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Abstract: Modeling of protein binding site flexibility in molecular docking is still a challenging
problem due to the large conformational space that needs sampling. Here, we propose a flexible

receptor docking scheme: A dihedral restrained replica exchange molecular dynamics (REMD),

where we incorporate the normal modes obtained by the Elastic Network Model (ENM) as dihedral
restraints to speed up the search towards correct binding site conformations. To our knowledge,

this is the first approach that uses ENM modes to bias REMD simulations towards binding induced

fluctuations in docking studies. In our docking scheme, we first obtain the deformed structures of
the unbound protein as initial conformations by moving along the binding fluctuation mode, and

perform REMD using the ENM modes as dihedral restraints. Then, we generate an ensemble of

multiple receptor conformations (MRCs) by clustering the lowest replica trajectory. Using
ROSETTALIGAND, we dock ligands to the clustered conformations to predict the binding pose and

affinity. We apply this method to postsynaptic density-95/Dlg/ZO-1 (PDZ) domains; whose

dynamics govern their binding specificity. Our approach produces the lowest energy bound
complexes with an average ligand root mean square deviation of 0.36 Å. We further test our

method on (i) homologs and (ii) mutant structures of PDZ where mutations alter the binding

selectivity. In both cases, our approach succeeds to predict the correct pose and the affinity of
binding peptides. Overall, with this approach, we generate an ensemble of MRCs that leads to

predict the binding poses and specificities of a protein complex accurately.
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Introduction

Molecular docking is an important tool in studying

protein-ligand or protein–protein interactions and

designing new drugs. Computer methods have long

been useful for ‘‘docking’’ due to the discovery of

ligands that can bind to proteins as lead candidates

for drugs.1–6 Majority of the current binding/docking

methods attempt to predict the bound ligand by

keeping the protein (receptor) fixed and moving the

target ligand around the binding site while perform-

ing an energy minimization. The major problems of

this approach are: (i) proteins are dynamic, flexible,

and deformable, so keeping them fixed often misses

the correct binding modes, (ii) relying on pure

energy minimization is insufficient to predict correct

binding affinities. Docking algorithms predict the

incorrect binding pose for about 50–70% of all

ligands when the receptor is kept in single position.7

Overall, induced flexibility is the key ingredient to

understand the physical principles of molecular rec-

ognition between ligand and receptor. It has been

shown that even small changes in receptor upon

binding can be important in computing the binding
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affinities. On the other hand, modeling of receptor

flexibility is still a challenging problem due to the

need of large conformational space that must be

sampled. In order to overcome this challenge, multi-

ple receptor conformations (MRCs) are generated in

several ways: (i) using multiple conformations from

molecular dynamics (MD) snapshots,8–13 (ii) apply-

ing principal component analysis to MD trajecto-

ries,14 (iii) using the snapshots based on geometry-

based simulation techniques,15 (iv) detecting rigid

and hinge regions with the Gaussian Network Model

and the Elastic Network Model (ENM), respec-

tively,16,17 (v) perturbing receptor conformations

along different normal modes directions,18–21 (vi)

using normal modes as additional flexible variables

during docking simulations,22–25 and (vii) using mul-

tiple structures of the protein receptor obtained from

experimental studies, for example X-ray crystallog-

raphy or NMR analysis.26–28 The majority of these

types of approaches are very computationally inten-

sive. Furthermore, the success of these types of en-

semble docking approaches depends on two features

of the set of receptor conformations: (i) they should

include a wide range of binding site conformations

realized in nature and (ii) they should exclude arti-

fact conformations that can lead to the prediction of

incorrect poses or false positives in virtual screening

(i.e., prediction of a ligand with a high binding score

when it does not bind in nature). Thus, the crucial

ingredient in generating MRCs is to mimic nature

and sample binding induced conformations using

smart sampling strategies. Recently, Abagyan and

collaborators29 were able to incorporate the multiple

receptor conformational ensemble in a single dock-

ing simulation and reduce the sampling time with

their approach.

In this present study, we come up with a novel

sampling strategy by combining the ENM with rep-

lica exchange molecular dynamics (REMD)30 to gen-

erate ‘‘binding induced’’ MRCs. Clustering molecular

dynamics snapshots8–13 and generating conforma-

tions by perturbing the conformation along normal

modes18,19,24,31–33 have been separately applied to

incorporate the receptor flexibility in many docking

studies. Here, by merging these two approaches, our

goal is to bias MD search towards more binding-

related conformations through normal mode pre-

dicted fluctuation profiles, which in return, to

increase the efficiency and accuracy in generating

the multiple receptor ensemble.

Although molecular dynamics is the most reli-

able method to sample conformations within the

flexibility of protein structure, it is quite challenging

to sample the rare events of large amplitude fluctua-

tions (i.e., binding induced conformational changes)

especially for the large protein molecules. On the

other hand, the ENM34–41 which is based on a

purely mechanical model, and view a protein struc-

ture as an elastic network, have been applied to

many proteins to obtain slowest (i.e., functionally

related) fluctuations. The nodes of the elastic net-

work are a-carbons where identical springs connect

the ‘‘interacting’’ a-carbons in their native fold. The

model has the advantages that (i) it determines the

functionally related motions (even large ones) with-

out using any energy functions and (ii) it is compu-

tationally much more efficient than molecular dy-

namics. Most importantly, it has been shown that a

few lowest frequency modes (or their linear combina-

tions) of unbound conformations obtained by ENMs

can capture the conformational change upon bind-

ing.42–44 Recently, Dobbins et al.19 applied ENM to a

set of proteins from docking benchmark and found

that the modes with certain characteristic frequen-

cies can provide guidelines to predict the conforma-

tional change on protein–protein docking.

With the insights from these studies, we incor-

porate the modes that are related to the binding

induced conformational changes into the REMD

sampling search. Thus, in our approach, we use a

restrained REMD search where we bias the search

toward modal directions by using dihedral

restraints. Our approach has the following advan-

tages over using straightforward molecular dynam-

ics runs: (i) REMD can help to overcome potential

barriers with high temperature replicas, (ii) with

biasing towards normal modes, binding induced con-

formational changes (i.e., similar to bound conforma-

tions) can be sampled much more efficiently than

the straightforward sampling strategies, and (iii) it

is computationally faster, as it is well suited for par-

allel computing. Moreover, our approach has another

benefit over generating multiple flexible receptor

conformations using only normal modes (i.e., gener-

ating conformations by perturbation of normal

modes): coupling REMD with normal mode analysis

(NMA) enables us to mimic a wide range of binding

site conformations realized in nature. In addition

normal mode by itself cannot really sample native-

like bound conformations, it just gives us a crude

estimate. Thus coupling REMD with normal modes

can help us to predict binding affinities much more

accurately.

