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Huntington’s disease (HD), an incurable neurodegenerative disor-
der, has a complex pathogenesis including protein aggregation and
the dysregulation of neuronal transcription and metabolism. Here,
we demonstrate that inhibition of sirtuin 2 (SIRT2) achieves neuro-
protection in cellular and invertebrate models of HD. Genetic or
pharmacologic inhibition of SIRT2 in a striatal neuron model of HD
resulted in gene expression changes including significant down-
regulation of RNAs responsible for sterol biosynthesis. Whereas
mutant huntingtin fragments increased sterols in neuronal cells,
SIRT2 inhibition reduced sterol levels via decreased nuclear traffick-
ing of SREBP-2. Importantly, manipulation of sterol biosynthesis at
the transcriptional level mimicked SIRT2 inhibition, demonstrating
that themetabolic effects of SIRT2 inhibition are sufficient to dimin-
ish mutant huntingtin toxicity. These data identify SIRT2 inhibition
as a promising avenue for HD therapy and elucidate a uniquemech-
anism of SIRT2-inhibitor-mediated neuroprotection. Furthermore,
the ascertainment of SIRT2’s role in regulating cellular metabolism
demonstrates a central function shared with other sirtuin proteins.
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Polyglutamine (polyQ) expansions in the HD gene product,
huntingtin (Htt), cause a slowly progressive and fatal neu-

rological phenotype associated with neuronal loss in the cortex
and striatum (1). The relative contributions of proposed etiologic
mechanisms involving multiple biochemical and cellular path-
ways remain uncertain (2, 3). In the last decade, cell and animal
models recapitulating distinct features of Huntington’s disease
(HD) pathology have been generated and successfully employed
in preclinical drug trials (4–7).
Sirtuins comprise a family of protein deacetylase enzymes that

have been shown to impact longevity in a number of eukaryotic
species (reviewed in ref. 8). Enhancement of organismal longevity
and other health-promoting effects of sirtuins have frequently
been attributed to the regulation of metabolism. The attractive
properties of sirtuins in lower organisms have ignited intensive
investigation of their biological and therapeutic roles inmammals,
particularly for the purposes of combating metabolic and age-
dependent human diseases. There are seven known mammalian
sirtuins, SIRTs 1–7, the most studied of which is SIRT1, a close
structural and functional homolog of Sir2 found in yeast and
Drosophila. Another mammalian sirtuin, SIRT2, has been shown
to be a tubulin deacetylase and an important regulator of cell
division and myelinogenesis (9–11). However, roles for SIRT2 in
neurons, a nondividing cell type, have remained largely unknown.
Previous work from our group has shown that chemical inhib-

itors of SIRT2 change protein inclusion body characteristics and
increase neuronal survival in models of Parkinson’s disease (12).
Nonetheless, elucidation of the full spectrum of cellular and

molecular mechanisms underlying SIRT2-inhibitor-mediated
neuroprotection and whether SIRT2 inhibition would be benefi-
cial in other neurodegenerative conditions remained to be
determined. This study reveals a unique role for SIRT2 in the
control of neuronal metabolism and shows the potential benefit of
targeting this sirtuin pharmacologically to treat HD.

Results
Genetic or Pharmacologic Inhibition of SIRT2 Is Neuroprotective in
Models of HD. Given previous evidence that SIRT2 inhibitors
ameliorate the neurodegenerative phenotypes of cell and animal
models of Parkinson’s disease (12), we asked whether a similar
effect could be observed in models of HD. Thus, we first eval-
uated the recently identified selective and structurally diverse
SIRT2 inhibitors AGK2 and AK-1 (12) for their disease-rescuing
effects in Drosophila melanogaster expressing N-terminal Htt
fragments (N-ter Htt) from human HD exon1 (Httex1) (5, 13).
Freshly eclosed flies expressing Httex1 Q93 in all neurons were
fed medium supplemented with AK-1 or AGK2, and neuronal
degeneration was assessed 7 days later by using the pseudopupil
technique [which scores the number of surviving rhabdomeres
(photoreceptor neurons) per ommatidium]. Both inhibitors
achieved significant neuroprotection in HD flies at 10 μM (Fig.
1A), improving the number of rhabdomeres from 5.2 to 5.5 and
5.6, respectively. Genetic ablation of SIRT2 also rescued Httex1
Q93-induced photoreceptor neuron death in a dose-dependent
manner (Fig. 1 B and C; ref. 13).
We next tested whether SIRT2 inhibitors would modulate the

