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Abstract

In the murine cerebral cortex, mammalian homologues of the Cux family transcription factors, Cux1 and Cux2, have been
identified as restricted molecular markers for the upper layer (II-IV) pyramidal neurons. However, their functions in cortical
development are largely unknown. Here we report that increasing the intracellular level of Cux1, but not Cux2, reduced the
dendritic complexity of cultured cortical pyramidal neurons. Consistently, reducing the expression of Cux1 promoted the
dendritic arborization in these pyramidal neurons. This effect required the existence of the DNA-binding domains, hence the
transcriptional passive repression activity of Cux1. Analysis of downstream signals suggested that Cux1 regulates dendrite
development primarily through suppressing the expression of the cyclin-dependent kinase inhibitor p27Kip1, and RhoA may
mediate the regulation of dendritic complexity by Cux1 and p27. Thus, Cux1 functions as a negative regulator of dendritic
complexity for cortical pyramidal neurons.
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Introduction

The Cux (also known as Cut and CDP) proteins are a family of

homeobox transcription factors identified in all metazoans and

implicated in the regulation of cell proliferation and differentiation

in many organisms (reviewed in reference [1,2]). In higher

vertebrates, two Cux genes, Cux1/CDP and Cux2, have been

identified [3,4,5]. The murine Cux1 is expressed in most tissues,

including the brain [6], while Cux2 is enriched primarily in the

nervous system [5]. In the mouse cerebral cortex, both Cux1 and

Cux2 are expressed in postmitotic pyramidal neurons of upper

cortical layers from embryonic stages to adulthood and in

precursor cells of the proliferative ventricular and subventricular

zones (VZ/SVZ) [7,8,9,10]. However, the function of Cux genes

in the mammalian central nervous system remains largely

unknown. Cux2 was reported to control the proliferation of

neural progenitor cells at the cortical SVZ area and the spinal

cord, although with opposite effects in these two regions [11,12].

Beyond the regulation of cell proliferation, the persistent

expression of Cux genes in postmitotic pyramidal neurons in

upper layers of the cortex suggests that they may have specific

functions in these differentiated cells [8,10].

Cortical pyramidal neurons have well-defined dendritic trees

[13]. Considering that Cut regulates the dendritic branching

patterns of Drosophila multidendritic da sensory neurons [14], we

examined the potential function of Cux proteins in the

development of dendritic trees of cortical pyramidal neurons.

We found that Cux1, but not Cux2, could regulate the dendritic

complexity of cultured cortical pyramidal neurons. The expression

of the cyclin-dependent kinase inhibitor, p27Kip1, was specifically

suppressed by Cux1, and co-expression of p27 with Cux1 could

compensate Cux1’s effect on dendritic arborization of cortical

pyramidal neurons. Furthermore, the small GTPase RhoA may

mediate the regulation of dendritic complexity by Cux1 and p27.

Thus, our results indicate that Cux1 can regulate dendritic

morphology of cortical pyramidal neurons.

Results

Cux1 can regulate dendritic morphology of cultured
cortical pyramidal neurons

To examine the function of Cux proteins in postmitotic cortical

pyramidal neurons, we cloned the Cux1 and Cux2 genes from the

rat brain and transiently transfected them into cortical neurons

after culturing in vitro for 3 days (DIV3). Comparing to cells

transfected with the control vector, Cux1-overexpressing pyrami-

dal neurons showed a reduced dendritic complexity (Figure 1A).

At DIV5 and DIV6, the dendritic arborization of Cux1-tansfected

cells was markedly reduced, as indicated by the total dendritic

branch length (Length; Figure 1B, D) and the total dendritic

branch tip number (Branch Tips; Figure 1C, E). The dendritic

complexity was not significantly changed at DIV4 (Figure 1D–E),

suggesting that the regulation of dendritic complexity by Cux1 is

not a fast process. In contrast to Cux1, the dendritic complexity of

Cux2-transfected cells was not affected at all time points examined

(Figure 1). Together, these data showed that increasing the

intracellular level of Cux1, but not Cux2, could reduce the

dendritic complexity of cortical pyramidal neurons in culture.
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To further examine the function of Cux1, we designed two

RNA-interference (RNAi) constructs targeting different regions of

the Cux1 ORF. Consistent with previous reports [15,16], both of

the RNAi constructs, Cux1-RNAiA and Cux1-RNAiB, could

effectively down-regulate Cux1 expression (Figure 2A). When we

transfected the RNAi constructs into cortical pyramidal neurons in

culture, they increased the complexity of dendritic arborization

(Figure 2C–E). In contrast, RNAi-knockdown of Cux2 did not

affect dendritic arborization of cortical pyramidal neurons in

culture (Figure 2B, F, G). Therefore, Cux1 has a regulatory effect

on the dendritic morphology of cortical pyramidal neurons.