We test our approach in analyzing the binding

selectivity of postsynaptic density-95/Dlg/ZO-1 (PDZ)

domain proteins (PDZs). PDZs, which are distrib-

uted diversely in the genome, play critical roles in

(i) targeting proteins to specific membrane compart-

ments, (ii) assembling proteins into supramolecular

complexes, and (iii) regulating the function of their

ligands in cellular signaling pathways. This ties

them directly to the most puzzling diseases such as

Alzheimer’s, Parkinson’s, cancer, and diabetes. PDZs

perform their job by binding the C-terminal peptide

of specific protein partners. PDZ domains have been

categorized into two main classes according to the
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specificity of the interaction depending on its C-ter-

minal four amino acids of their binding ligands.45

Class I type PDZs bind to a C-terminal motif with

the sequence [Ser/Thr-X-U-COOH] and Class II type

PDZs prefer the sequence [U-X-U-COOH] where X is

any amino acid and U is any hydrophobic amino

acid. All PDZs share about 25% identity in the

sequence, similar secondary and tertiary structures

with an average backbone root mean square devia-

tion (RMSD) of around 1.4 Å and highly conserved

C-terminal peptide interactions.46 Although PDZ

binding site is well defined and PDZ motifs are clas-

sified based on their sequence type, there is still lit-

tle information available on the binding affinity and

stoichiometry of PDZ binding motifs and blocking

peptides. This is partly because their dynamics

rather than the structure or sequence determines

the binding affinity as indicated with very recent

study of Petit et al.47 In their study, they investi-

gated how binding affinity alters, when they remove

distal the third helix (a3) of third PDZ domain of

PSD-95 which is not observed in any other PDZs

and is not necessary to maintain the structure.

Strikingly, removal of a3 reduces the binding affinity

by 21-fold, even though it lies outside of the binding

site and does not make direct contact with the bind-

ing C-terminal peptide. This result along with many

others supports the notion that different PDZs

evolve to have different dynamics properties tailored

to mediate different functions in the cell, despite the

fact that they all have same conserved structure and

sequence.48

By analyzing the conformational dynamics of

the unbound PDZs, it may be possible to determine

their binding specificities. In our previous study, we

showed that the most collective fluctuation profile

obtained by modified version of ENM can capture on

the average 60% of the binding induced conforma-

tional changes in PDZ domains.49 We also investi-

gated the role of binding induced conformational dy-

namics of PDZs in their peptide selectivity and

classification. By clustering the binding induced fluc-

tuation profiles of a diverse set of PDZ domains, we

showed that ENM predicted normal modes not only

can identify the structural regions and types of cor-

related fluctuations critical for binding of Class I

and Class II peptides but also predicts binding selec-

tivity of PDZs.49

The challenge of PDZ domain (i.e., the reasons

behind their selectivity and promiscuity) and their

link to many different diseases has led to a number

of important experimental50,51 and computa-

tional49,52–58 studies. Niv and Weinstein also devel-

oped a flexible docking scheme (called PDZDoc-

Scheme),56 which is based on simulated annealing

molecular dynamics with the soft core potential or

flexible binding site side chains, followed by rotamer

optimization. When they apply their protocol to the

original bound structures (self-docking), their

scheme reproduces the structures of PDZ complexes

with peptides 4–8 amino acids long within 2 Å,

except for Syntenin (the RMSD of the best score is

3.7 Å when they redock Class II peptide to native

bound structure). However, when unbound or homol-

ogy models are used for docking, their flexible dock-

ing scheme can only predict the docked peptides

within an average RMSD of 3 Å. Here, we would

like to apply our flexible approach based on ENM-

guided REMD to improve upon the PDZ-binding

affinities, especially for the cases where only

unbound and homology structures are available.

In our flexible docking procedure, we first gen-

erate an initial set of conformations by perturbing

the unbound structure and homology models using

the weighted average profile of significant lowest

frequency ENM modes responsible for Class I and

Class II types binding in PDZs.49 Then, we further

sample these two sets of structures by running a di-

hedral restrained REMD where the restraints are

set with respect to the binding induced fluctuation

profile of ENM. After restrained REMD, the snap-

shots of the lowest replica are clustered and each

individual structure from this ensemble of conforma-

tions is docked against different peptides using

ROSETTALIGAND.59,60 The overall average ligand

RMSD values of redocking native peptides to native

bound structures and unbound structures are 0.31 Å

and 0.78 Å, respectively. However, when the native

peptides are docked to unbound structures with our

flexible approach, we obtain lowest energy models

with an average ligand RMSD of 0.36 Å from the

experimental structure, which is as good as redock-

ing peptides to bound structures. Although docking

methods provide low RMSD values for the docked

poses of the ligands, they are generally unreliable

for prediction of binding affinities. There are differ-

ent approaches to overcome this deficiency using em-

pirical scoring functions (DrugScore61 and XScore62)

and more physically realistic methods such as molec-

ular mechanics-generalized Born (GB) surface area

(SA) technique.63 While ROSETTALIGAND is successful

in obtaining good RMSD values for best poses, we

prefer using a knowledge-based scoring function

(DrugScore)61 to estimate the binding affinities of

ligands to a particular receptor with reasonable

accuracy. Thus, at the end of Rosetta run, we

re-evaluate the binding energy of the ligand bound

complex structure with the lowest Rosetta binding

score. Our results indicate that the binding prefer-

ence of different peptides in PDZs can be determined

using the docking approach based on ENM-guided

REMD. This would enable us to validate its applic-

ability to include protein flexibility in docking stud-

ies. In addition, we further apply our method on (i)

homolog structures of PDZs whose binding selectiv-

ities are verified experimentally and (ii) mutant
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structures of PDZ where mutations alter the binding

selectivity. We find that the inclusion of backbone

flexibility through MRCs, obtained by the normal

mode incorporated REMD runs, help us to discrimi-

nate the binding preference for homology models

and mutated structures, which are much more chal-

lenging cases for docking.

