed a median weight of 0.80 with 43% gaze-centered,
17% hand-centered, and 24% intermediate cells. Finally, we ap-
plied three previously published classification schemes (7, 23–25)
for distinguishing gaze- and hand-centered frames of reference,
and these confirmed our conclusion that PRR shows a broad
range of representations, from gaze-centered to hand-centered,
with a bias for gaze-centered cells (Fig. 3B, Fig. S6, and SI
Results). We did not detect any anatomical segregation of cells as
a function of their reference, or any clear evidence of temporal
evolution of coding schemes (Fig. S9, SI Text).

Intermediate Representations. Gaze- and hand-centered repre-
sentations have clear correlates in the physical world. The early
visual system is gaze-centered by construction, and a high-level
motor representation for reaching might reasonably be expected
to be hand-centered. In contrast, the existence of intermediate
representations is nonintuitive. Despite their name, it is not at all
obvious that intermediate reference frames constitute computa-
tional intermediaries in the conversion from one frame of refer-
ence to another. In two dimensions, the transformation between
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gaze- and hand-centered frames requires only the subtraction of
two vectors, a simple linear operation (35). A feed-forward three-
layer neural network trained using back-propogation accom-
plishes this using gaze-centered, gain-modulated nodes, not
intermediate coding (11, 12, 14, 16, 17, 30, 36, 37). Although it is
true that neural networks can be designed to produce inter-
mediate representations (15, 17, 26), it nonetheless behooves us
to ask if intermediate representations might be artifactual.
Might recording spikes from two incompletely isolated neurons,

one with gaze-centered encoding and one with hand-centered
encoding, produce an intermediate representation? Mathemati-
cally, a weighted sum of gaze- and hand-centered representations is
quite different from an intermediate representation. However, it is
not clear how our classification schemes would respond to a
weighted sum. We tested if neurons that were classified as inter-
mediate by the stepwise regression test would be better fit by a
weighted sum of a gaze-centered and a hand-centered representa-
tion. We found that this was not the case. Of 22 intermediate cells
that met the 5 sp/s spike-variance explained criterion, all but two
cells (91%) were better fit by the intermediate model compared
with aweighted summodel (BIC).Ofall intermediate cells (n=44),
only 5% were better fit by the weighted sum. This effectively rules
out poor isolation as an explanation for intermediate cells.
A second way that an artifactual intermediate representation

might occur is by adding noise to a gaze- or hand-centered
neuron. If intermediate neurons were merely noisy (hence,
misclassified) gaze- or hand-centered cells, then we would expect
that our model would explain less variance in intermediate cells
compared with gaze- and hand-centered cells. This was not the
case. The black line in Fig. 3C shows the median percentage of
variance explained for all cells as a function of their frame of
reference. The line is approximately flat between 0 and 1, not U-
shaped. In particular, cells in the bin centered on x = 0.5
(weights from 0.35 to 0.65) have a median variance explained
similar to that of cells with weights close to 0 or 1. This strongly
suggests that intermediate cells do not, in general, result from
noisy observations of gaze- or hand-centered cells.
Although the majority of cells have weights close to or be-

tween 0 and 1, many weights fall well outside these boundaries.
Such cells have also been reported in previous studies (17, 20,
21). There is no a priori reason to believe that out-of-bound
representations (weights substantially less than 0 or substantially
greater than 1) should differ from in-bound representations
(weights within or near the interval from 0 to 1). In fact, an
independent simulation study was able to produce both in-bound
and out-of-bound representations (17). Interestingly, Fig. 3C
shows that our model explains more variance for in-bound cells
compared with out-of-bound cells. The three highest values of
median variance explained occur for cells with weights between
0.05 and 0.95. This pattern is even clearer in the distribution of
cells with high variance explained: 95% of cells with a variance
explained of at least 85% have weights between −0.15 and 1.15
(red line in Fig. 3C and Fig. S7).
To compare the goodness of fit for in-bound and out-of-bound