Transcriptional repressor activity of Cux1 is required in
regulating dendritic morphology

Cux1 is generally regarded as a transcriptional repressor with

four conserved DNA-binding domains: three Cut repeats (CR1 to

CR3) and one Cut homeodomain (HD) (Figure 3A). To examine

whether transcriptional repressor activity of Cux1 is required to

regulate dendritic morphology of cortical pyramidal neurons, we

constructed three different deletions of Cux1: Cux1-DB contained

all four DNA-binding domains, while Cux1-NT and Cux1-CT

referred to the remaining N- and C-terminal fragments,

respectively (Figure 3A). Comparing to the control, Cux1-NT

and Cux1-CT did not reduce the dendritic complexity of cortical

pyramidal neurons in culture (Figure 3B–D). In contrast,

overexpressing Cux1-DB resulted in a significant decrease in

dendritic complexity, comparable to the effect of the full-length

Cux1 (Figure 3B–D). In addition, we constructed Cux1-CR1CR2

and Cux1-CR3HD, each has half of the four DNA-binding

domains (Figure 3A). Both deletions could decrease the complexity

of dendritic arborization (Figure 3B–D). We noted that all Cux1

deletions could be appropriately expressed and localized to the cell

nucleus or cytoplasm (Figure 3E). To eliminate the possibility that

the subcellular localization rather than the DNA-binding activity is

required, we added nuclear localization signal (NLS) to Cux1-NT,

which effectively drove the expression of Cux1-NT into the

nucleus (Figure 3E). However, this construct could not affect the

dendritic arborization (Figure 3B–D). These results suggest that

DNA-binding domains, hence the passive repression activity, is

required for Cux1 to control the dendritic morphology of cortical

pyramidal neurons.

Figure 1. Expression of Cux1, not Cux2, simplifies the dendritic
morphology of cortical pyramidal neurons in culture. (A)
Representative examples of transfected neurons at DIV6. Scale bars:
50 mm. (B–C) The dendritic morphology of transfected cells at DIV6 was
measured by Length (B) and Branch Tips (C). Data shown are mean 6
SEM (n$120 for each condition). ** P,0.01, Student’s t test. (D–E) Time-
course of dendritic complexity change after transfection. Time points
examined were DIV4, 5, and 6 (n$30 for each condition). Data are
shown in 3-D column view. ** P,0.01, Student’s t test.
doi:10.1371/journal.pone.0010596.g001

Figure 2. Down-regulation of Cux1 by RNAi increases the
dendritic complexity of cortical pyramidal neurons. (A–B) RT-
PCR analysis of Cux expression level following RNAi treatments. Two
specific RNAi each designed to different regions of ORF for Cux1 and
Cux2, Cux1/2-RNAiA and -RNAiB, could result in the down-regulation of
their expression levels. Representative images are semi-quantitative PCR.
Quantitative results are measured by real-time PCR. Data shown are
mean 6 SEM (n = 3 independent experiments). * P,0.05, ** P,0.01,
paired t test. (C–E) Increase of pyramidal neuron dendritic complexity
after transfection of Cux1-RNAi plasmids. Representative cells are shown
in (C). Scale bars: 50 mm. Data shown are mean 6 SEM (n$30 for each
condition). ** P,0.01, Student’s t test. (F–G) Dendritic morphology of
pyramidal neurons after transfection of Cux2-RNAi plasmids. Data shown
are mean 6 SEM (n$30 for each condition). P.0.05, Student’s t test.
doi:10.1371/journal.pone.0010596.g002
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p27 is required for Cux1 to regulate dendritic
morphology

Cux1 functions as a transcriptional repressor for several genes in

regulating cell proliferation and differentiation [1,2]. Among

them, the cyclin-dependent kinase inhibitors p21Cip1, p27Kip1, and

the neural cell adhesion molecule (NCAM) were reported to

regulate cytoskeleton dynamics in postmitotic neurons and were

possibly required by Cux1 to regulate dendritic morphology of

cortical pyramidal neurons [17,18]. First, RT-PCR experiment

found very low levels of p21 in our cultured cortical neurons at

DIV3 and in the E16 (embryonic day 16) cortical tissue, unlike the

high level of p21 in the P1 (postnatal day 1) thalamus (Figure 4C).