Materials and Methods

Benchmark
The four PDZs (PSD-95, GRIP, Syntenin, and Erbin)

with available unbound (apo) and bound (holo)

structures analyzed in this study are listed in

Table I. The crystal structures of unbound

and bound proteins are retrieved from the PDB

(http://www.rcsb.org).64 The PDB codes, the names

of the corresponding proteins, the class of PDZ do-

main according to their binding specificity and the

sequences of the binding peptides are displayed in

the columns of the table.

The ENM-guided REMD method for docking

With our docking scheme, called the ENM-guided

REMD method (ENM-REMD), our goal is to generate

an ensemble of a given receptor conformation which

can mimic the nature and includes the conformations

that are sampled through the binding process. Thus,

we generate a set of conformations from molecular dy-

namics trajectories where we bias the search toward

binding induced dynamics. We achieve this in three

steps: first using ENM, we obtain the binding induced

fluctuation profile of a protein by analyzing the slow-

est modes of unbound structure. Then, we obtain the

deformed structures of the unbound structure by per-

turbing the unbound structure along the binding fluc-

tuation modes of ENM (see details in subsection

‘‘Elastic Network Model and generating new confor-

mations using ENM’’). The perturbed/deformed struc-

tures are then used as initial structures in our

restrained REMD simulation where we define dihe-

dral restraints based on the ENM predicted binding

induced fluctuation profile (i.e., the regions predicted

as rigid/less flexible by ENM mode are assigned with

stronger restraints whereas the regions with high

flexibility are assigned with weaker restraints). After

defining the restraints and creating the perturbed

structures as initial structures based on ENM predict

binding induced fluctuation profile, as a second step,

we perform a dihedral restrained REMD simulation

(see the details of the simulation parameter in the

subsection ‘‘Dihedral restrained replica exchange mo-

lecular dynamics’’). Having our simulation restrained

with respect to binding induced fluctuation profiles

helps us to sample towards correct bound-like confor-

mations. Once the simulation is done, an ensemble of

MRCs is generated by clustering the conformations

sampled at the lowest replica. As a final step, each

structure in the ensemble is used for docking and the

best energy score docked pose is chosen as the best

result. Figure 1(A) displays each step in our flexible

docking protocol and the docking performance of the

conformations obtained after the each step is also pre-

sented in Figure 1(B) for the case of PSD-95. PSD-95

only binds to Class I type of peptides. Shown in Fig-

ure 1(B), as we further proceed the steps, the Class I

type binding affinity becomes more significant while

the RMSD value of the Class I peptide decreases.

We carry out four different tests: First, each

ligand is redocked into a known PDZ domain of the

bound conformation (self-docking). Second, different

ligands are docked into the original bound conforma-

tion (cross-docking). Third, the docking procedure

applied to bound structures is also repeated for the

unbound structures. Fourth, ligands are docked

against the multiple conformations obtained with

our flexible docking protocol (ENM-REMD). For fur-

ther testing, we apply the ENM-REMD method to

two protein structures (Lrcc7 and Cipp-PDZ9) gener-

ated from homology modeling and mutants of

another PDZ domain, PICK1 that have dual (Class I

and Class II types) binding specificity. All docking

analysis in this study is performed using ROSETTALI-

GAND where the ligand flexibility is established by

changing torsional angles, and the backbone of the

ligand and the whole protein are held fixed through-

out the docking simulation.

Elastic Network Model and generating new

conformations using ENM
The normal modes that correspond to Class I- and

Class II-type peptide binding fluctuations are

obtained using the Anisotropic Network Model (also

Table I. The PDB Codes, the Peptide Sequences, and the Binding Preferences of Proteins

Protein

PDB code Peptide

Unbound (apo) Bound (holo) Name Class Sequence

PSD-95 1BFE 1BE9 CRIPT I KQTSV
GRIP 1N7E 1N7F Liprin II ATVRTYSC
Syntenin 1NTE 1OBX Interleukin 5 receptor

alpha peptide
I DSVF

1OBY Syndecan-4 II NEFYA
Erbin 2H3L 1N7T A phage-derived peptide I TGWETWV

1MFG ErbB2 receptor II EYLGLDVPV
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referred to as the ENM).34 ENM is equivalent to a

NMA with an ENM at the Ca level and the Hessian is

based on a harmonic potential form.41 ENM uses the

coordinates of a structure from PDB database;64 with

the adjacent residues connected based on a cut-off dis-

tance with a spring to build a Hessian connectivity

matrix. A cutoff value of 16 Å is used in this study.

The diagonalized of the inverse of Hessian yields

it into 3N–6 eigenvalues (kn) and their corresponding

eigenvectors un, and we take the lowest frequency

(most global) eigenmodes. To find the binding induced

fluctuations, we focus on the contribution of each

mode, weighted by the inverse of corresponding eigen-

value. The distribution of mode frequencies (eigenval-

ues) are evaluated to address how many modes con-

tribute to the binding dynamics. A subset of modes

whose eigenvalues are dispersed from those of the

other modes is identified.49 In this approach, first, the

histogram of the eigenvalues is generated and then

the bin size is computed based on the highest disper-

sion in eigenvalue spectrum (i.e., the first gap in the

eigenvalue spectrum). The eigenvalues correspond to

the first bin are used along with their eigenmodes to

compute the weighted sum of the square fluctuations

obtained from

hDR2
i i ¼

X
k

½DR2
i �k ¼ 3kBT

c

X
k

k�1
k ðukÞ2

i

h i
: (1)

The weighted average of each mode corresponds to a

fluctuation between two oppositely directed motions.

