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Changes innon–protein-codingregulatoryDNAsequenceshavebeen
proposed to play distinctive roles in adaptive evolution.We analyzed
correlations between gene functions and evidence for positive selec-
tion ina commonstatistical frameworkacross several largesurveysof
coding and noncoding sequences throughout the human genome.
Strong correlations with both classifications in gene ontologies and
measurements of gene expression indicate that neural development
and function have adapted mainly through noncoding changes. In
contrast, adaptation via coding changes is dominated by immunity,
olfaction, and male reproduction. Genes with highly tissue-specific
expression have undergonemore adaptive coding changes, suggest-
ing that pleiotropic constraints inhibit such changes in broadly
expressed genes. In contrast, adaptive noncoding changes do not
exhibit this pattern. Our findings underscore the probable impor-
tance of noncoding changes in the evolution of human traits, partic-
ularly cognitive traits.

adaptive evolution | human origins | protein-coding DNA sequences |
noncoding DNA sequences | regulatory DNA sequences

Among the most fundamental unanswered questions about
adaptive evolution are whether it proceeds primarily through

changes in protein-coding DNA sequences or noncoding regu-
latory sequences, whether the proportions of coding and non-
coding changes vary appreciably among organismal traits, and, if
so, why (1, 2). For example, it has been argued that morphological
adaptation occurs mainly via noncoding changes, on the grounds
that many genes underlying development are active in many con-
texts, and a noncodingmutation is likely to alter a gene’s activity in
only one or a few contexts, avoiding pleiotropic constraints (3–5).
These questions have been addressed mainly using case studies of
individual genes and traits; however, they now can be addressed on
a genomic scale, and doing so is indispensable for assessing
whether consistent, intelligible patterns exist.
The human genome is especially suitable for such inquiry, for

two reasons. First, there are now many surveys aiming to detect
signatures of positive selection on sequences throughout the
human genome (6), most focusing on coding sequences but a few
focusing on noncoding sequences. Second, the extensive func-
tional annotations of the human genome often make it possible to
infer something about the trait throughwhich positive selection on
a sequence arose (6). Here we evaluate what several large surveys
of the human genome imply about the roles of coding and non-
coding changes in adaptive evolution, how these roles vary among
gene functions, and what this variation suggests about its causes.
In this work, we analyzed three surveys of coding sequences (7–

9) and three surveys of noncoding sequences (10–12) (Methods
and Table S1). Each survey aims to detect a signature of positive
selection, distinguishes selection on coding versus noncoding
sequences, and treats thousands of sequences without a priori bias
regarding function. The surveys’ data are diverse, and even when
they overlap, different surveys sometimes give different results,
because their methods have different sensitivities, not only to
signatures of positive selection, but also to confounding factors
(13–15). This diversity of data and methods is what makes con-
sidering these surveys collectively valuable. Although each survey
offers unique insights, we are interested in trends prevailing across

all three coding surveys or all three noncoding surveys, which are
likely to represent consistent features of adaptation via coding or
noncoding changes.
The trends on which we focus are correlations between positive

selection and gene functions according to the PANTHER (16) and
Gene Ontology (GO) (17) classification systems and the Novartis
Gene Expression Atlas (18). Within each survey, certain functional
categories and expression domains are enriched with or depau-
perate of genes scoring high for positive selection, suggesting that
changes detected in the survey have played large or small roles,
respectively, in the adaptation of these functions. These functional
annotations apply directly to proteins and hence coding sequences.
In the absence of direct annotations of most noncoding sequences,
we associated each noncoding sequence with the nearest coding
sequence, because coding sequences often are regulated by nearby
noncoding sequences (19). Each survey was published with some
analysis of functional enrichment, and some impression of patterns
across surveys can be derived from these analyses (6); however, a
more detailed and precise understanding can be achieved by ana-
lyzing the surveys in a common statistical framework.