Therefore, it’s difficult to examine the effect of Cux1 overexpres-

sion on p21 in cortical neurons. Next, we analyzed the regulation

of p27 and NCAM by Cux proteins in cortical neurons with RT-

PCR. Both Cux1 and Cux2 could down-regulate the expression of

NCAM (Figure 4A). In contrast, p27 was down-regulated by Cux1

only (Figure 4A). The down-regulation of p27 by Cux1, but not

Cux2, was further confirmed by Western blotting (Figure 4B).

If one gene is repressed by Cux1 and required for Cux1 to

regulate dendritic morphology, it should increase the dendritic

complexity when overexpressed in cortical pyramidal neurons. We

thus examined the effects of overexpressing p21, p27, and one of

the three NCAM isoforms, NCAM180, which is predominantly

expressed in neurons [19], on the dendritic morphology of cortical

pyramidal neurons in culture. Comparing to the control,

overexpression of p21 reduced the dendritic complexity, while

overexpression of p27 and NCAM180 increased the dendritic

complexity (Figure 4E–F). Thus, p27 and NCAM180 have

stronger possibility than p21 to be the downstream mediator for

Cux1 in controlling the dendritic morphology of cortical

pyramidal neurons.

To investigate whether p27 and NCAM mediate the

regulation of dendritic morphology by Cux1, we co-transfected

p27 or NCAM180 with Cux1 in cultured cortical pyramidal

neurons. When NCAM180 and Cux1 were co-expressed, the

dendritic complexity was still decreased, and it did not have

significant difference with Cux1 overexpression alone

Figure 3. Domain analysis of Cux1’s effect on dendritic complexity of cortical pyramidal neurons. (A) Domain structure of Cux1 protein.
Constructed deletions of Cux1 are indicated. (B) Representative cells after transfection of different deletions of Cux1. Scale bars: 50 mm. (C–D)
Quantification of the dendritic complexity for cells transfected with various Cux1 deletions. Data shown are mean 6 SEM (n$30 for each condition).
** P,0.01, ANOVA SNK test. (E) Localization of Cux1 deletions in cortical pyramidal neurons in culture. Cux1 and Cux1-deletions were tagged with
GFP to reveal their subcellular localization. Propidium iodide (PI) was used to indicate the nuclei. DIC: differential interference contrast. Scale bar:
50 mm.
doi:10.1371/journal.pone.0010596.g003
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(Figure 4G–H). In contrast, co-expression of p27 with Cux1

increased the dendritic arborization level, and the dendritic

complexity was significantly different from overexpression of

Cux1 alone (Figure 4G–H). Thus, p27, but not NCAM, can

compensate the reduction of dendritic arborization caused by

Cux1 overexpression.

To further examine whether p27 is required for Cux1 to

regulate dendritic morphology, we constructed two RNAi

constructs for p27, p27-RNAiA and p27-RNAiB, which were

reported to be effective [20,21], and transfected them into

cultured cortical pyramidal neurons. Both of them decreased the

dendritic complexity (Figure 5C–D). This effect followed similar

time-course with Cux1-overexpression results (Figure 5E–F).

RNAi treatments of Cux1 increased the p27 expression level

(Figure 5A–B). Furthermore, p27-RNAiA could prevent the

increase of dendritic complexity caused by Cux1-RNAiA

(Figure 5G–H). Finally, consistent with a direct suppression of

p27 expression by Cux1, chromatin immunoprecipitation (ChIP)

analysis showed that Cux1 directly bond to the p27 promoter in

cultured cortical neurons, while Cux2 had a much weaker affinity

to the p27 promoter (Figure 4D). In summary, these results

suggest that p27 is a direct target of Cux1 and is required by

Cux1 to regulate dendritic morphology in cortical pyramidal

neurons.