neuronal dysfunction associated with expression of N-ter Htt in
Caenorhabditis elegans touch receptor neurons (7). Both AGK2
and AK-1 showed significant rescue of mutant polyQ cytotoxicity
as measured by improvement in the worms’ defective response to
a light touch at the tail (Fig. 1 D and E). The improvements of
touch response by AGK2 and AK-1 were not attributable to
decreased Htt transgene expression (96 ± 12 and 133 ± 85% of
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control for AGK2 and AK-1, respectively) and were specific to
the mutant Htt fragment-expressing animals (128Q vs. 19Q).
These results show significant disease-modulating effects of
SIRT2 inhibitors in two in vivo models of polyQ disease patho-

genesis, warranting further study of SIRT2 as a therapeutic
target in HD.
We next examined the effects of SIRT2 inhibition in a primary

neuron model of HD. The first 171 amino acids of Htt containing
a stretch of 18 or 82 polyglutamines (nonpathologic Htt171-18Q
or mutant Htt171-82Q, respectively) was expressed by lentiviral
transduction of primary striatal neurons, whose function and
survival was monitored by NeuN-positive cell counts (14). A
significant dose-dependent rescue of Htt171-82Q neurons was
observed with AK-1 treatment (Fig. 2A). AGK2 treatment also
significantly rescued striatal neurons from mutant Htt toxicity
(Fig. 2C). Because we had previously observed that SIRT2 in-
hibitors dramatically modulate the formation of alpha-synuclein
protein inclusions (12) and soluble and aggregated polyQ proteins
showed an increased affinity to acetylated α-tubulin in a PC12 cell
model of HD (15) (Fig. S1 A–D), we assessed whether SIRT2
inhibition might also alter mutant Htt inclusion characteristics.
Treatment with AK-1 and AGK2 significantly reduced the pres-
ence of mutant Htt inclusions (Fig. 2 B and D). However, in
contrast to effects of SIRT2 inhibition on alpha-synuclein inclu-
sions, no effects on Htt inclusion size or morphology were
observed (Fig. S1 E–O). The efficacy of two chemically distinct
inhibitors against Htt171-82Q aggregation and toxicity in striatal
neurons supports the argument that SIRT2 inhibition prevents
HD-related neurodegeneration.
To further rule out off-target effects of our compounds, we