Results
For each PANTHER or GO category, we computed the rank cor-
relation between the score for positive selection andmembership in
the category (rank-biserial correlation, rrb) and the SE of the cor-
relation within each survey (Methods). We then computed the
weighted mean of this correlation and the SEM across coding sur-
veys and across noncoding surveys, weighting so that those surveys
estimating the correlationmore precisely contributemoreheavily to
themean.We are particularly interested in categories for which the
mean correlation is significantly positive (Penr < 0.05) or negative
(Pdep = 1 − Penr < 0.05) across coding or noncoding surveys, indi-
cating that the category is, respectively, appreciably enrichedwith or
depauperate of positive selection on coding or noncoding changes.
We also computed a heterogeneity statistic across coding surveys
and across noncoding surveys, and when discussing categories
enriched with or depauperate of positive selection across coding or
noncoding surveys, we restrict attention to categories for which this
statistic is nonsignificant across the same surveys (Phet > 0.05),
indicating a lack of appreciable discord among the surveys. Figure 1
plots the results for large PANTHER biological processes, Table 1
lists results for large and middle-sized PANTHER biological pro-
cesses, and Table S2 is analogous for GO biological processes.
Tables S3, S4, S5, S6, and S7 present complete results for large and
middle-sized PANTHER and GO biological processes, molecular
functions, and cellular components.
The strongest pattern evident in these results is that neural

development appears to have adapted primarily through noncoding
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changes. Across noncoding surveys, the PANTHER biological
process “neurogenesis” is highly enriched with positive selection
(Penr < 10−6). “Neurogenesis” has no subcategories in PANTHER,
but finer resolution is available in GO biological processes, where
“regulation of neuron differentiation,” “axon guidance,” “regu-
lation of axonogenesis,” “brain development,” “neuronmigration,”
“positive regulation of neurogenesis,” and “negative regulation of
neurogenesis” are enriched across noncoding surveys (Penr = 4.5 ×
10−5, 5.2 × 10−4, 0.0024, 0.0026, 0.0072, 0.0079, and 0.014, respec-
tively), whereas “axon guidance” and “negative regulation of neu-
rogenesis” are depauperate across coding surveys (Pdep= 0.021 and
<10−6, respectively).Thispatternarises largely fromdifferent genes
in different surveys. Of the 86 “neurogenesis” genes scoring high
(P < 0.05) for positive selection in at least one noncoding survey,
only 8 score high in two surveys, and none do so in all three surveys.
(Note that these surveys generally treat different sequences asso-
ciated with a given gene.)
Likewise, neural function appears to have adapted primarily

through noncoding changes, although this pattern is weaker. The
PANTHER biological process “other neuronal activity” is enriched
with positive selection across noncoding surveys (Penr = 8.9 × 10−4)
and remains sowhen genes also in “neurogenesis” are excluded (Penr
= 0.018). The GO biological process “regulation of synaptic trans-
mission” is enriched across noncoding surveys (Penr = 0.0094), the
GOmolecular functions “GABA receptor activity” and “ionotropic
glutamate receptor activity” are enriched across noncoding surveys
(Penr = 0.027 and 0.045, respectively) and highly depauperate across
coding surveys (Pdep < 10−6 for both), and the GO cellular compo-
nent “synapse” is marginally enriched across noncoding surveys
(Penr = 0.075) and depauperate across coding surveys (Pdep = 1.6 ×
10−4). No such category is enriched across coding surveys, apart from
the olfaction-related categories mentioned below.

Other trends prevailing across the noncoding surveys include
enrichment with positive selection of several aspects of develop-
ment in addition to neural development. Most conspicuously, the
PANTHER biological process “muscle development” is enriched
(Penr = 0.020). However, some developmental categories also are
enriched across coding surveys, including the PANTHER bio-
logical processes “anterior/posterior patterning” and “segment
specification” (Penr = 0.029 and 0.034, respectively).
Consistent with earlier reports (6–9), the leading themes of

adaptation through coding changes appear to be immunity and
olfaction, represented by the PANTHER biological processes
“immunity and defense” and “chemosensory perception” (Penr <
10−6 for both), the GO biological processes “defense response”
and “sensory perception of smell” (Penr = 0.0011 and < 10−6,
respectively), and many other categories. Also conspicuous is
sperm function, represented by the PANTHER biological process
“spermatogenesis andmotility” (Penr= 0.039) and theGOcellular
component “acrosome” (Penr = 0.0087), among other categories.
Few such categories are depauperate of positive selection across
noncoding surveys, however. Indeed, the PANTHER biological
process “T cell–mediated immunity” is enriched with positive
selection across both coding and noncoding surveys (Penr = 4.9 ×
10−5 and 0.016, respectively). In conjunction with the distinctive
role of noncoding changes in neural adaptation, these results raise
the possibility that a wider range of traits have been amenable to
adaptation via noncoding changes than via coding changes.
To examine how adaptive coding and noncoding changes relate