cells in detail, we divided all cells into five quintiles of variance
explained and then determined the proportion of in-bound and out-
of-bound cells in each quintile (Fig. 3D). If out-of-bound cells were
no different from in-bound cells, we would expect equal repre-
sentation in each. Instead, in-bound cells were overrepresented in
the upper quintile(s), whereas out-of-bound cells were overrep-
resented in the lower quintile(s).We found a similar pattern in spike-
variance explained (Fig. S3A). This suggests that out-of-bound
intermediate cells are different from in-bound intermediate cells.
Might noise artifactually produce out-of-bound cells? We

injected Gaussian noise (mean = 0 sp/s; SD= 5 sp/s) into all well-
fit in-bound cells (n = 130) (Fig. S4A) to see if it might cause in-
bound cells to be reclassified as out-of-bound cells. Surprisingly,
48 (37%) of the in-bound cells became out-of-bound when noise

was added (Fig. S4B). With still more noise (SD = 15 sp/s), 76
(58%) of in-bound cells were reclassified as out-of-bound cells
(Fig. S4B). The most parsimonious explanations of our data are,
therefore, that the out-of-bound cells that we observe arise as an
artifact from the corruption of in-bound cells (gaze-centered,
hand-centered, and in-bound intermediate cells) by noise. How-
ever, we cannot eliminate the alternative possibility that the
models that we have used (Eqs. 1–5) are inappropriate for out-of-
bound cells (i.e., out-of-bound cells encode spatial information in
a fundamentally different way).

Reference Frames and Eye and Hand Gain Fields. A gain field occurs
when tuned responses are scaled as a function of a postural variable
(38, 39). Simulations show the potential utility of gain fields in a
number of neural computations, including reference frame trans-
formations (11, 12, 14, 16, 17, 36). Recently, we reported that PRR
neurons are modulated by a compound gain field: eye and hand
position gain fields with similar magnitudes but opposite signs (30).
This compound gain field effectively modulates responses in pro-
portion to the distance between the point of visual fixation and the
hand (eye-hand distance) (Eq. 5) (30). Across neurons with at least
5 sp/s of spike-variance explained, themedian absolute eye gainfield
was 3.44% of peak activity per degree, and the median absolute
hand gain field was 2.08% per degree. Within each cell, eye and
hand gain fields were negatively correlated (Spearman’s rank cor-
relation; r = −0.61; P < 0.00001; type II regression slope = −0.74)
(Fig. 4). Only 4 of 103 cells showed a significant difference (two-
tailed t test; P < 0.05) between the fitted eye position gain field
parameter and the negative of the fitted hand position gain field
parameter.
We now report that there is no systematic relationship between

gain fields and frames of reference in PRR.One could imagine that
eye–hand distance gain fields might occur only in gaze-centered
neurons and not in neurons in which the eye–hand distance has
already been combined with visually derived target information to
produce a hand-centered representation of the target. Thiswas not
the case.Hand-centered (weight close to 0), gaze-centered (weight
close to 1), and in-bound intermediate neurons (intermediate
weights that fall inside of 0 and 1) all showed similar gain fields
(Fig. S8A). Thematch between eye and hand gain fields (i.e., offset
from the negative unity line in Fig. 4) was consistent across all cell
types with a median unsigned mismatch of 1.1% change in activity
per degree for gaze-centered neurons, 1.2% per degree for hand-
centered neurons, and 1.6 per degree for in-bound intermediate
neurons (P> 0.7 for all comparisons;Wilcoxon rank sum test) (Fig.
S8B). The gain field mismatch for out-of-bound neurons was 3.1
per degree (i.e.,much larger than themismatch for in-bound cells),
which is consistent with the idea that out-of-bound cells represent
either corrupted recordings of in-bound cells or a separate pop-
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Fig. 4. The compound eye–hand distance gain field. Eye and hand position
gain field amplitudes (percent per degree) tend to be similar in magnitude
but opposite in sign for single neurons (30). Solid black line, type II regres-
sion; dashed diagonal line, negative unity line.
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ulation with an encoding scheme not captured by our model (SI
Text and Fig. S3B).