Figure 4. p27 is required for Cux1 to regulate dendritic
morphology of cortical pyramidal neurons. (A) RT-PCR analysis
of p27 and NCAM expression levels after overexpression of Cux
proteins. Representative images are from semi-quantitative PCR.
Quantitative results are measured by real-time PCR. Data shown are
mean 6 SEM (n = 3 independent experiments). * P,0.05, ** P,0.01,
paired t test. (B) Western blotting of p27 protein level following
overexpression of Cux proteins. Data shown are mean 6 SEM (n = 3
independent experiments). * P,0.05, paired t test. (C) RT-PCR analysis
of p21 expression level in cultured cortical neurons and E16 cortical
tissue. P1 thalamus tissue was used as a positive control. (D) Chromatin
immunoprecipitation (ChIP) analysis of the binding to the p27 promoter
by myc-tagged Cux proteins. Normal rabbit IgG was used as negative
control of IP. Representative images are from PCR. Quantitative results
are measured by real-time PCR. Data shown are mean 6 SEM (n = 3
independent experiments). ** P,0.01, paired t test. (E–F) p21
decreased, while p27 and NCAM180 increased the dendritic arboriza-
tion of cortical pyramidal neurons. Data shown are mean 6 SEM (n$30
for each condition). ** P,0.01, Student’s t test. (G–H) Rescue of Cux1’s
effect on dendritic morphology of cortical pyramidal neurons by p27
and NCAM180. Data shown are mean 6 SEM (n$30 for each condition).
** P,0.01, ANOVA SNK test.
doi:10.1371/journal.pone.0010596.g004

Figure 5. Modulation of p27 by RNAi-treatment of Cux1. (A–B)
Increase of p27 expression level by transfection of Cux1-RNAi plasmids
into cultured cortical neurons, as shown by RT-PCR (A) and Western
blotting (B). Representative images in (A) are semi-quantitative PCR.
Quantitative results in (A) are measured by real-time PCR. Data shown
are mean 6 SEM (n = 3 independent experiments for each condition). *
P,0.05, paired t test. (C–D) Reducing the expression of p27 by RNAi
simplified the dendritic complexity of cortical pyramidal neurons in
culture. Data shown are mean 6 SEM (n$30 for each condition). *
P,0.05, ** P,0.01, Student’s t test. (E–F) Time-course of dendritic
complexity change after p27-RNAiA treatment. Three time points were
examined: DIV4, 5, and 6. Data shown are mean 6 SEM (n$30 for each
condition). * P,0.05, ** P,0.01, Student’s t test. (G–H) Rescue of Cux1-
RNAiA’s effect on dendritic complexity of pyramidal neurons by
p27-RNAiA. Data shown are mean 6 SEM (n$30 for each condition).
** P,0.01, ANOVA SNK test.
doi:10.1371/journal.pone.0010596.g005
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RhoA mediates Cux1- and p27-induced dendritic
morphology changes of cortical pyramidal neurons

To further understand how Cux1 and p27 influence dendritic

development, we examined whether the small GTPase RhoA,

which acts downstream of p27 during neuronal migration and

differentiation [22], could mediate the regulation of dendritic

morphology by Cux1 and p27. First, we found that Cux1 and

p27 could regulate RhoA activity in cultured cortical neurons.

Overexpression of Cux1 or RNAi-treatment of p27 increased the

level of active RhoA, while RNAi-treatment of Cux1 or

overexpression of p27 decreased it (Figure 6). To determine if

the region of p27 that is critical for RhoA regulation, rather than

its Cdk inhibition function is actually relevant in control of

dendritic outgrowth, we constructed the cyclin- and Cdk-specific

interaction mutant of p27 (p27ck-), as previously described [22].

This mutation could still increase the dendritic complexity of

cortical pyramidal neurons (Figure 7A–B). In addition, p27-CT

(C-terminal half of p27), which mediates the interaction with

RhoA [23], could also increase the dendritic arborization of

cortical pyramidal neurons, contrary to the mild effect of p27ck--

NT (N-terminal half of p27ck-) (Figure 7A–B). Treatment of

cultured cortical neurons with 30 mM Y27632, a specific inhibitor

of Rho kinase, promoted dendritic arborization (Figure 7C–E), as

previously reported [24]. When it was applied immediately after

plasmid transfection, Y27632 could prevent the simplification of

dendritic morphology induced by either overexpression of Cux1

or RNAi-treatment of p27 (Figure 7C–E). Furthermore, overex-

pression of dominant negative RhoA (DN-RhoA) or RNAi-

treatment of RhoA could also rescue the phenotype of Cux1-

overexpression and p27-RNAi (Figure 7C–E). These results

suggest that RhoA, an important regulator of dendritic arbor

growth [25], may mediate the regulation of dendritic complexity

by Cux1 and p27.