to gene expression, we turned to the Novartis Gene Expression
Atlas. For each gene and each of the 73noncancerous tissues in the
atlas, we computed a specificity score between 0 and 1 representing
the specificity of the gene’s expression to the tissue (9, 12). The
score is high if the expression is very specific to the tissue and is low
even for the gene’s tissue of maximal expression if the gene is
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Fig. 1. Large PANTHER biological processes enriched with positive selection across coding or noncoding surveys. Plotted categories are all but three of those
for which (i) the mean number of genes per survey is at least 50 across all surveys, (ii) the mean rank-biserial correlation (rrb) between score for positive
selection and membership in the category is significantly positive (Penr < 0.05) across coding or noncoding surveys, and (iii) heterogeneity is nonsignificant
(Phet > 0.05) across the same surveys. The three such categories not plotted are “ectoderm development,” “neuronal activities,” and “mesoderm develop-
ment,” which are not significantly enriched when their respective subcategories “neurogenesis,” “other neuronal activity,” and “muscle development” are
subtracted. Error bars represent SEM- rrb. Green blocks on error bars indicate one-tailed P values for the one-sample z test of mean rrb = 0. One block, 5 × 10−4

< P < 0.05; two blocks, 5 × 10−6 < P < 5 × 10−4; three blocks, P < 5 × 10−6. Similarly, green dots on category names indicate two-tailed P values for two-sample z
tests of equal mean, rrb, across coding versus noncoding surveys.
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nearly as highly expressed in other tissues. For each gene, we also
computed an evenness score between 0 and 1, representing the
evenness of the gene’s expression across all 73 tissues. The score is
high if the expression is not very specific to any tissue. Figure 2
illustrates these scores in the simplest context of two tissues.
For each tissue, we computed the rank correlation between score

for positive selection and specificity to the tissue (rr,s) and its SE
within each survey. We then computed the weighted mean of this
correlation, its SE, and the heterogeneity statistic across coding
surveys and across noncoding surveys. Figure 3 plots the results for
all tissues and highlights two groups of tissues exhibiting strong

contrasts, and Table S8 presents the complete results. Consonant
with the results presented above, specificity to neural tissues (mainly
components of brain plus ganglia) is more correlated with adaptive
noncoding changes than with adaptive coding changes (P < 10−6,
Wilcoxon signed-rank test), whereas specificity to male repro-
ductive tissues (components of testis plus prostate gland) is mar-
ginally the opposite (P = 0.063). These contrasts prevail almost
without exception, because mean rr,s is greater across noncoding
surveys than across coding surveys for all but 1 of the 23 neural
tissues, whereas the opposite holds for all but 1 of the 6male tissues.
We similarly computed the rank correlation between score for

positive selection and evenness across all tissues (rr,e) within each
survey, the weighted mean of this correlation across coding and
across noncoding surveys, and the associated SEs and heterogeneity
statistics. We repeated this computation restricting attention to the
25%, 10%, or 5%most evenly and least evenly expressed genes per
survey. Table S9 presents the results. As the evenness tail fraction
decreases, the mean rr,e across coding surveys becomes more neg-
ative, becoming significantly so when the fraction is 10% or 5%
(Pdep = 0.0057 and 0.0076, respectively). This indicates that very
evenly expressed genes have experienced less positive selection on
their coding sequences than very unevenly expressed genes, a phe-
nomenon reported by Kosiol et al. (9). This pattern persists when
only genes in the significantly enriched PANTHER and GO cate-
gories are included in the computations. No such pattern is dis-
cernible across the noncoding surveys.

Discussion
All of the patterns that we have mentioned persist when any one of
the six surveys is excluded (Tables S3, S4, S5, S6, S7, S8, and S9).
There are, of course, potential sources of noise or error both in the
surveys and in our analyses of them. For example, some sequences
exhibiting acceleratedevolution in thehuman lineagemaydo sodue
to nonadaptive processes, and many genes have multiple functions
or functions missing from current annotations. Moreover, human-
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Fig. 2. Specificity and evenness scores. The vector represents expression of a
given gene in two tissues. The dashed line corresponds to equal expression in
these tissues. The specificity scores of the gene are s1 = cos2σ1 and s2 = cos2σ2.
The gene’s expression is higher in tissue 1, so s1 > s2. The evenness score of
the gene is e = cos2ε. If the gene’s expression were lower in tissue 1 or higher
in tissue 2, then e would be greater.