Discussion
PRR neurons have been implicated in transforming gaze-
centered target locations into hand-centered locations (5, 31, 33,
40–42). Previous studies report a predominantly gaze-centered
coding (7, 24, 33), although individual hand-centered cells have
been observed (34) (figure 4e in ref. 33). We revisited this issue
using a behavioral paradigm and analysis specifically designed to
distinguish shifts in tuning from gain field modulations (30, 32).
For each cell, we collected full tuning curves, and analyzed the
data using a family of nonlinear models with explicit tuning and
gain-field terms (Eqs. 1–5). We found that reference frames in
PRR are idiosyncratic to each neuron, ranging continuously from
gaze-centered to hand-centered, and they include many cells
with intermediate representations (Figs. 2C and 3A and Fig. S5).
These intermediate representations are reminiscent of the mixed
gaze- and head-centered reference frames found in other parts
of the PPC (18–20, 23, 32).
A continuous distribution of reference frames has been re-

ported in area PMd, an area to which PRR projects (8, 25, 43).
In PRR the distribution is strongly biased to gaze-centered cells
(Fig. 3A), whereas in PMd, the distribution is biased to hand-
centered cells (25). This difference may reflect a gradual trans-
formation from an initial sensory (gaze-centered) frame in PRR
to a more motor frame in PMd. Such a bias is consistent with the
notion that visuomotor neurons represent information in multi-
ple, differentially weighted frames of reference (29). Although
their function remains unclear, intermediate representations are
thought to play a critical role, perhaps mediating nonlinear com-
putations required for 3D coordinate frame transformations or
assisting in optimal cue combination (13, 15, 17, 26, 27).
We distinguish in-bound cells, where a change in eye or hand

position produces a comparable or smaller shift in tuning, from
out-of-bound cells, whose tuning shifts by an amount greater
than the change in eye or hand position (rogue cells) (44). Out-
of-bound cells have been found in reference frame studies in VIP
and in simulation studies (17, 20, 21). In PRR, we find that the
goodness of fit for in-bound intermediate cells is comparable
with that of pure gaze- and hand-centered cells. In contrast, out-
of-bound intermediate neurons are less well fit by our model and
either arise artifactually from noisy recordings of in-bound
neurons or encode spatial information in an entirely different
manner from in-bound neurons.
Our approach is ideal for cells whose responses are peaked in

space. For cells that are monotonically tuned or cells for which we
sampled only amonotonic portion of the response field because of
poor positioning of the target array, our model cannot accurately
distinguish gain modulations from tuning shifts. This was only a
minor issue for us, because 91%of our cells showed a clear peak.A
second caveat is that we assume that gain fields are linear, yet
cannot distinguish linear from nonlinear gain fields using our data.
Except in extreme cases (e.g., U-shaped gain fields), the linear
assumption is a good first approximation (38, 39). A final caveat is
that our task was designed to test only gaze- and hand-centered
frames of reference. Although we found little evidence for head-,
body-, or world-centered frames, still other frames are possible.
The continuous distribution of idiosyncratic reference frames

for target position stands in contrast to the systematic and uniform
organizationof eye andhandgainfields inPRR.Eye andhandgain
fields are systematically coupled to one another such that every cell
is modulated by eye–hand distance (30). Gain fields are not
identical across cells. There is a small and idiosyncratic mismatch
of eye and hand gain fields within each cell, and themagnitude and
even the sign of the compound gain field varies from cell to cell
(e.g., some cells are more active when the hand is to the right of
fixation and less active when the hand is to the left of fixation, and

vice versa). Despite this variability, however, there is a clear
underlying organization; there are very few cells in which eye and
hand gain fields either both increase or both decrease for right-
ward movements, for example. This systematic organization is
strong evidence that gain fields are purposeful computational
elements and not accidental or incidental modulations (17).
Thus, one dimension of coding in PRR (reference frame) is

continuous and idiosyncratic within each cell, whereas another
dimension (the compound eye and hand gain field) is organized
systematically. We suggest that an apparently haphazard organ-
ization, such as is seen with frames of reference in many brain
areas, occurs when encoding signals that will be used for multiple
different and perhaps nonlinear computations. In contrast, a
systematic organization, such as is seen with eye and hand gain
fields, occurs when encoding signals that will be used for a small
number of fairly linear computations.