We generate two sets of deformations for each mode

k as

Rið6tÞ ¼ R0
i6DRðkÞ

i ¼ R0
i6tk�1=2

u uENM
k

� �
i
; (2)

where t is a scaling parameter of the deformation43

and we used t ¼ 25 for the proteins tested in this

study. Each obtained structure that contains dis-

torted bond lengths and angles is further subjected

to an energy minimization of 50 steepest descent

iterations followed by 1000 conjugate gradient itera-

tions using the AMBER96 forcefield65 along with a

GBSA solvation model.66

It is also possible to use a set of experimental

structures in different liganded complexes (if they

are available) to compute the binding induced dy-

namics.67–70 The recent study of Bakan and Bahar

has shown that ENM predicted modes are very well

correlated with the principal components of the con-

formational change for a large set of different

liganded experimental structures of a given pro-

tein.71 We have repeated the same analysis for our

test protein: PDZ domain. Thus, we collect the dif-

ferent complex structure of PSD-95 available in the

Protein Data Bank. After structurally aligning these

experimental structures, we compute the mean posi-

tion of each Ca atom (hDRii) and construct the covar-

iance matrix based on the Ca deviations of protein

structures. Then, we obtain the principal compo-

nents of the structural change by decomposing this

Figure 1. (A) The procedure of the docking protocol. The deformed structures of the unbound structure are obtained moving

along the mode with ENM. Then, a large set of conformations starting from these structures is generated using the dihedral

restrained REMD. ROSETTALIGAND is used for self- and cross-docking runs (see ‘‘Materials and Methods’’ for details). (B) As

case study of PSD95, we tested the docking performance of the conformations obtained at each step shown in (A) by simply

docking Class I and Class I peptides. The RMSD values of the peptides and binding energy values are given. Overall, the

docking performance gets better as we further follow the steps. [Color figure can be viewed in the online issue, which is

available at www.interscience.wiley.com.]
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covariance matrix. The comparison of principal

modes with ENM modes of our calculations is also

highly correlated (see Supporting Information Fig.

S1). This indicates that ENM predicted normal

modes of unliganded (unbound) structure intrinsi-

cally captures the dynamics that lead to the

liganded (bounded) conformation, therefore they can

be used in docking to guide the unbound structure

towards binding induced dynamics.

Homology modeling and mutated proteins
The protein sequences are obtained from the

SMART (a Simple Modular Architecture Research

Tool) database72 and submitted to ‘‘The Structure

Prediction Meta Server’’73,74 with the option of an

automated homology model program ESyPref3D.

ESyPref3D is based on a strategy using neural net-

works to evaluate sequence alignments75 and uses

the MODELLER program76,77 to build the final

structural model. Homology models are constructed

with MODELLER with a minimal sequence similar-

ity of 50% to the target. To obtain mutated structure

of the PICK1 (PDZ protein interacting with C kinase

1), a computational point mutation is introduced

into the X-ray structure via Swiss PDB Viewer.78

Before applying ENM, homolog and mutated struc-

tures are subjected to an energy minimization of 50

steepest descent iterations followed by 1000 conju-

gate gradient iterations using AMBER 96 force

field65 along with a GB solvation model.66

Dihedral restrained replica exchange
molecular dynamics

We apply a dihedral restrained REMD30 to generate

a large set of conformations starting from deformed

structures obtained with ENM. First, dihedral

restraints are applied to move the conformations

along its binding induced fluctuations. The strength

of each dihedral restraint is adjusted with respect to

the fluctuation profile of normal modes obtained by

ENM, where the regions shown as the most flexible

in ENM analysis have weaker restraints compared

to rigid parts. This type of restraint biases our sam-

pling towards the directionality of the binding

induced fluctuations. Second, rather than using

unbound conformation as initial conformation, we

generate a set of conformations by perturbing the

unbound conformations along the normal mode vec-

tors as explained in ‘‘Elastic Network Model and

generating new conformations using ENM’’ section

of ‘‘Materials and Methods’’. The advantage of using

different initial conformations in REMD is that it

speeds up our search towards correct binding site

conformations.

The AMBER96 forcefield with a GB implicit sol-

vent model66 and a SA penalty term of 5 cal/mol Å2

are used in REMD. Backbone torsional restraints

that hold specific phi/psi angles in the same confor-

mation are applied to all replicas. We simulate each

protein with 26 replicas for 5 ns/replica ranging

from temperatures 270–450 K. Each structure is

subjected to an energy minimization of 50 steepest

descent iterations followed by 1000 conjugate gradi-

ent iterations prior to dynamics. The number of rep-

licas is arranged according to the acceptance ratio of

48% conformational swap change between replicas.

At the end of restrained REMD runs, trajectory of

the lowest replica are clustered to ~1 Å RMSD by

using a modified k-means algorithm. Then, docking

into available ligands is carried out on each member

of the clustered ensembles.

Docking with ROSETTALIGAND

We minimize each clustered conformation with a

short equilibration MD so that they can relieve some

of the strain of the system. Then, the individual

structures from the ensemble of PDZ domain confor-

mations obtained with REMD is docked into several

C-terminal peptides using ROSETTALIGAND
59,60 proto-

col in the ROSETTA package. ROSETTALIGAND is a

method specifically developed for docking ligands

into protein binding sites. The method uses a Monte

Carlo minimization protocol to optimize the rigid

body position and orientation of the ligand and the

protein side chain conformations. The energy func-

tion includes van der Waals interactions, an implicit

solvation model, an electrostatics model, an explicit

orientation hydrogen bonding potential, and an

empirically derived torsional potentials. The ROSET-

TALIGAND protocol we apply is substantially the same

as described in the study of Meiler and Baker.60 The

coordinates of the peptides are taken from the crys-

tallographic complexes and they are treated as a sin-

gle residue. The peptide flexibility is introduced by

changing torsional angles and the backbone is held

fixed throughout the docking simulation. In this

study, we perturb the ligand position and orientation

randomly with the translation of mean 0.1 Å and

the rotations of mean 3o, respectively. We compute

10,000 trajectories to generate a comprehensive en-

semble of conformations of the receptor-ligand com-

plex for each peptide. The formation of a distinct

binding funnel in binding energy/RMSD plots is an

indication of successful docking and the final docked

conformations are selected based on the lowest free

energy pose in the protein-binding site.