used genetic approaches to validate the neuroprotective effects
of SIRT2 inhibition. First, we showed that overexpression of
wild-type SIRT2 (SIRT2WT) counteracted the neuroprotection
of AK-1 (Fig. 2E). Second, we demonstrated that expression of a
dominant negative, deacetylase-deficient SIRT2 mutant that
diminishes cellular SIRT2 activity (SIRT2H150Y) (Fig. S2B) also
rescued primary striatal neurons from Htt171-82Q toxicity
(Fig. 2F) and reduced the number of mutant Htt inclusions (Fig.
2G). These data strongly support the perspective that SIRT2
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Fig. 1. Neuroprotective effects of SIRT2 inhibitors in invertebrate models of
HD. (A) AGK2 and AK-1 decrease the degeneration of light-sensing rhab-
domeres in the Drosophila eye. *, P < 0.02 (for 10 μM AGK2 or AK-1,
respectively). (B and C) Heterozygous and homozygous deletion of Sirt2
shows a dose-dependent reduction in the Drosophila model of HD. AK-1 (D)
and AGK2 (E) rescued the defective touch response in C. elegans expressing
polyQ N-ter Htt fused to CFP in touch receptor neurons. (*, P < 0.05).
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Fig. 2. SIRT2 inhibition protects against Htt171-82Q toxicity in primary striatal neurons. (A) As shown previously, Htt171-82Q (black bar) exhibits toxicity
toward striatal neurons as compared with Htt171-18Q (white bar). AK-1 rescued Htt171-82Q-expressing cells in a dose-dependent manner (at concentrations
of 1, 2, and 4 μM) (A) and significantly reduced the number of mutant Htt positive inclusions (B). AGK2 also rescued striatal neurons from Htt171-82Q toxicity
(C) and significantly reduced the number of inclusions (D). Overexpression of SIRT2WT abrogates neuroprotection by AK-1 (E). A lentiviral vector encoding CFP
is used as a coinfection control. A dominant negative deacetylase mutant SIRT2H150Y significantly decreases Htt171-82Q toxicity in primary striatal neurons (F)
and also significantly reduced the number of inclusions (G). A lentiviral vector encoding CFP is used as a coinfection control (* P < 0.05).
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inhibition accounts for the observed AK-1- and AGK2-mediated
neuroprotection.

SIRT2 Is Not Overexpressed in HD. Because distinct changes in RNA
and protein expression have been associated with mutant Htt
toxicity (3), we next explored whether a pathological increase in
SIRT2 might be the disease-related effect targeted by SIRT2
inhibition. Because previous descriptions of the expression of
SIRT2 in the mammalian brain showed it to be localized pri-
marily to oligodendrocytes (11, 16), we first verified SIRT2
expression in neurons, where mutant Htt’s effects are greatest.
Mouse brain sections showed extensive colocalization of SIRT2
and CNPase (2′,3′-cyclic nucleotide 3′-phosphodiesterase) im-
munoreactivities, including in white matter bundles within the
striatum, in concordance with the reported localization of SIRT2
in oligodendrocytes (Fig. S3A), but we also observed colocaliza-
tion of SIRT2 immunoreactivity with the neuronal marker NeuN
in cortical and striatal neurons (Fig. S3 B and C). Furthermore,
Western blots also detected ≈43 and ≈37 kDa anti-SIRT2-
immunoreactive bands in neuron-like cell lines, mouse cerebral
cortex, and rat primary neurons (Fig. S3 D–F). However, equiv-
alent expression and localization of SIRT2-immunoreactive spe-
cies were observed in both normal and HD model conditions
[wild-type and transgenic HD (R6/2) mice and Htt171-18Q- and
Htt171-82Q-expressing striatal neurons] (Fig. 3 B–D). Thus, we
concluded that SIRT2 is present in cortical and striatal neurons
but is not up-regulated in HD.

Inhibition of SIRT2 Down-Regulates Genes Involved in Sterol Bio-
synthesis. The known histone deacetylase activity (17), nucleo-
cytoplasmic shuttling (9, 18, 19), and experimentally verified
neuronal expression of SIRT2 (see above) led us to hypothesize
that SIRT2 might regulate neuronal transcription; we therefore
postulated that modulation of neuronal gene expression might
be the cellular mechanism of SIRT2 inhibitor-mediated neuro-
protection. Mutant Htt is known to wield major effects on steady-
state mRNA levels through either direct or indirect transcrip-
tional regulation (20). Primary neurons expressing mutant Htt
fragments faithfully recapitulate HD-related changes in RNA
expression (21) and, thus, provide a suitable model in which to
evaluate modulation of gene expression by SIRT2 inhibition. As
expected, Htt171-82Q expression in striatal neurons resulted in
significant gene expression effects as compared with Htt171-18Q-
expressing cells (116 decreases and 36 increases by criteria of
FDR P < 0.05; Dataset S1). However, these effects remained
globally uncorrected by SIRT2 inhibitor treatment (Fig. S4 and
Dataset S1).
We next assessed whether other gene regulatory effects might

