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The purpose of this paper is to summarise recent progress in free-response receiver operating characteristic (FROC) method-
ology. These are: (1) jackknife alternative FROC analysis including recent extensions and alternative methods; (2) the search-
model simulator that enables validation and objective comparison of different methods of analysing the data; (3) case-based
analysis that has the potential of greater clinical relevance than conventional free-response analysis; (4) a method for collec-
tively analysing the multiple lesion types in an image (e.g. microcalcifications, masses and architectural distortions); (5) a
method for sample-size estimation for FROC studies; and (6) a method for determining an objective proximity criterion,
namely how close must a mark be to a true lesion in order to credit the observer for a true localisation. FROC analysis is
being increasingly used to evaluate the imaging systems and understanding of recent progress should help researchers conduct
better FROC studies.

INTRODUCTION

Receiver operating characteristic (ROC) method-
ology is a widely accepted method for measuring
imaging system performance(1 – 3). Unlike physical
measurements it takes into account the entire
imaging chain, including the radiologist. ROC is a
binary paradigm: the patient does or does not have
disease (binary truth), and the radiologist’s task is to
state whether the patient does or does not have
disease (binary response). The resulting 2 � 2 truth
table defines good decisions, i.e. true positive, true
negative and bad decisions, i.e. false positive and
false negative. Because it applies to a binary task,
ROC cannot take into account multiple suspicious
regions and/or multiple lesions that may be present
in the image. The free-response paradigm is an
extension of ROC to include lesion detection and
localisation tasks. In this paradigm the radiologist
does not know a priori how many lesions may be
present in an image, if any, and therefore must
search the image for lesions and mark regions that
are suspicious. Because it takes more information
into account the free-response paradigm is more sen-
sitive at detecting small differences between perform-
ances of modalities, i.e. it has higher statistical
power(4,5). Statistical power is an important con-
sideration in observer performance studies as it
determines the probability of detecting a true differ-
ence between modalities while controlling the prob-
ability of detecting non-existent differences. It is
directly related to the precision of the measurement.
Due to its higher statistical power, the free-response
method is being increasingly used to compare
imaging systems(6 – 9). The purpose of this paper is to
summarise the current status of free-response analy-
sis. The authors start by giving a brief account of
the status prior to 2004 when methods were available

for analysing individual reader free-response data in
one modality, but correlated multiple reader data
in two or more modalities could not be analysed.
The latter is the most common application of obser-
ver performance studies. Next, the two current
approaches were described to analyse free-response
data for multiple readers and multiple modalities,
which are implemented in freely available software
(www.devchakraborty.com). Other methods will be
discussed followed by a description of a free-
response data simulator used to validate these
methods and results of the validation testing. A new
approach termed case-based analysis will be
described that can potentially extend the clinical
relevance of free-response studies and make it poss-
ible to simultaneously analyse the multiple lesion
types. Finally, sample-size estimation (How many
readers and cases are needed to detect a specified
difference?) and an approach to more objectively
choosing the proximity criterion will be described.

STATUS PRIOR TO 2004

The free-response paradigm was introduced more
than four decades ago(10) but subsequent progress
has been slow. The free-response receiver operating
characteristic (FROC) curve was introduced(11) in
1978. It is a visual summary of observer perform-
ance in the free-response task but a method for
fitting the data points to a theoretical curve was not
available. The free-response data unit is a mark-
rating pair, where a mark is the location of a suspi-
cious region and the rating is the confidence level
that a real lesion is present at the indicated location.
The number of mark-rating pairs per image is a
random integer (0, 1, 2, . . . ) and the number of
lesions per image (0, 1, 2, . . . ) and their locations
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are assumed to be known to the investigator, but the
observers are, of course, blinded to this information.
The marks are scored as lesion localisations (LLs)
or non-lesion localisations (NLs) according to their
proximity to real lesions (close marks are LLs). This
requires specification of a proximity criterion, which
is currently arbitrarily selected. The FROC curve(11)

is defined as the plot, as the threshold confidence
level is varied, of LL fraction (LLF ¼ number of
LLs/total number of lesions) vs. non-LL fraction
(NLF ¼ number of NLs/total number of images).
The alternative FROC (AFROC) curve is defined as
the plot of LLF vs. false-positive fraction (FPF ¼
number of normal images with highest rated mark
greater than the threshold confidence level/total
number of normal images); FPF is the x-axis of the
traditional ROC curve if it is assumed that the
highest rating reflects the single rating that would
have been given in an ROC task. FROC and
AFROC curves are different ways of visualising free-
response data, and based on current understanding
the latter is preferable because unlike the FROC
curve, which can theoretically extend infinitely to the
right, the AFROC curve, like the ROC curve, is con-
tained within the unit square. Beginning in 1989,
parametric methods for fitting FROC and AFROC
curves, termed FROCFIT and AFROC fitting,
respectively(12,13) were developed, which give good
fits to human observer data. In 1996 Swensson(14)