Assessing the scoring accuracy with DrugScore
After selecting the pose corresponding to the lowest

free energy of binding at the end of Rosetta docking,

we reassess the binding energy score of this complex

using DrugScore.61 Thus, we submit the receptor

part of the docked pose in PDB format and the

ligand coordinates in mol2 format into DrugScore

online (http://www.agklebe.de). DrugScore, a knowl-

edge-based scoring function for protein-ligand
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interactions, employs statistically derived pair

potentials using the distance-dependent occurrence

frequencies by which a particular ligand atom type

is found in contact with a protein atom type. Wang

and Wang79 studied the accuracy of different knowl-

edge-based scoring functions for docking of 100

complexes. They showed that only four, X-Score,

DrugScore, PLP (piece-wise linear potential), and G-

Score among 11 various postdocking ligand-protein

scoring functions give moderate correlations with

the experimentally determined protein-ligand bind-

ing affinities. Gohlke et al.61 and Velec et al.80 have

also reported that DrugScore shows better ranking

than the scoring functions within the docking pro-

grams. Furthermore, a recent study Dokholyan and

colleagues81 showed that the success rate of their

docking results was improved to 85% by consensus

scoring with DrugScore for a docking decoy set con-

sisting of 100 complexes. Likewise, our binding affin-

ities got improved by rescoring the lowest energy

pose by DrugScore. Higher negative values indicate

a higher binding affinity prediction. With Drug-

Score, the binding selectivity preferences for Class I

and Class II peptides become more significant.

Results and Discussion

The proposed methodology is applied to the PDZ

structures in Table I. First, we check the perform-

ance of ROSETTALIGAND by self-docking and cross-

docking tests for experimentally known bound struc-

tures. Docking becomes more challenging when the

experimental structures of bound complexes are not

available, especially when homology models need to

be used. For those cases, the success of docking

depends whether the right fluctuation profiles to-

ward bound-like conformations can be incorporated

accurately in docking computations. To test this, we

generate MRCs of the unbound structure with the

ENM-guided dihedral restraint REMD (ENM-

REMD) method described in ‘‘Materials and Meth-

ods’’ and shown schematically in Figure 1(A). In all

tables, we present RMSD values with respect to the

heavy atoms between the ligand position of the low-

est energy docking pose (i.e., the first rank based on

energy score) and that of the crystal structure. This

provides a measurement for the accuracy of any

given docking attempt, as most of the docking

approaches; the ligand is being kept flexible, while

keeping the receptor rigid. Strikingly, in most of the

docking tests, we observe that the lowest energy

score obtained with our ENM-REMD method also

has the lowest peptide RMSD value indicating the

success of our approach in sampling the correct pep-

tide poses.

Self-docking and cross-docking of bound
complex structures

As the ultimate purpose of protein-ligand docking

studies is to reproduce the bound complex structures

from the unbound conformations, it is important to

check the performance of docking protocol on the

experimentally known bound structures as a first

test. Thus, we perform docking using bound confor-

mations while the peptide and the backbone of

bound structure are kept rigid. The peptide RMSD

values of the poses with the best score for each PDZ

are summarized in Table II. The average RMSD of

the self-docking tests is 0.62 Å. Note that overall

RMSDs of up to 2 Å are generally accepted as near

native in docking.82 We also check the docking

scores of each bound structure with different pep-

tides. We find that the average RMSD values of the

cross-docking models (0.98 Å) are slightly higher

than that of the self-docking tests (0.62 Å). Overall,

we obtain quite low RMSD values with ROSETTALI-

GAND in case of docking ‘‘bound’’ structures.

Table II. Docking Rigid Ligand Conformations to their Native (Bound) Structures (Self-Docking
and Cross-Docking)

Protein PDB code

Peptide ROSETTALIGAND
DRUGSCORECSD

Class Sequence RMSD (Å)a Ebind (kcal/mol) Ebind (kcal/mol)b

PSD-95 1BE9 I KQTSV 0.70 �13.21 �195.32
II EYLGLDVPV 2.07 �14.26 �213.24

GRIP 1N7F I KQTSV 0.90 �15.33 �153.86
II ATVRTYSC 0.90 �21.96 �256.95

Syntenin 1OBX I DSVF 0.37 �15.83 �183.48
II NEFYA 0.60 �17.73 �187.15

1OBY I DSVF 0.80 �14.32 �184.83
II NEFYA 0.56 �22.44 �269.06

Erbin 1N7T I TGWETWV 0.83 �16.50 �232.20
II EYLGLDVPV 2.0 �11.56 �177.19

1MFG I TGWETWV 0.67 �15.07 �196.94
II EYLGLDVPV 0.35 �21.71 �308.70

a RMSD values between the top scoring pose in Ångstroms measured over all heavy atoms of the peptide and the peptide’s
position in the crystal structure.
b Calculated with DrugScore online (http://pc1664.pharmazie.uni-marburg.de/drugscore/). Higher negative values indicate a
higher-affinity prediction.
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Furthermore, the low energy scores of the lowest

RMSD structures obtained with self-docking prove

the binding preference of each PDZs. It has already

been shown that ROSETTALIGAND, which includes side

chain conformations and ligand flexibility, is a suc-

cessful approach providing an accurate prediction

compared to other existing docking methods in self-

docking experiments60 and the results of our self-

docking and cross-docking of bound structures also

agree with these findings.