Methods
Data Analysis. The mean spike rate was computed in a 700-ms delay period
(850 ms before the time of the go signal to 150 ms before the time of the go
signal). Similar results were obtained using slightly different time intervals
and alignment points (e.g., from 150 ms to 850 ms after target onset). We
fitted mean spike rates in 25 different conditions (5 initial conditions × 5
targets) to a nonlinear seven-parameter Gaussian model:

Firing rate ¼ pa× exp
− ðθ−midÞ2

2× sd2 ×
�
1þ E× gEye þH × gHand

�
þ k;

[1]

where θ ¼ tan− 1
�
T − ðweight×Eþ ð1−weightÞ×HÞ

ecc

�

We refer to Eq. 1 as the full model. The fit was performed using the nls
function in the R statistics package (www.R-project.org). The model inputs
were firing rates, target eccentricity (ecc), target displacement (T), and the
displacement of eye (E) and hand target (H). The output parameters were
baseline (k), peak amplitude modulation (pa), offset of the center of the
tuning curve from the central target (T3; mid), standard deviation (sd) of the
Gaussian curve in degrees of visual angle, the amplitudes of the eye position
gain field (gEye) and the hand position gain field (gHand; both in fractional
modulation per degree), and a unitless weight parameter (weight), which
described the frame of reference for each cell, with weights of 1 and 0
corresponding to pure gaze- and hand-centered cells, respectively. See SI
Text for details on model parameters.

The gaze-, hand-, and head/body/world-centered models are each iden-
tical to the full model except for their respective θ terms:

θ ¼ tan− 1
�
T −E
ecc

�
; θ ¼ tan− 1

�
T −H
ecc

�
; [2---3]

θ ¼ tan− 1
�

T
ecc

�
: [4]

The following equation replaces the two separate eye and hand gain field
terms with a single distance gain field term, reducing the number of
parameters to six (30):

Firing rate ¼ pa× exp
− ðθ−midÞ2

2× sd2 ×
�
1þ ðE−HÞ× gDiff

�
þ k [5]

Selection Criteria. A total of 259 neurons were recorded from PRR in two
monkeys. For each signal that we encountered, we used the mapping task
to ascertain isolation, stability, and approximate preferred direction of that
cell. For each stable, well-isolated single neuron that showed clear spatial
tuning in the mapping task (n = 259), we ascertained the preferred
direction from the mapping task and then, ran the main task. These 259
cells reported here represent about 60% of the ∼450 signals that we
encountered. About 30% of signals were rejected because of poor iso-
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lation or stability, and the remaining 10% were rejected because of absent
or unclear spatial tuning. In this report, we analyze the data of every one
of the 259 cells in which we decided to run the main task. Because the
decision to run or not run this task in a given cell was based solely on the
results of the mapping task, the only bias in cell selection was in favor of
cells with spatial tuning.

Model fits were judged based on how well the model accounted for firing
rate. We took both the strength of the Gaussian tuning and the overall
variance explained by the model into account. We combined these two
factors into a single measure by multiplying variance explained (r2) by the
peak modulation of the Gaussian fit (sp/s) to obtain spike-variance explained

(sp/s) (30). We accepted neurons with a criterion value of 5 sp/s of spike-
variance explained (n = 103). Acceptance based on different criterion values
of spike variance explained, variance explained alone, or χ2 tests of the
goodness of fit all resulted in similar conclusions. SI Text contains more
detailed methods.
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