described a parametric model for the localisation
ROC (LROC) paradigm (in which the observer gives
a single ROC-like rating and indicates the location
of the most suspicious region) that also predicted
FROC and AFROC curves. In 2002 the initial
detection and candidate analysis (IDCA) method
was proposed(15) for fitting a computer-aided detec-
tion (CAD) algorithm generated FROC curve for a
single modality. All of these methods allowed fitting
of individual reader FROC or AFROC curves, but
they are not able to analyse the correlated data in
which a number of readers interpret the same cases
in all modalities, commonly termed the multiple-
reader multiple-case multiple-modality (MRMC)
study design. This design is needed to be able to
generalise the conclusions of a study to the popu-
lations of readers and cases.

STATISTICAL ANALYSIS OF OBSERVER
PERFORMANCE DATA

Free-response analysis, or for that matter analysis of
any other observer performance paradigm, consists
of defining a figure of merit (FOM) and a method
for testing the significance of differences between
observed FOMs for two or more modalities, i.e.
analysis ¼ FOM þ significance testing. The FOM
quantifies observer performance by rewarding ‘good’

decisions (finding lesions, LLs, and/or not marking
NLs), and penalising for ‘bad’ decisions (missing
lesions and/or marking NLs). The parametric
methods described above allow one to calculate
FOM for a given data set or one can use non-para-
metric (NP) methods. There are two possibilities, the
FOM difference is zero, i.e. the null hypothesis (NH)
is true, or the difference is non-zero, i.e. the alterna-
tive hypothesis (AH) is true. One selects a test size a
(e.g. a ¼ 5 %), which is a control on the probability
of declaring modalities different when in fact they
have the same FOM. The analysis yields a test stat-
istic (e.g. the t-statistic for a single reader and two
modalities or an F-statistic for multiple readers and
multiple modalities) and if the test statistic falls in
the acceptance region of the NH, which is deter-
mined by a and the statistical distribution of the test
statistic in question, the NH is not rejected and
otherwise it is rejected. Equivalently the test-statistic
can be converted to a p-value and if p , a the NH
is rejected and the modalities are declared signifi-
cantly different. Determining if the NH should be
rejected, or equivalently the p-value, is termed sig-
nificance testing. Statistical power is defined as the
probability of rejecting the NH when it is false. In
planning an observer performance study, it is desir-
able to have high statistical power and one typically
aims for 80 % power. If statistical power is low, then
true differences between modalities may not be
detected (i.e. one may falsely accept the NH).
Dorfman-Berbaum-Metz (DBM) solved the signifi-
cance testing problem for MRMC-ROC studies
in 1992(16). The significance testing procedure uses a
re-sampling technique known as the jackknife(17).
The cases are sequentially jackknifed, i.e. removed
from the analysis, and the FOM is re-computed for
each jackknife. If uij is the FOM for modality-i
and reader-j when all cases are included, and uij(k) is
the corresponding FOM [e.g. the area under the
ROC curve (AUC)] when case-k is deleted, and NT
is the total number of cases, the jackknife pseudo-
value Pijk for modality-i, reader-j and case-k is
defined by:

Pijk ¼ NTuij � ðNT � 1ÞuijðkÞ:

The procedure is repeated for all cases, readers
and modalities yielding a three-dimensional matrix
of pseudovalues with ijk elements, where i is the
number of modalities, j the number of readers
and k the number of cases. The pseudovalue-matrix
is analysed using a mixed model analysis of
variance (ANOVA), which calculates a p-value for
rejecting the NH that all modalities have identical
FOMs. The procedure also calculates confidence
intervals for FOM differences for all pairings of
modalities.
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JAFROC AND JAFROC1