account for SIRT2-mediated neuroprotection. Interestingly, short-
term treatment with SIRT2 inhibitor AK-1 produced large statisti-
cally significant changes in RNA expression in untransduced,
Htt171-18Q- and Htt171-82Q-expressing neurons. To define the
functional effects of SIRT2-related gene regulation, we assessed
which biological pathways were represented by genes responding
to SIRT2 inhibition. Strikingly, molecular pathway analysis of
SIRT2-regulated genes according to Gene Ontology classification
showed highly significant overrepresentation ofmetabolic cascades,
the most prominent of these being decreased expression of genes
associated with sterol biosynthesis (Fig. 3A and Dataset S2).
Although these findings are consistent with previous data impli-
cating other sirtuins in cellular metabolism (8), they are surprising
and unique with respect to the previously known roles of SIRT2.
These data raised the intriguing possibility that the cellular neuro-
protective mechanism of SIRT2 inhibition might be the negative
regulation of sterol production. We confirmed the microarray
results in new samples of striatal neurons treated with AK-1 and
AGK2; these assays reproduced the down-regulation of cholesterol
biosynthetic genes (Fig. S5 A and C) and also showed a significant

decrease in the levels of sterols (cholesterol and cholesteryl esters;
see Materials and Methods) (Fig. S5 B and D). These data demon-
strate that AK-1- and AGK2-mediated neuroprotection is corre-
lated with the negative regulation of sterol biosynthesis.
We next asked whether the metabolic regulation mediated by

AK-1 and AGK2 was specifically attributable to their inhibition of
SIRT2.We therefore assessed whether inhibition of SIRT2 via the
overexpression of the deacetylase-deficient SIRT2H150Y mutant
would result in the same down-regulation of sterol biosynthesis
genes and sterol levels. Although overexpression of wild-type
SIRT2 had no effect on sterol biosynthesis, SIRT2H150Y sig-
nificantly decreased sterol levels and RNAs encoding cholesterol
biosynthetic enzymes (Fig. S5 E and F). The fact that genetic
manipulation of SIRT2 activity reproduces the gene regulatory
effects of SIRT2-targeting small molecules substantiates the on-
target effects of these inhibitors.Moreover, these data convincingly
demonstrate a role of SIRT2 in regulating cellular metabolism.

SIRT2 Inhibition Reduces polyQ-Induced Cholesterol Dyshomeostasis.
The correlation of decreased sterol biosynthesis and neuro-
protection in our experiments raised the possibility that the
negative regulation of sterol production by SIRT2 inhibitors
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directly opposed a toxic dysregulation of sterol homeostasis by
Htt171-82Q. Moreover, previous literature has also described
effects of mutant Htt on sterol-related pathways (22, 23).
Therefore, we examined the effects of mutant Htt fragments on
sterol content in our primary striatal neuron model of HD.
Indeed, Htt171-82Q expression increased cellular sterol levels
(cholesterol and cholesteryl esters; see Materials and Methods)
compared to CFP or Htt171-18Q controls (Fig. 3B). Consistent
with the previous results, AK-1, AGK2, and SIRT2H150Y were
able to diminish sterol species in Htt171-82Q-expressing neurons
(Fig. 3 B–D). These results support the model that polyQ-induced
sterol dyshomeostasis contributes to HD-related neurotoxicity,
whereas inhibition of SIRT2 down-regulates sterol biosynthesis
and abates this toxicity.

SIRT2-Mediated Effects Are Driven by Extranuclear Events. Our immno-
cytochemical studies (Figs. S2A and (S3 A–C) had shown that
neuronal SIRT2 was localized to both nuclear and extranuclear
compartments. Based on the gene regulatory effects of SIRT2
inhibition, we postulated that the observed neuroprotective and
gene regulatory effects involved direct nuclear actions. We there-
fore overexpressed SIRT2 variants with nuclear import and export
mutations to explore this question. Counter to our prediction,
however, nuclear targeting of SIRT2 negated its ability to block
neuroprotectionbyAK-1,whereas extranuclear targetingefficiently
antagonized AK-1’s effect (Fig. S6 A and B). Likewise, cellular
sterol levels were increasedby extranuclear comparedwith nucleus-
targeted SIRT2 (Fig. S6C). These results show that both the neu-
roprotective and metabolic effects of SIRT2 inhibition are medi-
ated by cellular events that occur in extranuclear compartment(s).