Discussion

As one of the most important features of neurons, the

development of dendrites is regulated by both extrinsic and

intrinsic factors [26]. Several transcription factors have recently

been reported to control dendritic outgrowth of cortical

pyramidal neurons. For example, the calcium-dependent nuclear

transactivator CREST-deficient mice had severely compromised

dendritic arborization of cortical layer V pyramidal neurons [27].

The transcription factor Zfp312 is selectively expressed by deep

layer subcortical projection neurons, and knocking down its

expression with RNAi altered their dendritic morphology [28].

The bHLH transcription factor Neurogenin-2 is both necessary

and sufficient for specifying the unipolar dendritic morphology of

cortical pyramidal neurons [29]. Here we identify the homeodo-

main transcription factor Cux1 as a negative regulator of the

dendritic morphology of cortical pyramidal neurons. Interesting-

ly, another homeodomain transcription factor, Phox2a, was

shown to have regulatory cross-talk with Cux1 and activate the

transcription of NCAM and p27 [4,30]. This raises the possibility

that Phox2a may also have the ability to control dendritic

development.

Both Cux1 and Cux2 are homologues of the Drosophila Cut gene

and have similar protein structure and the transcriptional

suppressor activity. However, increasing evidences suggest that

they are differentially regulated and have different functions. Cux1

is expressed in the brain and all major internal organs except liver,

while Cux2 is expressed primarily in the nervous system [5,6]. In

the developing cerebral cortex, Cux1 does not have the same

highly SVZ-restricted expression pattern as Cux2 [8]. In Reeler

mutant mice, Cux1 distribution is correlated with the inverted

cortex to the deep layers, whereas Cux2 is abnormally distributed

throughout the cortical layers [10]. In contrast to Cux1, all

combinations of Cux2 DNA-binding domains exhibit fast DNA

binding kinetics [9,31,32]. Furthermore, this study shows that

Cux1, not Cux2, is able to regulate the dendritic morphology of

cortical pyramidal neurons. In addition, their unique homologue

in Drosophila, Cut caused extensive dendrite branching when

overexpressed in da sensory neurons [14], rather than the

decreasing of dendritic arborization of cortical pyramidal neurons

by Cux1 overexpression found in this study. Such divergence of

Cux distribution and function may reflect the requirements of Cux

genes in various signaling pathways by regulating the transcription

of different genes and associating with different co-factors during

transcription within varied cell types. Therefore, more detailed

studies are required to better understand their functions in the

future.

Although it has been suggested that the binding of Cux1 to

the target promoters is diminished or even completely absent in

some terminally differentiated cells [33,34], the persistent

expression of Cux1 in terminally differentiated cells of many

tissues in the murine suggests a role of it in those tissues, as that

of Cut in differentiated cells in Drosophila [8,10,14]. Our results

support this idea by showing that Cux1 regulates the dendritic

arborization of cultured cortical pyramidal neurons. As a factor

restrictively expressed in upper cortical layers, Cux1 may thus

contribute to the development of cortical circuitry by preventing

the overgrowth of dendrites in upper layer pyramidal neurons.

Numerous experiments suggest that neuronal activity plays a

critical role in dendrite development and transcriptional

regulation has been shown to mediate this process (reviewed

Figure 6. Regulation of RhoA activity by Cux1 and p27. Cux1 or
p27-RNAiA increased RhoA activity, while p27 or Cux1-RNAiA decreased
RhoA activity in cultured cortical neurons. Active RhoA was pulled
down by GST-RBD and are indicated by asterisks. Protein samples of 1/
10th of total lysates were shown to indicate protein loading (bottom).
Data shown are mean 6 SEM (n = 4 independent experiments).
* P,0.05, ** P,0.01, paired t test.
doi:10.1371/journal.pone.0010596.g006
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in reference [35]). It would be of interest to examine whether

Cux1 and its transcriptional activity can be regulated by

neuronal activity and in hence contribute to the activity-

dependent regulation of dendritic morphology during early

postnatal development.

p27 is known to be the most important cyclin-dependent kinase

inhibitor for cerebral cortex development [36]. Transgenic mice

of full-length Cux1 and the short form p75-Cux1 were reported

to have reduced expression of p27 in kidney, and Cux1 can

directly interact with the p27 promoter and inhibit its activity

[37,38,39]. Consistent with those reports, we found that Cux1

directly binds to the p27 promoter and reduces p27 level in

cultured cortical neurons. We also found that p27 is the major

downstream signaling molecule for Cux1 to control the dendritic

complexity of cortical pyramidal neurons. Furthermore, p27

regulates the small GTPase RhoA [40]. p27 interacts with RhoA,

and prevents RhoA activation by interfering its binding to GEFs

[23]. p27 can also stabilize Neurogenin2, a transcriptional

suppressor of RhoA [22,29]. In general, RhoA activity is

associated with the inhibition of dendritic arbor growth [25,41].