The DBM method is applicable to the free-response
parametric fitting methods described previously, with
the ROC FOM replaced by an appropriate free-
response FOM calculated from the fitted curves, but
this possibility went unnoticed until 2004 when the
jackknife alternative FROC (JAFROC) method was
developed and validated(4). Analogous to DBM,
which applies to MRMC-ROC studies, JAFROC
applies to MRMC-FROC studies. The JAFROC
FOM uJAFROC is the NP area (i.e. the trapezoidal
area obtained by joining the operating points, includ-
ing the upper right corner, with straight lines) under
the AFROC curve. Recall that the AFROC curve is
defined as the plot of LLF vs. FPF, where FPF is
computed in the usual (ROC) sense over normal cases,
i.e. it is the number of normal cases with highest rated
NLs rated higher than a threshold confidence level,
divided by the total number of normal cases. By chan-
ging the threshold confidence level from 21 to þ1
one traces out the AFROC curve from top to bottom.
An additional analysis method was described in ref.(4)

termed JAFROC1, which used a slightly different
FOM defined as the NP area under the AFROC1
curve, uJAFROC1. The AFROC1 curve is defined as the
plot of LLF vs. FPF1, where FPF1 is the FPF com-
puted over normal vs. abnormal cases, i.e. it is the
number of normal and abnormal cases with highest
rated NLs rated higher than a threshold confidence
level divided by the total number of cases (FPF1 can
only be defined in the free-response context since in
ROC abnormal images cannot yield false positives).
In either case the significance testing procedure was
identical to DBM-MRMC except for the FOM
(uJAFROC or uJAFROC1) being used instead of AUC.
The JAFROC x-axis is identical to that of the ROC
curve, namely FPF. However, the JAFROC y-axis is
LLF, while the y-axis of the ROC curve is TPF. LLF
takes LL into account but TPF does not. For
example, if on an abnormal image an observer bases
the ROC rating on a highly suspicious normal region
but does not see the lesion, the ROC rating would be
counted as a high confidence level TP, which raises
AUC. However in FROC scoring these count as two
mistakes: a missed lesion and an NL (‘false-positive’).
The NL is not used in JAFROC but the fact that the
lesion was missed lowers LLF, which lowers the area
under the AFROC curve. Similarly with multiple
lesions ROC obtains one rating for the image but
JAFROC uses ratings from all lesions. On normal
images JAFROC offers no advantage over ROC, since
both obtain one rating.

VALIDATION AND POWER

Validation and statistical power determination of
these methods require a simulator that generates

synthetic free-response data under controlled con-
ditions. The simulator described in ref. (4) allowed
the deliberate introduction of intra-image and inter-
modality correlations. Specifics of the simulator are
described in the referenced paper, but an important
point was that it assumed equal numbers of decision
sites (suspicious regions at which decisions to mark
or not mark are made) on all images, and that all
lesions were ‘found’, i.e. were considered for
marking. The first assumption does not take into
account expected random case-sampling effects
(some images are expected to have more suspicious
regions than others). The second assumption leads
to the prediction that at sufficiently low confidence
level the FROC curve attains LLF ¼ 1 for finite
NLF, which prediction is not supported by data.
Both JAFROC and JAFROC1 passed the NH val-
idity test using this simulator. Both JAFROC and
JAFROC1 have recently been re-validated(5) using a
simulator described below that does not make these
assumptions.

IDCA AND NP ANALYSIS

In parametric IDCA and NP analysis the FOM is
the area AUFCg under the FROC curve to the left
of a specified value NLF ¼ g(15,18). Recall the
FROC curve is the plot of LLF vs. NLF. In IDCA
the FOM AUFCg is estimated by fitting the
observed operating points to a smooth curve and
calculating the area by numerical integration. In the
NP method, AUFCg is estimated by connecting
adjacent operating points with straight lines and cal-
culating the trapezoidal area under the line seg-
ments. For CAD data, the operating points are
closely spaced and the trapezoidal estimate intro-
duces minimal error. However, for human observers
the operating points are sparse and the trapezoidal
area underestimates the true area; moreover the jack-
knife pseudovalues can be confined to a small
number of values. For the parametric IDCA
method, the jackknife pseudovalue-based DBM sig-
nificance testing method led to correct NH behav-
iour(5), but the NP method led to incorrect NH
behaviour that was corrected by using the bootstrap
for significance testing. In the bootstrap significance
testing method for each simulated data set 2000
bootstrap samples were generated (i.e. re-sampled
with replacement) and the distribution of the differ-
ence of the FOMs (not pseudovalues) is percentiled
to determine two cut-points c1 and c2 such that
2.5 % of the differences are below c1 and 2.5 % of
the differences are above c2. If the 95 % confidence
interval for the FOM difference, namely (c1, c2),
does not include zero the NH is rejected. The cut-
points can be converted to a p-value. The procedure
was repeated for 2000 simulated data sets to obtain
the average NH rejection rate.
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For simulated CAD data the two methods (IDCA
and NP) had similar statistical powers, but since it
makes fewer assumptions, the NP method may be
preferable even though the bootstrap is computation-
ally more intensive than the jackknife. It was found
that for maximum statistical power it was desirable
to choose g as large as possible. However, if g is
chosen larger than the observed end-point (upper-
most operating point) then AUFCg cannot be calcu-
lated. For a fair comparison the same g must be
chosen for both modalities, as otherwise one will
introduce bias in favour of the modality with the
larger g. Choosing a large common value for g is
relatively easy with CAD algorithms since they gen-
erate many NLs but is more difficult with human
observers since conservative observers may not
provide appreciable numbers of NLs. In that case
the maximum common value of g would be limited
by the NLF of the observer, who generates the least
number of NLs, and the data to the right of this
value provided by other observers has to be excluded
from the analysis, which would compromise power.
Similar problems also affect ROC/JAFROC analysis
since the FOMs (AUC/uJAFROC) is the total area
under the ROC/AFROC curve, and if the observed
operating points are clustered near the lower left
corner, the FOM estimate involves an undesirable
larger extrapolation to the upper right corner. This
shows the need for careful data collection in ROC/
FROC studies so that the full range of the operating
characteristic is adequately sampled; alternatively
one could use partial area measures (ug