Evaluation of results of docking jobs
based on ENM-guided dihedral restrained

REMD snapshots

For all PDZs, we dock natural binding peptides

along with different peptides using unbound struc-

tures in order to test if we can predict the binding

selectivities of PDZs with our approach. First, we

generate deformed conformations by perturbing the

unbound conformation along binding-related fluctua-

tion profiles using a few slowest modes of ENM. Dif-

ferent sets of slowest modes (i.e., the slowest modes

that are highly coupled with binding related fluctua-

tions) are used for each PDZ by carefully analyzing

the eigenvalue spectrum as explained in method sec-

tion. Thus, the weighted averages of five (1–5), three

(1–3), five (1–5), and two (1–2) ENM modes are used

for PSD-95, GRIP, Syntenin, and Erbin, respectively

to generate the deformed conformations (see ‘‘Meth-

ods’’ for details). The overall average backbone

RMSD between deformed ones and unbound confor-

mations of PDZs based on the a-carbons is 0.84 Å,

while average RMSD between deformed ones and

bound conformations is only 1.06 Å. These struc-

tures are used as initial structures in the dihedral

restrained REMD simulations. Finally, the lowest

replica trajectories of the dihedral restrained REMD

are clustered to generate a MRC set for the peptide

docking. The lowest binding energy scores and corre-

sponding peptide RMSDs are summarized in Table

III for two different docking cases (i) using only

unbound experimental structure for docking and

(ii) ensemble of structures obtained by ENM-guided

REMD for docking. The selected best-scoring poses

(i.e., the poses correspond to the lowest binding

energy) are highlighted with gray color. The success-

ful docking runs are frequently accompanied with

the formation of a distinct binding funnel in the

binding energy/RMSD plots.60 Figure 2(A) shows the

binding energy score versus RMSD of the docked

complex for PSD-95. PSD-95 only binds to Class I

peptides. Simply, using only unbound experimental

structure of PSD95 for docking to Class I and Class

II peptides does not yield the selectivity preference

[brown and red dots in Fig. 2(A)]. However, when

MRCs obtained by ENM-guided REMD are used for

docking, we clearly see that our flexible scheme does

a better job in indicating the binding selectivity of

PSD-95 (blue and cyan dots in the plots). The best-

scoring poses for unbound conformation and ENM-

guided REMD snapshot obtained from our docking

scheme are superimposed on the original Class I

peptide positions. Illustrated in Figure 2(A), green

represents the original peptide (i.e., from the com-

plex crystal structure) while blue and brown repre-

sent the pose with the best score of the ENM-guided

REMD snapshot and unbound conformation, respec-

tively. We obtain an excellent agreement with the

ENM-guided REMD snapshot.

For the unbound GRIP docked to its original

ligand (Class II), we obtain 0.29 Å as the RMSD of

best score compared to that of 1.8 Å in PDZDoc-

Scheme of Niv and Weinstein.56 Surprisingly, the

unbound structure of GRIP provides a good initial

structure for docking. It might be expected that the

prediction accuracy of the docking calculations

Table III. Docking of Peptides to Unbound Structures and ENM-REMD Snapshots

Structure Mode
Peptide

class
Peptide

sequence

ROSETTALIGAND DRUGSCORECSD

RMSD (Å) Ebind (kcal/mol) RMSD (Å) Ebind (kcal/mol)

PSD-95 Unbound (1BFE) I KQTSV 1.49 �6.92 1.63 �96.44
II EYLGLDVPV 2.08 �9.90 2.06 �98.95

ENM-REMD-Dock 1�5 I KQTSV 0.37 �9.36 0.36 �118.90
II EYLGLDVPV 1.57 �8.67 1.56 �41.06

GRIP Unbound (1N7E) I KQTSV 0.73 �11.33 0.69 �135.22
II ATVRTYSC 0.28 �22.95 0.27 �169.35

ENM-REMD-Dock 1�3 I KQTSV 0.68 �7.93 0.66 �76.62
II ATVRTYSC 0.61 �17.75 0.57 �175.23

Syntenin Unbound (1NTE) I DSVF 0.63 �15.13 0.65 �142.83
II NEFYA 0.62 �15.31 0.59 �155.42

ENM-REMD-Dock 1�5 I DSVF 0.33 �12.50 0.33 �122.59
II NEFYA 0.24 �17.83 0.24 �168.33

Erbin Unbound (2H3L) I TGWETWV 0.72 �16.95 0.71 �33.25
II EYLGLDVPV 0.93 �12.02 0.89 �132.91

ENM-REMD-Dock 1–2 I TGWETWV 0.40 �19.99 0.38 �238.59
II EYLGLDVPV 0.18 �20.15 0.18 �229.36
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decreases with the quality of the receptor from the

bound (holo) protein to the unbound (apo) protein to

the modeled structures.83 In the case of the unbound

structure of GRIP, its conformation may be adequate

to accommodate a ligand. Figure 2(B) displays the

comparison of the binding energy score versus

RMSD of the docked complex. With our docking

scheme, we also find that its binding specificity is

towards Class II type peptide. The difference of the

binding energy score obtained from DrugScore

between Class I and Class II peptides is 34.13 kcal/

mol when the unbound structures are used for dock-

ing. However, the difference in docking to ENM-

guided REMD snapshots is 98.61 kcal/mol, which is

much more significant (see Table III).

In Figures 3(A,B), we present the binding

energy score versus RMSD of two PDZs (Syntenin

and Erbin) which exhibit Class I and II dual specif-

icities. First, flexible docking scheme can indicate

the dual specificities of these two PDZs (i.e., the

DrugScore values of lowest energy complexes

obtained by ROSETTALIGAND are very close as seen in

Table III) whereas using only unbound structure in

ROSETTALIGAND fails to discriminate the dual specific-

ity of Erbin. Moreover, using ENM-guided REMD

snapshots as multiple receptor ensembles also

Figure 2. The binding energy score versus RMSD of the docked complex for (A) PSD-95 and (B) GRIP. Docking Class I and

Class II peptides to the unbound conformation of PSD-95 does not discriminate the selectivity preference [brown (Class I) and

red (Class II) dots in the plots]. However, when ENM-REMD snapshots are used (i.e., when the backbone flexibility is also

considered), our flexible scheme does a better job than simply docking to the unbound structure of PSD-95 [blue (Class I)

and cyan (Class II) dots in the plots]. (C) The comparison of docking Class I peptide to the unbound structure (upper figure)

and the ENM-REMD snapshot (lower figure) is shown as ribbon diagrams. Green represents the actual binding mode in both

docking, whereas blue and brown ones are for the docked peptide conformations corresponding to the lowest binding

energies of ENM-REMD snapshot and the unbound structure, respectively. (D) Ribbon diagrams for docking Class II type of

peptide to the unbound conformation and ENM-REMD conformation by ROSETTALIGAND. [Color figure can be viewed in the

online issue, which is available at www.interscience.wiley.com.]
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provide the discrimination of binding affinities for

Class I and Class II types of PDZs. Figure 3(A)

shows that Syntenin binds Class II peptide with

higher affinity than Class I peptide, which is con-

sistent with experimental observation indicating

that the PDZ2 domain of Syntenin binds slightly

better to the Class II than to the Class I peptide84

(the binding energies of the poses are –168.33 kcal/

mol and –122.59 kcal/mol for docking into Class II

and Class I peptides, respectively). When we com-

pare the binding energy values of each peptide for

Erbin PDZ, Erbin binds Class I peptide with higher

affinity than Class II peptide [Fig. 3(B)]. This agrees

with the intrinsic binding affinities between the

Erbin PDZ domain and peptides measured using

ELISA. The affinity of the phage-selected peptide

(TGWETWV) binding at a submicromolar level is

higher than the affinities measured for the ErbB2

peptide (EYLGLDVPV).85,86 Overall, incorporating

flexibility with ENM-guided REMD runs predicts

binding selectivities of PDZ domains very accurately.