SIRT2 Regulates the Nuclear Trafficking of SREBP-2. We next inves-
tigated the mechanism by which SIRT2 might regulate sterol bio-
synthesis. Visualization of gene networks with Ingenuity Pathway
Analysis showed that many of the genes down-regulated by AK-1
were all controlled by a common transcription factor: the sterol
response element binding protein 2 (SREBP-2); we therefore
hypothesized that SREBP-2 might be an important mediator of
SIRT2-related neuroprotection. SREBP-2 activity is known to be
controlled by its necessary translocation from the endoplasmic
reticulum to the nucleus, where it can bind to SRE enhancer ele-
ments in DNA and increase cholesterol biosynthesis. Thus, we
tested whether SIRT2 activity regulated the nuclear trafficking of
SREBP-2. Indeed, chemical inhibition of SIRT2 with AK-1 or
AGK2 led to a reduction in the nuclear compartmentalization
of SREBP-2 (Fig. 4A). Furthermore, overexpression of wild-type
SIRT2 (or extranuclear SIRT2) increased the percentage of nu-
clear SREBP-2 labeling in primary neurons, whereas SIRT2H150Y

(or nuclear SIRT2) had the opposite effect (Fig. 4B and Fig. S7).
Combined with the observed down-regulation of a large set of
known SREBP-2 target genes and decreased cellular sterol levels,
these results identified SREBP-2 as a crucial mediator of the effects
of SIRT2 on metabolism.

Metabolic Regulation via SREBP-2 Inhibition Conveys Neuroprotection.
Although the above results show that down-regulation of sterol
biosynthesis correlates with SIRT2-inhibitor-mediated neuro-
protection, they do not establish causality. Therefore, the remain-
ing question to be addressed was whether the negative regulation
of SREBP-2 by SIRT2 inhibition was sufficient to achieve neuro-
protection. We tested this hypothesis by expressing dominant-
negative (SREBP-2NEG) versus constitutively active SREBP-2
(SREBP-2ACT) mutants in cultured neurons (Fig. S8 A–D) and
assessed their effects on polyQ toxicity. Consistent with our
hypothesis, the dominant-negative SREBP-2 conveyed significant
neuroprotection toHtt171-82Qcells (Fig. 4C) but had no effect on
the number of mutant Htt-positive inclusions (Fig. S8E). Con-
versely, the constitutively active SREBP-2 enhanced polyQ tox-

icity (Fig. 4D). Moreover, the neuroprotective effect of AK-1,
AGK2, and SIRT2H150Y was circumvented by addition of con-
stitutively active SREBP-2, which is not targeted to the endo-
plasmic reticulum (Fig. S8 F–H). These data demonstrate that the
regulation of metabolism is an important mechanism of the neu-
roprotective activity conveyed by SIRT2 inhibitors.

Discussion
SIRT2 Demonstrates Neuroprotection in Models of HD. Previously we
demonstrated that SIRT2 inhibition prevented neurodegeneration
in models of Parkinson’s disease (12). Here, we further validate
that our chemical SIRT2 inhibitors mediate neuroprotection
through on-target activities and extend the potential applications
for such inhibitors to Huntington’s disease, another fatal neuro-
degenerative disorder. We also report a breakthrough discovery
regarding the metabolism-related mechanism(s) through which
SIRT2 inhibition acts by elucidation of its gene regulatory effects.
SIRT2 inhibition by either genetic or chemicalmeans resulted in