JAFROC or
ug

JAFROC1) which are similar to AUFCg, but will
sacrifice power because g is determined by the most
conservative observer.

FREE-RESPONSE DATA SIMULATOR

The free-response simulator is based on a search-
model for the mark-rating pairs(19,20), which in turn
is based on the Kundel-Nodine model for radiologist
interpretations(21). The search-model assumes that
each image yields a finite number of decision sites
(suspicious regions at which decisions to mark or
not mark are made), which are termed noise sites
or signal sites if they correspond to normal anatomy
or lesions, respectively. The number of noise sites on
an image is assumed to be a random sample from a
Poisson distribution with mean l; the number of
signal sites on an abnormal image is assumed to be
sampled from a binomial distribution with mean s n
and trial size s, where n is the probability that a
lesion is a decision site (i.e. it is ‘found’ or con-
sidered for marking) and s is the number of lesions
in the image. The decision variable (z-sample or con-
fidence level) from a noise site is sampled from
N(0,1) and that from a signal site is sampled from
N(m,1) where N(m,s2) is the normal distribution

with mean m and variance s2. The simulator can be
used to predict the FROC curves for a single reader,
and it is the free-response analogue of the binormal
model(22) used extensively in the ROC analysis.
However, to test methods for analysing the MRMC-
FROC data, it is necessary to extend the search
model simulator to multiple modalities and readers.
The corresponding problem was solved in the ROC
context(23) and the resulting ROC simulator is
termed the Roe and Metz simulator. This simulator
was recently extended to MRMC free-response
studies(24). The essential modification was the intro-
duction of a location factor (L), which accounts for
the locations of the marks.

CASE-BASED ANALYSIS

A universal limitation(24) of current free-response
figures of merit is that they are lesion-based giving
equal importance to all lesions. Consequently, a case
with a large number of lesions contributes more to
the FOM than a case with only one lesion. To
ensure that the case is the unit of analysis one
should be giving equal importance to each case (i.e.
each patient). Another limitation is that lesion-based
methods do not account for different cancer risks
associated with the lesions. A relatively benign lesion
has lower cancer risk than a highly malignant lesion.
Using the JAFROC-FOM as an example, in case-
based analysis one performs a risk-weighted-average
over all lesions on an abnormal case, of the prob-
ability that a lesion is rated higher than the highest
rated non-lesion on a normal case, and averages over
all cases. The risks of lesions on an image must add
up to unity (so that each patient gets equal impor-
tance in determining the FOM) and can be assigned
by a truth panel (not the readers in the study) based
upon their clinical knowledge of survival statistics
associated with different lesion types. One could
adopt a five- point scale from 1: lesion is relatively
low risk and the patient needs follow-up in 6 months
to 5: lesion is high risk and action needs to be taken
soon. The risk rating can be converted to normalised
risks that add up to unity. For an image with s
lesions risk-rated ri (i ¼ 1, 2, . . . , s) the weights are
wi ¼ ri/Sri. Any lesion-based free-response FOM
(uJAFROC, uJAFROC1 or AUFCg) has its case-based
counterpart. Case-based analysis could potentially
extend the capability of relatively inexpensive labora-
tory free-response measurements to better correlate
with the higher levels in the(25) six-level hierarchy of
clinical efficacies of measurements. Showing the
higher correlation requires a clinical trial which the
authors hope will be conducted soon. The case-
based method can also be used to analyse different
lesion-types. Different types of lesions may be
present in the same breast, e.g. microcalcifications,
masses, architectural distortions. Currently analysis
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is generally conducted separately for the different
types, e.g. one analysis for masses, one for microcal-
cifications, etc. This underestimates the probability
of a Type I error and additionally one lacks a
measure of overall performance. Case-based analysis
offers a solution. Given the normalised risk of the
different types of lesions the case-based FOM takes
all lesions into account and the analysis yields a
single FOM and p-value for overall performance.