The advantage of docking procedure
We believe the success of our method relies on sam-

pling the bound-like conformations through perform-

ing an REMD simulation guided by the binding-

related normal modes. To test the efficiency of our

docking scheme, we compare our schemes with

Figure 3. The binding energy score versus RMSD of the docked complex for (A) Syntenin and (B) Erbin that have dual

specificities. Docking Class I and Class II peptides to the unbound conformations of Syntenin and Erbin does not discriminate

the selectivity preference [brown (Class I) and red (Class II) dots in the plots]. When ENM-REMD conformations are used,

Syntenin binds slightly better to the Class II peptide (cyan dots) than to the Class I peptide (blue dots) whereas Erbin binds

Class I peptide with higher affinity than the Class II peptide (blue and cyan dots in the plots). (C) The corresponding lowest

energy structures of docking Class II peptide to the unbound structure (upper figure) and the ENM-REMD snapshot (lower

figure) of Syntenin are displayed as ribbon diagrams along with actual peptide (green). (D) Docking Class I peptide to the best

pose obtained for the unbound structure (upper figure) and the ENM-REMD snapshot (lower figure) of Erbin are presented.

[Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]
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docking the peptides into (i) the unbound structure,

(ii) conformations generated by perturbing the

unbound conformation using the binding-related

normal modes of ENM, and (iii) an ensemble of con-

formations obtained by the snapshot of the REMD

simulation started from unbound experimental

structure. Table IV presents the comparison of the

docking results of PSD-95 with these different

approaches. PSD-95 prefers Class I type of binding,

therefore docking scores of Class I peptide should be

lower than those of Class II peptide. As expected,

docking Class I peptide to the unbound structure of

PSD-95 provides the worst RMSD value (1.49 Å).

Moreover, docking of Class II peptide to the unbound

structure gives a lower energy score than that of

Class I peptide. Docking studies using the conforma-

tions generated by the perturbation of ENM mode is

computationally less expensive and provides good

RMSD values (0.44 Å and 0.65 Å for two different

deformed structures). However, the corresponding

binding energy values obtained with DrugScore do

not clearly indicate the binding affinity of PSD-95

(i.e., DrugScore binding energies are –54.64 kcal/mol

for docking of Class I peptide and –85.57 kcal/mol

for docking of Class II peptide). Thus, incorporating

only ENM modes to docking does not differentiate

the binding preference of PSD-95. Likewise, the

clustered conformations of straightforward REMD

simulation do not discriminate the binding prefer-

ence and this approach also fails to capture the

high-resolution low RMSD pose of PSD-95 complex.

We get 1.01 Å and –60.57 kcal/mol by docking the

snapshots of the REMD simulation starting from an

unbound experimental structure. However, our dock-

ing approach successfully not only distinguishes the

binding preference but also predicts the binding

pose of receptor accurately. In our docking protocol,

first, we generate new conformations by perturbing

the unbound structure along the weighted averages

of first five modes (1–5) of ENM, second, we use

these conformations as initial structures for the

restrained REMD simulations where the dihedral

restraints are imposed with respect to average nor-

mal mode of ENM. Finally, clustered structures of

the REMD simulation are docked into peptides. The

pose obtained by our new protocol does not only pro-

vide the lowest binding energy (–118.90 kcal/mol)

but also gives the best RMSD value of the receptor

and significant binding energy differences between

Class I and Class II peptides. These results indicate

that REMD conformational search along the modes

of ENM based on a dihedral restrained REMD

improves the docking prediction accuracy by sam-

pling native-like bound conformations. This observa-

tion is consistent with the other PDZs we tested as

explained above.

Flexible docking for homolog and mutant

structures
In a more stringent test, we applied our flexible

approach to homologs of PDZs whose binding selec-

tivities are verified experimentally and also to PDZs

whose binding specificities are altered upon muta-

tion. Both Class I and Class II peptides were docked

to homolog structures obtained using MODELLER.

Then, we also obtained MRCs for homolog structures

by our ENM-guided REMD approach using MODEL-

LER prediction as a starting conformation. The low-

est binding energy scores of the docked poses for

both homolog structures and their corresponding

RMSD values are presented in Table V. The docked

pose of Lrcc7 which has Class I binding specificity

has very low RMSD values (0.29 Å when homology

model is used for docking, and 0.23 Å when MRCs of

ENM-REMD approach are used for docking). Like-

wise, docking Class II peptide to Cipp-PDZ9, exhibit-

ing Class II type binding affinity, yields a 1.12 Å

RMSD docked pose when homology model is simply

used for docking. On the other hand, docking Class

II peptide to of Cipp-PDZ9 using our flexible

approach gives consistently lower RMSD of 0.23 Å.

As observed in earlier PDZ docking cases, the inclu-

sion of backbone flexibility through ENM-REMD

snapshots does a better job in discriminating that

that Lrcc7 has affinity towards Class I peptide, and

Table IV. Docking Ligands into Unbound and Structures Obtained with ENM, MD Only, and ENM-Guided REMD
for PSD-95

PSD-95 Peptide class Peptide sequence

ROSETTALIGAND DRUGSCORECSD

RMSD (Å) Ebind (kcal/mol) RMSD (Å) Ebind (kcal/mol)

Unbound (1BFE) I KQTSV 1.49 �6.92 1.63 �96.44
II EYLGLDVPV 2.08 �9.90 2.06 �98.95

ENM-Conf1 I KQTSV 0.49 �9.48 0.44 �54.64
II EYLGLDVPV 1.98 �6.88 1.93 �85.57

ENM-Conf2 I KQTSV 0.96 �6.57 0.95 �15.55
II EYLGLDVPV 1.73 �7.28 1.72 �41.25

MD-Unbound I KQTSV 1.05 �5.66 1.01 �60.57
II EYLGLDVPV 5.22 �5.41 5.15 �50.79

ENM-REMD-Dock 1–5 I KQTSV 0.37 �9.36 0.36 �118.90
II EYLGLDVPV 1.57 �8.67 1.56 �41.06
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likewise Cipp-PDZ9 prefers Class II peptide (see Ta-

ble V for DrugScore energy scores).