Interestingly, we found that both Cux1 and p27 can regulate the

activity of RhoA, and suppression of RhoA activity can prevent

the simplification of dendritic morphology induced by either

overexpression of Cux1 or RNAi-treatment of p27. Therefore, it

is likely that during the development of cortical pyramidal

neurons, RhoA may mediate the signaling from Cux1 to p27

to the regulation of cytoskeleton structure and dendrite

development.

Materials and Methods

Animals
For all experiments we used Sprague-Dawley (SD) rats provided

by SLAC Laboratory Animal Co., Ltd. Animal experiments were

conducted under the guidelines of the Bioethics Committee of the

Institute of Neuroscience at the Shanghai Institute for Biological

Sciences and Chinese Academy of Sciences, with the Approval

Number NA-060410.

Gene cloning and plasmid construction
Plasmids were prepared with the Endo Free plasmid purifica-

tion kit (Qiagen). The complementary DNA encoding rat Cux1

and Cux2 were obtained by PCR from P7 rat brain cDNA library.

Cux1 ORF was divided into four fragments (1000,1800 bp) for

easier cloning and sequencing. The four fragments were cloned

into pGEM-T Easy vector (Promega) and linked together by

restriction enzyme cut and ligation to form a complete ORF of

Cux1. Similarly, rat Cux2 ORF was divided into three fragments

(1300,2000 bp) and linked. Rat p21 was cloned from P7

thalamus cDNA library with the following primers: 59-ATGTCC-

GATCCTGGTGATGTC-39 and 59-GGGCACTTCAGGGC-

TTTCTCT-39. Rat p27 was cloned from P7 brain cDNA library

with the following primers: 59-TTACCATGTCAAACGTGA-

GAGTGT-39 and 59-CACTTACGTCTGGCGTCGAA-39. Rat

NCAM180 was obtained by PCR from the pRSV-NCAM180

construct provided by P. Maness with the 59-ATGCTGCGAAC-

TAAGGATCTCATC-39 and 59-TCATGCTTTGCTCTCATT-

Figure 7. RhoA mediates Cux1- and p27-induced dendritic morphology changes of cortical pyramidal neurons. (A–B) Both p27ck- (p27
deficient in the interaction with cyclins and Cdks) and p27-CT (C-terminal half of p27) could increase the dendritic arborization of cortical pyramidal
neurons, while p27ck--NT (N-terminal half of p27ck-) could only slightly affect the dendritic arborization. Data shown are mean 6 SEM (n$30 for each
condition). * P,0.05, ** P,0.01, ANOVA SNK test. (C–E) Simplification of dendritic complexity of cultured cortical pyramidal neurons induced by
either Cux1-overexpression or p27-RNAi could be prevented by treatment with 30 mM Y27632, co-expression of DN-RhoA, or co-expression of RhoA-
RNAi. Data shown are mean 6 SEM (n$30 for each condition). ** P,0.01, ANOVA SNK test.
doi:10.1371/journal.pone.0010596.g007

Cux1 and Neuronal Morphology
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CTCTTTC-39 primers. DN-RhoA (N19) was obtained by PCR

from construct from G. Bokoch with the 59-ATGGCTGCCAT-

CAGGAAGA-39 and 59-CTTCACAAGATGAGGCACCC-39

primers. Deletions of Cux1 were cloned by PCR from pGEM-T

Easy-Cux1. Mutation of p27 deficient in the interaction with

cyclins and Cdks (p27ck-) was generated by PCR according to the

literature [42]. p27ck--NT (N-terminal half of p27ck-) and p27-CT

(C-terminal half of p27) were constructed as described previously

[22]. All of them were constructed into pCAGGS-IRES-EGFP

vector to co-express them with EGFP under the control of the

CAG promoter. To examine the expression and subcellular

localization of Cux1 deletions, all of them were cloned into pCAG-

EGFPN vector to fuse an EGFP tag at the C-terminal.