Table 1. PANTHER biological processes enriched with positive selection

Category* Mean n† Mean rrb SEM rrb Penr
‡

Across coding surveys
Chemosensory perception 68 0.37 0.054 < 10−6

Immunity and defense 550 0.059 0.011 < 10−6

T cell–mediated immunity 83 0.12 0.030 4.9 × 10−5

IFN-mediated immunity 30 0.16 0.061 0.0037
Other oncogenesis 23 0.15 0.058 0.0051
Anterior/posterior patterning 29 0.12 0.064 0.029
Segment specification 48 0.079 0.043 0.034
Steroid metabolism 78 0.049 0.027 0.038
Spermatogenesis and motility 50 0.068 0.039 0.039
Induction of apoptosis 73 0.049 0.028 0.042

Across noncoding surveys
Neurogenesis 266 0.13 0.020 < 10−6

Other neuronal activity 54 0.14 0.044 8.9 × 10−4

T cell–mediated immunity 42 0.11 0.051 0.016
Oncogene 39 0.12 0.055 0.0017
Muscle development 59 0.085 0.041 0.020
Blood clotting 23 0.12 0.068 0.042
Sulfur metabolism 31 0.11 0.064 0.047

*Listed categories satisfy the following: (i) Eeach of at least five surveys treats at least 10 genes, (ii) the mean
rank-biserial correlation (rrb) between score for positive selection and membership in the category is significantly
positive (Penr < 0.05) across coding or noncoding surveys, and (iii) heterogeneity is nonsignificant (Phet > 0.05)
across the same surveys. When one such category contains others, the former is listed only if it still satisfies (i)–(iii)
when the latter are subtracted. A total of 163 categories satisfy (i).
†Mean number of genes in the category per survey, rounded to the nearest integer.
‡Upper one-tailed P value for the one-sample z test of mean rrb = 0, rounded upward. Penr is not adjusted for
multiple comparisons, which is difficult to do correctly because categories overlap extensively, but Penr < 3.0 ×
10−4 would remain significant even under Bonferroni adjustment, which is extremely conservative.
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specific gene duplications and deletions are beyond the scope of the
surveys analyzed here but may have contributed much to human
adaptation (20). But assuming that the strong contrasts that we have
identified are genuinely characteristic of adaptive evolution, at least
in humans, what might account for them?
A simple possibile explanation is that genes with functions

enriched with positive selection across coding or noncoding surveys
are associated with longer coding or noncoding sequences, respec-
tively. All else being equal, longer sequences should undergo more
adaptive changes. Consistent with this idea, genes in noncoding-
enriched PANTHER and GO categories are associated with an
average of 185 ± 5 kb of noncoding sequence (introns, UTRs, and
half of flanking regions), compared with 157 ± 5 kb for genes in
coding-enriched categories. Much of this sequence may be non-
functional, but the surveys by Pollard et al. (10) and Prabhakar et al.
(11) treated noncoding sequences that are conserved across non-
human species and hence presumptively functional. Genes in non-
coding-enriched categories were associated with an average of 1,058
±50 bp of Pollard et al.’s sequences and 4,367±145 bp of Prabhakar
et al.’s sequences, versus937±67bpand3,732±180bp, respectively,
for genes in coding-enriched categories. These differences suggest
that some functions might have adapted more through noncoding
changes than through coding changes, in part because they are
affectedbymorenoncodingsequencesper gene, constitutinga larger
“target” for mutations. Length variation is clearly not the only rele-
vant factor, however. Some categories associated with longer non-
coding sequences are not enriched with positive selection across
noncoding surveys, for example, the GO biological processes “pos-
itive regulation of developmental process” and “cyclic-nucleotide-
mediated signaling” (21). Moreover, genes in noncoding-enriched
categories also have longer coding sequences than genes in coding-
enriched categories (average, 1,974 ± 22 bp vs 1,909 ± 31 bp).
As mentioned earlier, it has been argued that for genes active in

many contexts, noncoding changes are more likely than coding
changes to be adaptive, because a noncoding mutation is more
likely to enhance a gene’s function in one context without
degrading it in other contexts, given that gene expression in dif-