We further test our flexible docking protocol by

examining the binding characteristics of wild-type

PICK1 and PICK1 carrying various mutations. The

wild type of PICK1 can bind both Class I (PKCa)

and Class II (GluR2) peptides.87–89 Yet, there are

several mutations that have been reported previ-

ously, such as the mutation of lysine 27 (K27E) to

glutamic acid alone or together with aspartic acid 28

(D28A) to alanine, which completely disrupt the

interaction with both GluR2 and PKCa.89 Moreover,

the experimental study of Dev et al.87 has shown

that mutating lysine 27 to glutamic acid, a point

Table V. Prediction for Homolog and Mutated PICK1 Structures

Structure Mode

Peptide ROSETTALIGAND DRUGSCORECSD

Class Sequence RMSD (Å) Ebind (kcal/mol) RMSD (Å) Ebind (kcal/mol)

Lrcc7 Modeller homolog I TGWETWV 0.29 �15.46 0.29 �181.46
II EYLGLDVPV 0.41 �16.88 0.37 �148.52

ENM-REMD–Dock 1–4 I TGWETWV 0.23 �9.01 0.23 �183.83
II EYLGLDVPV 0.29 �15.88 0.28 �106.63

Cipp-PDZ9 Modeller homolog I KQTSV 0.39 �13.75 0.38 �85.72
II EYLGLDVPV 1.12 �13.77 1.11 �120.00

ENM-REMD-Dock 1–2 I KQTSV 0.34 �15.60 0.34 �95.00
II EYLGLDVPV 0.23 �14.54 0.23 �132.73

PICK1-wt Bound (2gzv) I LQSAV 2.54 �8.95 2.42 �2.86
II ESVKI 1.15 �6.80 1.15 �98.12

ENM-REMD-Dock 1–2 I LQSAV 1.36 �13.16 1.30 �103.45
II ESVKI 1.13 �12.67 1.11 �54.99

PICK1-K27E Bound-K27E I LQSAV 1.97 �9.27 1.88 12.20
II ESVKI 1.25 �6.65 1.25 �89.70

ENM-REMD-Dock 1–2 I LQSAV 1.04 �13.76 0.91 �79.78
II ESVKI 1.07 �11.62 1.03 37.71

PICK1-K83H Bound-K83H I LQSAV 2.98 �8.08 2.88 �50.48
II ESVKI 0.81 �5.15 0.78 �94.99

ENM-REMD-Dock 1–8 I LQSAV 0.97 �11.41 0.85 �81.25
II ESVKI 1.32 �10.41 1.30 25.61

Figure 4. The binding energy score versus RMSD of the docked complex for PICK1. Wild-type PICK1 (A) prefers Class II

type of peptide sequence while K25E mutation (B) and K83H mutation (C) on PICK1 alter its binding specificity to Class I type

of peptide sequences. Docking Class I and Class II peptides to the unbound conformation of wild and mutant PICK1 does

not show the change in selectivity upon mutation [brown (Class I) and red (Class II) dots in the plots]. However, when REMD-

ENM conformations are used, wild type has a higher affinity for Class II type peptide binding [cyan on (A)] whereas both

mutants prefer Class I type of peptide [blue on (B) and (C)]. The corresponding lowest energy structures of PDZ-peptide

complexes are represented as ribbon diagrams along with experimental peptide position. [Color figure can be viewed in the

online issue, which is available at www.interscience.wiley.com.]
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mutation on the bA–bB loop, changes the binding se-

lectivity of PICK1 to exhibit only Class I behavior.

Another mutation study that replaces the residue in

aB helix (lysine 83 to histidine) by Madsen et al.88

showed that the preference of PICK1 reverts to that

of a Class I motif. Docking Class I and Class II pep-

tides to the unbound conformation of wild and mu-

tant PICK1 does not show the change in selectivity

upon mutation [brown and red dots in the Figure

4(A–C)]. However, when the ENM-guided REMD

snapshot are used, the wild type has a higher affin-

ity for Class II peptide [cyan on (A)] whereas both

mutants prefer Class I peptide [blue on Fig. 4(B,C)].

From the binding energy score versus RMSD of the

docked complex for PICK1, we can clearly see that

wild-type PICK1 [Fig. 4(A)] prefers Class II type of

peptide sequence while K25E mutation [Fig. 4(B)]

and K83H [Fig. 4(C)] on PICK1 alters its binding

specificity to Class I type of peptide sequences as

observed experimentally.

Conclusions
We present a new flexible docking scheme which

biases REMD search towards binding induced con-

formational changes by incorporating the fluctuation

profiles obtained by slowest eigenvectors of ENM

called ENM-guided REMD-DOCK method. We

applied our method to a set of PDZs, which shows

different affinities to different peptide types. Rigor-

ous analysis has shown that generating MRCs using

ENM-guided REMD can be a useful tool to predict

binding poses and selectivities accurately. In our

method, the backbone flexibility is introduced by

perturbing the receptor structure along its relevant

normal modes and the conformational space is

explored with the help of a dihedral restrained

REMD simulation, which enables us to sample the

conformational space towards bound-like conforma-

tions. The individual snapshots of the receptor are

docked against various ligands to generate a collec-

tion of docked complexes of different stabilities by

using a docking program (ROSETTALIGAND). The final

docked complex of the lowest binding energy score is

also coupled with an independent scoring method

(DrugScore) to increase accuracy in docking scores.

Our results show that (i) the receptor flexibility

plays a key role in determining the binding selectiv-

ities of the PDZs, (ii) incorporating flexibility in

PDZ-peptide docking predicts the docked poses accu-

rately with an RMSD of >1 Å, (iii) the experimental

binding affinities are captured qualitatively (includ-

ing the higher affinity of the Erbin for the Class I

peptide, and that of the Syntenin for Class II pep-

tide) when the MRCs are generated by REMD sam-

pling conformational space along binding induced

fluctuation profiles of normal modes, and (iv) the

final screening process using DrugScore enables us

to discriminate the binding specificity of ligands in

PDZs accurately.
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