To construct the RNA-interference vectors, oligonucleotides

targeting two distinct regions in the rat Cux1 coding sequence

(Cux1-RNAiA: 59-AGATGTCCACCACCTCAAA-39; Cux1-

RNAiB: 59-AAGAAGAACACTCCAGAGGATTT-39), the rat

p27 coding sequence (p27-RNAiA: 59-AAGCACTGCCGAGA-

TATGGAA-39; p27-RNAiB: 59-GAAGCGACCTGCGGCA-

GAA-39), the rat Cux2 coding sequence (Cux2-RNAiA: 59-

GCAGCATTCCTGAGTGTTT-39; Cux2-RNAiB: 59-TGGCC-

AACTTGAACAGTAT-39), and the rat RhoA coding sequence

(RhoA-RNAi: 59-AAGGCAGAGATATGGCAAACA-39) [43]

were inserted into the pSuper.basic vector (Oligoengine) according

to the manufacturer’s instructions.

Primary culture of cortical neurons
E16/17 cortical cells from SD rats were cultured as previously

described [44]. The cortex was dissected in ice-cold HBSS (6.5 g/

L glucose), digested with 0.25% Trypsin for 10 min at 37uC and

dissociated into single cells by gentle trituration. Cells were plated

on 35-mm culture dishes coated with 1 mg/ml poly-D-lysine at

high density (66106 cells per dish) in DMEM (Invitrogen) with

10% fetal bovine serum for four hours, then changed to

Neurobasal medium (Invitrogen) supplemented with B27 (Invitro-

gen), 0.5 mM L-glutamine, and penicillin/streptomycin.

Transfections
Primary cultures of cortical neurons for morphometry analysis

and immunofluorescence in vitro were transfected by a modified

calcium phosphate transfection procedure [44]. For each culture

dish, 3–5 mg of experimental plasmid was used to transfect cells at

DIV3. The precipitate (60 ml) was added dropwise to the cells in

1 ml DMEM, and followed by a 20–30 min incubation. Unless

indicated, cells were cultured to DIV6 before fixation.

Primary cultures of cortical neurons for RT-PCR, Western

blotting, ChIP, and RhoA activity assay were transfected using

Amaxa rat neuron nucleofector kit (Amaxa Biosystems) before

being plated into 35-mm or 60-mm dishes, according to the

manufacturer’s instructions. Cells were cultured for two days

before use.

RT-PCR
The semi-quantitative RT-PCR to detect the RNAi efficiency

and the relative mRNA levels of different genes was done as

described [45]. Total RNA was extracted with Trizol reagent

(Invitrogen). 5 mg of total RNA each was converted to cDNA with

the RevertAid First Strand cDNA Synthesis kit (MBI Fermentas),

and PCR was done with 1 ml cDNA each in 20-ml reactions (MJ

Research). Primers and cycles used to amplify different genes were

listed below. Primers for beta-actin were 59-AACCGTGAAAA-

GATGACCCAGAT-39 and 59-TAATGTCACGCACGATTT-

CCCT-39 for 25,26 cycles. Primers for Cux1 were 59-

ATTGATGTTCCAGATCCCGTAC-39 and 59-CTCGTTCAA-

GGTCAGTCATAATCA-39 for 31 cycles. Primers for Cux2 were

59-GGCAGCGGTTGTTTGGTG-39 and 59- GCCCGTATC-

GGCGTTTCA -39 for 31 cycles. Primers for NCAM were 59-

CTCCATCCACCTCAAGGTCTTCG-39 and 59-AGGGTCA-

GGGAGGACACACGAG-39 for 30 cycles. Primers for p27 were

59-GGTGCCTTCAATTGGGTCTCA-39 and 59-GGCTTCT-

TGGGCGTCTGCT-39 for 30 cycles. Primers for p21 were 59-

TGACCTGGGAGGGGACAAGAG-39 and 59-GGGCACTT-

CAGGGCTTTCTCT-39 for 35 cycles. Conditions for the PCR

reactions were: first 94uC for 3 min; then the corresponding cycles

of 94uC for 30 s, 58,64uC for 30 s, and 72uC for 15,25 s; with

an 8 min 72uC final extension. Real-time PCR was conducted in

the ABI PRISM 7000 Sequence Detection System (Applied

Biosystems) with the SYBR Premix Ex Taq kit (TaKaRa)