SAMPLE SIZE ESTIMATION

Sample size estimation seeks to predict the numbers of
cases and readers necessary if one is to have a reason-
able chance (i.e. statistical power) of detecting (i.e.
rejecting the NH) a specified difference (i.e. effect size)
in performance between two modalities. With the high
cost of conducting observer performance studies,
sample-size estimation plays an important role at the
planning stage of an observer study. Hillis and
Berbaum(26) (HB) have described a sample size esti-
mation procedure for the ROC paradigm. The pro-
cedure uses the DBM-MRMC-ANOVA calculated
pseudovalue variance components, which are input
to SAS software that can be downloaded from
the University of Iowa website: http://perception.
radiology.uiowa.edu/Software/. Since the underlying
FOM (not decision variable) variance-components
models are the same, the HB sample-size estimation
procedures should work with the FROC data
(although the z-sampling models are different, the
FOM models are the same, i.e. in spite of the compli-
cation introduced by the multiple marks and ratings, it
remains true that each data set yields a single FOM).
Sample size estimation code for both ROC and
FROC studies can be downloaded from the author’s
web site.

ADDRESSING THE ARBITRARINESS OF
THE PROXIMITY CRITERION

One way of defining a proximity criterion is via an
acceptance radius (AR), defined such that marks
within this distance from lesion centres are classified
as lesion localisations. Currently there is no objective
guideline on how to choose AR and this is a
fundamental limitation of all proposed methods of
analysing the FROC data. Increasing AR causes the
end-point of the FROC to move to the upper left,
implying improved performance and vice-versa. One
approach to this problem is as follows(27). Suppose
the observer marks an abnormal image and the sus-
picious finding that caused the mark was in fact a
lesion, i.e. the observer saw the lesion. The mark
will likely fall close to the lesion but for obvious
reasons will not coincide with the exact centre of the
lesion: for large irregular lesions there is subjectivity
regarding the meaning of lesion ‘centre’, in addition

there is hand ‘jitter’, etc. Since the observer saw the
lesion he/she should get credit since the fact that the
mark is not at the exact centre will likely not affect
the clinical outcome (a radiologist and a surgeon
looking at the same image do not have to agree on
the exact centre of the lesion in order to agree that
they are dealing with the same lesion and the clinical
follow-up, e.g. biopsy, will be unaffected). If the sus-
picious finding is in fact a normal region the obser-
ver should not get credit since such marks will tend
to lead to inappropriate clinical follow-up (the
biopsy could occur at the wrong location and the
real lesion may not be biopsied). The two types of
marks are termed perceptual hits and perceptual
misses, respectively; on normal images all marks are
by definition perceptual misses. Perceptual hits and
perceptual misses are not the same as LL and NL,
because the scoring of a physical mark into LL or
NL involves defining AR and appropriately classify-
ing the mark. Consider the histogram of the radial
distances of marks relative to the nearest lesion
centres. The histogram consists of a narrow peak
corresponding to perceptual hits that tend to cluster
around lesion centres followed by a minimum and a
subsequent broad peak corresponding to perceptual
misses, which bear no fixed spatial relationship to
lesions. The abscissa of the ‘valley’ between the two
peaks is an objective empirical choice for acceptance
radius (ARavg). This should be regarded as an
average choice, since it includes all lesion sizes.
ARavg can be scaled to account for lesion size. It is
reasonable to impose a tighter limit for smaller
lesions, but not excessively tight since marking
‘jitter’ makes it impossible to position the mark
exactly where the observer intends. It is good prac-
tice to repeat the analysis with different choices for
ARavg, e.g. 0.8 and 1.2 ARavg, this will test the
robustness of the final conclusions with respect to
choice of AR.
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