ferent contexts is often governed by distinct noncoding sequences
(3–5, 19). It follows that if most genes with certain functions are
active in many contexts, then adaptation of these functions should
occurmainly via noncoding changes. Although expression inmany
tissues need not entail conflicting demands in different contexts,
our results regarding evenness offer modest support for these
ideas. Very even genes, many of which presumably play important
roles in many contexts, have tended to undergo fewer adaptive
coding changes than very uneven genes, most of which presumably
play important roles in fewer contexts. This pattern does not
appear to hold for adaptive noncoding changes. (Conceivably, we
may have lacked statistical power to detect the pattern across
noncoding surveys; however, the pattern can be detected across
coding surveys even when only the smaller set of genes in sig-
nificantly enriched PANTHER and GO categories is analyzed.)
Moreover, genes in noncoding-enriched PANTHER and GO
categories have higher evenness scores on average than genes in
coding-enriched categories, although the difference is small
(average, 0.62 ± 0.0026 vs 0.59 ± 0.0037).
It also has been argued that selection is typically more efficient

on noncoding mutations than on coding mutations, because cod-
ing mutations are typically recessive, whereas noncoding muta-
tions are typically codominant with respect to gene expression,
although whether the latter are also typically codominant with
respect to organismal traits is unclear (2). This differential should
be diminished for mutations on the X chromosome, which is
hemizygous inmales, suggesting that theXmight be enriched with
positive selection on coding changes but not on noncoding
changes. The evidence regarding these ideas from the surveys
analyzed here is mixed (Table S10). Across both coding and
noncoding surveys, the X is significantly heterogeneous (Phet =
4.9 × 10−4 and 5.0 × 10−4), indicating appreciable discord among
the surveys. TheX is enriched in two of the three coding surveys (7,
8) but also in one of the three noncoding surveys (11).
A full understanding of which traits adapt mainly via coding

changes versus noncoding changes and why must await the
maturity of functional genomics. In particular, many more func-
tional annotations of noncoding sequences are needed. None-
theless, our current findings are important. At a minimum, they
strongly suggest that both coding and noncoding changes have
played important and distinctive roles in human adaptation. One
implication is that studying adaptive coding changes alone, which
has long been a major focus of research in evolutionary genetics,
can yield an incomplete and unbalanced picture of adaptive evo-
lution, which can be significantly extended and enriched by studies
of adaptive noncoding changes. More such studies in nonhuman
species are needed to reveal which of the patterns that we have
found in humans exist in other species as well.
The finding that neural adaptation has occurred mainly via non-

coding changes is particularly important in view of the remarkable
cognitive innovations in the human lineage. It is consistent with the
hypothesis advanced 35 years ago that the major phenotypic differ-
ences between humans and chimpanzees reflect changes in gene
regulation rather than in protein structure (22). Noncoding sequen-
ces flagged by the surveys analyzed here and associated with neural
development and function are excellent candidates for research into
the genetics and evolution of human cognition.

Methods
Surveys and Scores. To analyze the noncoding surveys (10–12), we associated
each noncoding sequence treated in those surveys with the nearest coding
sequence in the University of California Santa Cruz Known Genes collection
(23). The survey of Pollard et al. (10) includes sequences overlapping known
coding sequences, which we excluded from our analyses. For the surveys of
Pollard et al. (10) and Prabhakar et al. (11), some genes were associated with
multiple sequences, in which case we combined the P values of Pollard et al.
or Prabhakar et al. for the sequences into a P value for the gene using the
method of Simes (24); the P value of the gene is the minimum Benjamini-
Hochberg–adjusted P value of the sequences. This is important, because
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although these surveys have no a priori bias regarding function, genes with
certain functions tend to be larger ormore isolated and hence associatedwith
more sequences treated in these surveys (21). If this phenomenon were not
accounted for when converting sequence scores into gene scores, such func-
tions would tend to be enriched with high-scoring genes purely by chance, in
the absence of positive selection or any other evolution-accelerating process.
Simes’s method avoids this potential bias, because the more sequences are
associated with a gene, the more their P values are discounted.

No sequence-based test for positive selection is perfectly reliable. Along
with false-positives occurring purely by chance, nonadaptive processes can
mimic signatures of positive selection (10, 13–15). An important motivation
for our analyses is that to a substantial extent, different tests are sensitive to
different confounding factors (13–15). For example, the survey of Pollard
et al. (10) detected accelerated evolution in the human lineage relative to
several other lineages, assessing relative acceleration in a region of interest
with respect to a set of reference regions. Such acceleration might result
from relaxation of negative selection or biased gene conversion (BGC), as
Pollard et al. discuss (10). In contrast, the surveys of Prabhakar et al. (11) and
Haygood et al. (12) assessed acceleration with respect to estimates of the
local rate of neutral evolution, which is unlikely to reflect relaxation of
negative selection or BGC (11, 12, 14, 15). Indeed, Haygood et al.’s null
model explicitly accommodates relaxation of negative selection, and these
authors found no evidence that BGC influenced their results (12).