according to the manufacturers’ instructions. The reactions were

done in the presence of 59-AAGACTAGCACCGTCAT-

CAACTG-39 and 59-GCTTCCACGCCGTCACAAC-39 primers

for Cux1; 59-GGCAGCGGTTGTTTGGTG-39 and 59-

GCCCGTATCGGCGTTTCA-39 primers for Cux2; 59-GAG-

CAGTGTCCAGGGATGAG-39 and 59-CCACAGTGCCAGC-

ATTCG-39 primers for p27; 59-CACCATCTACAACGCCA-

ACA-39 and 59-ACATCACAGACAATCACAGCATC-39 prim-

ers for NCAM; 59-AGATTACTGCCCTGGCTCCTAG-39 and

59-CATCGTACTCCTGCTTGCTGAT-39 for actin. Amplifica-

tion cycle differences between experimental groups were calculat-

ed, corrected by actin as internal control, and converted to relative

expression levels of corresponding genes. All the primers were

designed to be located on different exons of the corresponding

genes to eliminate the interference of residual chromosome DNA.

Chromatin immunoprecipitation (ChIP)
ChIP assay was performed as previous described [46] with some

modifications. Briefly, cultured cortical neurons were transfected

with plasmids encoding myc-tagged Cux1 or Cux2 protein, or the

empty vector as control. Cells were cross-linked with fresh 1%

formaldehyde for 10 min at room temperature, and the reaction

was terminated with an excess of glycine. Chromatin was

sonicated into an average size of 250–350 bp and was immuno-

precipitated with anti-myc polyclonal antibody (Cell Signaling) or

a control normal rabbit IgG (Santa Cruz). Co-precipitated

chromatin was analyzed by PCR for the presence of the p27

promoter region using the 59-GAGTCGTCAGTCCTGGT-

TCCT-39 and 59-GGGAGGGTAGGCGAAAGAT-39 primers,

generating a 182-bp product. The PCR conditions consisted of

94uC for 3 min, followed by 35 cycles of 94uC for 20 sec, 61uC for

15 sec and 72uC for 15 sec, with a final extension of 72uC for

5 min. The PCR results were cloned and sequenced to verify the

specificity of PCR. Quantification of ChIP results was done by

real-time PCR with the same primers.

RhoA activity assay
RhoA activity was measured as described previously [47].

Briefly, lysates of cortical neurons transfected with various

plasmids were preincubated with glutathione-Sepharose 4B beads

(Amersham Biosciences) at 4uC for 1 h with constant rocking to

remove the nonspecific binding. The supernatants were then

incubated with the bacterially produced glutathione S-transferase

(GST)-fused Rho-binding domain of Rhotekin (GST-RBD; 20 mg)

bound to glutathione-coupled Sepharose beads at 4uC for 1 h with

constant rocking. The beads were washed five times with cell lysis

buffer at 4uC, then the proteins were eluted in SDS sample buffer

and analyzed for bound RhoA by Western blotting using the

rabbit antibody against RhoA (Cell Signaling). Protein samples of

one-tenth of total lysates were shown to indicate similar loading.
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Immunofluorescence
Cell cultures were fixed with 3% paraformaldehyde and 2%

glutaraldehyde in phosphate-buffered saline (PBS) for 10 min. For

Propidium iodide (PI) staining, fixed cells were stained with 2 mg/

ml PI for 3 min at room temperature. Images were captured with

the FLUOVIEW FV1000 confocal system (Olympus).

Western blotting
For Western blotting, 1/10th of the samples were loaded each

lane in the Mini-PROTEAN 3 System (Bio-Rad). Immunoblotting

was performed as described [47]. Primary antibodies used were

mouse anti-actin (Chemicon, 1:10 000), and mouse anti-p27 (BD

Biosciences, 1:1 000). Secondary antibodies of HRP-conjugated

goat-anti-mouse (Bio-Rad, 1:10 000) were used and visualized with

a chemiluminescent substrate (SuperSignal, Pierce). The relative

signal intensities of at least three independent results for each

Western blotting experiment were measured with the software

ImageQuant Ver.5.0 (Molecular Dynamics).

Morphometry analysis and statistics
Pyramidal neurons in culture were defined as cells with a

pyramidal cell body and one prominent apical dendrite at its apex,

with an overall morphology typical for cortical pyramidal neurons,

as described [44,48]. Neurons were reconstructed and scored for

the total dendritic branch length (Length) and the total dendritic

branch tip number (Branch Tips) with the software FV10-ASW

Ver.1.4a (Olympus). Axons were identified on the basis of the

characteristic morphology and relatively longer length. Statistical

significances were determined using the two-tailed Student t test,

paired t test, or the ANOVA Student-Newman-Keuls (SNK) test,

as appropriate.
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