a decrease in Htt inclusion accumulation and increased neuronal
viability. The recapitulation of SIRT2 inhibitor-mediated neuro-
protection through negative regulation of sterol biosynthesis and
the blockade of neuroprotection by circumventing this regulation
demonstrate that this metabolic effect contributes significantly to
Htt pathology. Previous studies have also assessed mutant Htt’s
effects on sterol homeostasis. These analyses reported the accu-
mulation of cellular cholesterol attributed to the binding of mutant
Htt to caveolae (23), altered levels of cholesterol biosynthesis-
related RNAs and sterols, including decreased 24-OH-cholesterol
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(22, 24, 26, 27), and a direct (albeit weak) interaction with SREBP-
2 (28). The evidence available to date does not yet provide a
complete understanding of mutant Htt’s effects on sterol homeo-
stasis, however. Although differences in assay measures may ac-
count for some heterogeneity in findings, we believe that a more
comprehensive explanation resides in the fact that themechanisms
of brain sterol regulation, distinct contributions of different cell
types, and varying effects depending on nutrient status still remain
to be elucidated. Our working hypothesis is that a plurality of
sterol-pathway-related mitigatory effects exists and that the bal-
ance of these activities and specific nutrient conditions determines
the net outcome. This perspective is consistent with recent findings
by Valenza and Cattaneo demonstrating complex changes in sterol
biosynthesis and compensatory homeostasis in the brains of R6/2
mice (24). Given the generally accepted importance of sterol reg-
ulation to brain function, it seems likely that a more detailed un-
derstanding of the mechanisms of sterol-related neuroprotection
will allow important insights for HD therapy.

Unique Role of SIRT2 in the Regulation of Neuronal Cholesterol.Here
we provide strong evidence of a unique and important regulatory
function of the SIRT2 deacetylase in neuronal cells. Biological
pathway analysis indicated that prominent effects of SIRT2 com-
prise the regulation of genes controlling metabolism, including
sterol and fatty acid biosynthesis, carbohydrate metabolism, and
purine metabolism (Dataset S2). An apparent role for SIRT2 in
regulating lipid and sterol biogenesis is consistent with its pre-
viously reported localization in oligodendrocytic myelin sheaths
(16) and role in adipocyte differentiation (29). Conversely, how-
ever, no previous studies implicate SIRT2 in the regulation of
cholesterol biosynthesis and, thus, the findings of this study moti-
vate further examination of SIRT2 in this role.
Studies of late have shown detrimental effects of cholesterol

accumulation in neurons and substantiate the potential benefit of
decreasing neuronal cholesterol (or other sterol species) as a
neuroprotective strategy. Although there has been ambivalent
evidence in the more distant past, a flurry of recent reports have
clarified the detrimental effects of cholesterol accumulation in
neurons (30–32). These studies are paralleled by evidence that
increased neuronal cholesterol presents a risk factor for Alz-
heimer’s and Parkinson’s diseases (33–35). Although debated, it
has also been proposed that neuronal cholesterol may be due to
instrinsic biosynthesis (36), rather than transport from extrac-
ellular sources. Moreover, other aspects of the regulation of
neuronal cholesterol homeostasis are also unique, such as the
important role of 24-OH-cholesterol and its biosynthesis by
CYP46A1. In fact, CYP46A1 has been deemed amaster regulator
of neuronal cholesterol biosynthesis based on the evidence that
24-OH-cholesterol has a more significant role than the SREBP
cleavage-activating proteins (SCAPs 1 and 2) in regulating the
nuclear translocation of SREBP-2 in this cell type (37, 38).