Four of the six surveys are sensitive to positive selection in the human
lineage alone, but the surveys of Bustamante et al. (7) andNielsen et al. (8) are
sensitive to positive selection in the chimpanzee lineage as well. However, of
the patterns discussed here, only enrichment of the X chromosome is sup-
ported by these two surveys, but not by the coding survey of Kosiol et al. (9).

Table S1 provides more information about the surveys.

Functional Categories and Expression Domains. In each survey, we mapped as
many genes as we could first to UniProt (25) identifiers and then to PANTHER
(16) and GO (17) categories (excluding placeholder categories, e.g., “bio-
logical process unclassified”). For each category, we computed the rank-
biserial correlation, rrb, between the score for positive selection and mem-
bership in the category. These computations involved only genes that were
treated in the given survey and that we were able to map to at least one
category of the relevant kind. rrb measures the association between an
ordinal variable and a dichotomous variable (26); it is proportional to the
standard (Pearson) correlation coefficient between the ranks of the ordinal
variable and any two values, say 0 and 1, for the dichotomous variable. We
treated the score for positive selection as an ordinal variable rather than as a
continuous variable, to avoid issues that might arise from the diversity of

scoring functions among the surveys. For each category, we estimated the SE
of rrb as the SD of rrb over 1,000 bootstrap replicates per survey.

Similarly, in each survey wemapped as many genes as we could to Novartis
(18) probes. We took means over multiple arrays per tissue and maxima over
multiple probes per gene to obtain the expression of a gene in a tissue. For
eachgene,we computed specificity andevenness scores, as illustrated in Fig. 2,
but in the context of all 73 noncancerous tissues in the atlas. For each tissue,
we computed the rank (Spearman) correlation, rr,s, between the score for
positive selection and specificity to the tissue. We also computed the rank
correlation, rr,e, between the score for positive selection and evenness across
all tissues. We estimated the SEs of rr,s and rr,e from 1,000 bootstrap replicates
per survey.

Fixed-Effects Meta-Analyses. Our analyses of patterns across surveys are
essentially standard fixed-effects meta-analyses (27). Given a category and a
set of surveys, the weighted mean of rrb is ∑i wi (rrb)i, where wi = [1/SE(rrb)i]

2/
∑k [1/SE(rrb)k]

2. It follows that the SEM is 1/{∑i[1/SE(rrb)i]
2}1/2. We tested

mean rrb = 0 by comparing (mean rrb)/(SEM rrb) to the standard normal
distribution; we denote the upper and lower one-tailed P values by Penr and
Pdep, respectively. Under the null hypothesis, (rrb)i = (rrb)k for every i and k,
the heterogeneity statistic ∑i wi [(rrb)i − mean rrb]

2 has approximately a χ2

distribution with 2 degrees of freedom, assuming three surveys; we denote
the χ2 P value by Phet. Analogous formulas and procedures apply to mean rr,s
and mean rr,e.

Random-Effects Meta-Analyses. Fixed-effects meta-analyses are sometimes
criticized on the grounds that homogeneity across studies is unrealistic, and
Phet is an unsatisfactory indicator (28). Tables S3, S4, S5, S6, S7, S8, and S9 also
present results from a random-effects approach (28). Here mean rrb is as
above but with wi = ni/∑k nk, where ni is the number of categorized genes in
the ith survey. More importantly, rrb is considered a random variable over
surveys, the SEM is {∑i ni [(rrb)i − mean rrb]

2/3∑k nk}
1/2, and the test of mean

rrb = 0 is a t test with 2 degrees of freedom, assuming three surveys. Again,
analogous formulas and procedures apply to mean rr,s and mean rr,e.

Although thefixed- and random-effects results differ in detail, they display
the same major patterns. For example, according to both sets of results, the
PANTHER biological processes “neurogenesis,” “other neuronal activity,” and
“muscle development” are enriched with positive selection across noncoding
surveys; “immunity and defense,” “chemosensory perception,” and “sper-
matogenesis and motility” are enriched across coding surveys; and “T cell–
mediated immunity” is enriched across both noncoding and coding surveys.
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