MolecularMechanismsof SIRT2-RelatedMetabolic andNeuroprotective
Activities. Although we have established that SIRT2 modulation
controls the nuclear trafficking and transcriptional activity of
SREBP-2, the specific molecular determinants of this regulation
remain to be elucidated. A priori, the assumption would be that the
deacetylation of a SIRT2 substrate (or substrates) is responsible for
this effect. It is well established that α-tubulin is a substrate of both
SIRT2 and its cytoplasmic interacting protein HDAC6 and, thus,
inhibition of SIRT2–HDAC6 complexes might affect microtubule-
dependent trafficking.Therefore, it is plausible to propose α-tubulin
as the effector whose increased acetylation inhibits SREBP-2
translocation. Alternatively, other proteins, although not previously
named as SIRT2 substrates, would also comprise obvious candidate
effectors because of their known roles in the regulation of neuronal
cholesterol homeostasis. These candidates include SREBP-2 itself
or the proteins regulating the sequestration of SREBP-2 in the

endoplasmic reticulum, namely the SCAPs, the site 1 and 2 pro-
teases, andCYP46A1. Intriguingly, we note that both SREBP-2 and
CYP46A1 contain lysines with high context prediction scores for
acetylation (obtained using Prediction of Acetyation on Internal
Lysines [PAIL] [http://bdmpail.biocuckoo.org/prediction.php]).
Although we have provided evidence for the contribution of

decreased SREBP-2 activity in SIRT2 inhibitor-mediated neu-
roprotection, we have not ruled out parallel contributions of other
SIRT2-dependent effects. For example, increasing α-tubulin
acetylation could ameliorate HD pathogenesis by independent
mechanisms such as regulating mutant Htt aggregation or deg-
radation (39) or the transport of membranous vesicles, including
those containing BDNF (40). In fact, our observation that both
genetic and pharmacologic inhibition of SIRT2 leads to reduced
numbers of mutant Htt inclusions, whereas inhibition of SREBP-
2, although protective, does not alter inclusion numbers, further
supports the perspective that other SIRT2-dependent processes
may have independent mitigating effects.

Role of SIRT2 in the Regulation of Metabolism Draws Parallels to
Other Sirtuin Activities. The newly identified role of SIRT2 as a
regulator of metabolism in neurons establishes a previously
undisclosed function shared with other members of the sir2/
SIRT family (8). Roles for sir2 and SIRTs 1, 3, 4, 5, and 6 in the
control of cellular metabolism have been well established in
lower organisms and in nonneural mammalian tissues, respec-
tively (8). Previous data as well as those of the present study
suggest that sirtuin proteins comprise a complex network of
metabolic regulators whose activities are present in a number of
molecular pathways in a variety of tissues. Although we have
provided substantial evidence for SIRT2’s role in cholesterol
biosynthesis, the other potential metabolic activities suggested by
the pharmacogenomic profile of AK-1 remain to be determined.

Implications for Other Age-Related Diseases. Whereas increased
activity of cholesterol biosynthetic enzymes and cholesterol accu-
mulation generally occurs during aging, lower cholesterol levels
have been associated with peripheral and central benefits,
including increased lifespan and decreased amyloid accumulation
(41, 42). Because the brain is previously known to be less sensitive
to dietary modulation than peripheral tissues (36), it is particularly
interesting to consider unique ways to regulate brain cholesterol.
As shown in the present study, this regulation might be achieved
through SIRT2 inhibition, barring the remaining challenges of
developing brain-permeable small-molecule SIRT2 inhibitor
compounds and assessing potential complications of SIRT2
inhibition in nonneuronal cells (most notably, oligodendrocytes).
However, if SIRT2 also regulates cholesterol synthesis beyond the
nervous system, then even non-brain-permeable SIRT2 inhibitors
may be considered for the management of peripheral disorders
involving hypercholesterolemia or vascular disease. Thus, the
unique facets of SIRT2 activity identified in this report warrant
further study in a broader health-related context.

Materials and Methods
Detailed methods appear in the SI Materials and Methods. These include
Drosophila feeding and ommatidial analysis, drug evaluation in C. elegans,
antibodies and reagents, plasmids, lentiviral vectors, primary cultures, immu-
nocytochemistry, inclusion analysis, Western blot, mouse extract preparation,
immunohistochemistry, gene expression profiling, cholesterol assay, evalua-
tion of SREBP-2 compartmentalization and statistical analysis.
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