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Abstract
It has long been speculated that underlying variations in tissue anatomy affect in vivo spectroscopic
measurements. We investigate the effects of cervical anatomy on reflectance and fluorescence
spectroscopy to guide the development of a diagnostic algorithm for identifying high-grade squamous
intraepithelial lesions (HSILs) free of the confounding effects of anatomy. We use spectroscopy in
both contact probe and imaging modes to study patients undergoing either colposcopy or treatment
for HSIL. Physical models of light propagation in tissue are used to extract parameters related to
tissue morphology and biochemistry. Our results show that the transformation zone, the area in which
the vast majority of HSILs are found, is spectroscopically distinct from the adjacent squamous
mucosa, and that these anatomical differences can directly influence spectroscopic diagnostic
parameters. Specifically, we demonstrate that performance of diagnostic algorithms for identifying
HSILs is artificially enhanced when clinically normal squamous sites are included in the statistical
analysis of the spectroscopic data. We conclude that underlying differences in tissue anatomy can
have a confounding effect on diagnostic spectroscopic parameters and that the common practice of
including clinically normal squamous sites in cervical spectroscopy results in artificially improved
performance in distinguishing HSILs from clinically suspicious non-HSILs.

Keywords
cervical cancer; squamous intraepithelial lesions; reflectance; fluorescence; quantitative
spectroscopy; quantitative spectroscopy imaging

1 Introduction
The effectiveness of reflectance and fluorescence spectroscopy for noninvasive in vivo
diagnosis of cervical squamous intraepithelial lesions (SILs) has been extensively evaluated.
Contact probes, as well as imaging techniques with wide-area surveillance capabilities, have
been tested clinically in various stages, from pilot to phase III clinical studies.1–10 The results
show the potential of reflectance and fluorescence spectroscopy, individually or in
combination, to improve the effectiveness of disease detection.

The sources of spectroscopic contrast in tissue reflectance and fluorescence due to cervical
dysplasia include loss of differentiation of the epithelial cells,11 degradation and reorganization
of stromal collagen by matrix metalloproteinase activity,12,13 and angiogenesis.14 Several
researchers have developed physically based models to extract tissue spectroscopic parameters
and used them to develop disease diagnostic algorithms.3,7,15–17 The advantage of the model-
based spectroscopy techniques is that they provide an understanding of the origins of
spectroscopic contrast between normal and diseased tissue, and the diagnosis is based on
quantitative information about tissue morphology and biochemistry.

We note that cervical tissue spectroscopy is affected not only by disease, but also by age,18,
19 menopausal status,19,20 time after the application of acetic acid,9 and normal variations in
cervical anatomy.2,10,19 For example, spectroscopic differences between normal squamous
mucosa (the ectocervix, the outer zone of the cervix) and glandular mucosa (the endocervix,
the inner zone of the cervix) have been noted previously2,10 and explained by differences in
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anatomy. Another important source of normal variations in anatomy is the dynamic changes
that occur in the cervix during reproductive life, specifically the process of squamous
metaplasia in the transformation zone (the region between the ectocervix and the endocervix).
11,21,22

Although a minority of cervical neoplasia is found in the ectocervix, the vast majority of
clinically significant neoplastic lesions (high-grade intraepithelial lesions, HSILs) are found
within the transformation zone.11,22 Normal anatomical variations between the transformation
zone and normal squamous mucosa should be reflected in tissue spectroscopy and, if
significant, must be accounted for when developing spectral diagnostic algorithms.
Furthermore, ectocervix and endocervix are easily identified by colposcopic examination.23

Therefore, in order to improve the accuracy of clinical HSIL detection, spectroscopy must
accurately identify HSILs within the transformation zone. In order to achieve this goal,
spectroscopy must be able to reliably resolve the disease process in the context of the
background microanatomic complexity inherent in the cervix.

Historically, spectroscopic studies have included clinically normal squamous sites, either
nonbiopsied or histopathologically confirmed, in the validation set for diagnosing HSILs.2,4,
6,8,10 Mourant et al.7 and Georgakoudi et al.3 noted an apparent increase in diagnostic power
when clinically normal tissues were included in the validation set. Georgakoudi et al. also noted
that normal squamous tissue and the transformation zone had different spectroscopic
properties, consistent with the Freeberg et al.19 observation that tissue type influences both
reflectance and fluorescence measurements. Freeberg et al. concluded that understanding the
effects of anatomy on spectroscopy may have a significant impact on diagnostic algorithm
development. Nevertheless, this has not been further explored, and the reasons for differences
in diagnostic power when clinically normal tissues were included have not been explained.

In this study, we demonstrate the effects of cervical anatomy on spectroscopy with an aim to
facilitate the development of a diagnostic algorithm free of the confounding effects of cervical
anatomy. We use spectroscopy in both contact probe and imaging modes to study patients
undergoing either colposcopic examination or treatment via the loop electrosurgical excision
procedure (LEEP) for uterine cervical squamous neoplasia. Physical models are used to fit the
spectra and extract parameters related to tissue morphology and biochemistry. The extracted
parameters are then used to develop spectroscopic algorithms with two aims: (1) to characterize
changes in spectroscopic parameters due to anatomy, and (2) to examine the effects of anatomy
on the apparent performance of diagnostic algorithms for identifying HSILs.

2 Materials and Methods
2.1 Data Collection

The clinical in vivo study was conducted at the Boston Medical Center (BMC). The protocol
was approved by the BMC Institutional Review Board, as well as the Committee on the Use
of Humans as Experimental Subjects of the Massachusetts Institute of Technology.

The contact probe study involved 43 patients undergoing colposcopic evaluation following an
abnormal Pap smear. For each patient, reflectance and fluorescence spectra were collected
from a clinically normal squamous (CNS) site as well as abnormal sites using a fiber-optic-
based clinical device developed by our laboratory known as the fast excitation emission matrix
(FastEEM). The instrument and the calibration procedures have been previously described.
24 The optical fiber probe, which samples an area of tissue ~1 mm in diameter, was disinfected
with CIDEX OPA (Advanced Sterilization Products, Irvine, California) before each procedure.
After the application of acetic acid (5% solution) to the cervix during colposcopy, the probe
was brought into gentle contact with the tissue. Each measurement, which consisted of the
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average of five sets of white-light reflectance spectra (300 to 800-nm emission) and five sets
of nine fluorescence spectra (308 460-nm excitation), was acquired in approximately 3 seconds.
Two to three measurements were acquired for each tissue site. Colposcopically abnormal sites
were then biopsied and evaluated by histopathology. Clinically normal sites were not biopsied.

The contact probe study was extended to the imaging mode using a new technique, quantitative
spectroscopy imaging (QSI).25 In vivo imaging data were acquired using the QSI device from
two patients who were referred for LEEP due to prior abnormal biopsy results. For each patient,
reflectance and fluorescence spectra from the entire cervix were obtained. QSI illuminates a
1-mm2 region of the cervix with visible and 337-nm fluorescence excitation light and collects
reflectance and fluorescence spectra. Once the measurement for one region is completed,
another 1-mm2 region is interrogated via raster scanning until a 2.1 cm×2.1 cm area of the
cervix with 441 interrogation points (pixels) is examined.

2.2 Histopathology
Each contact probe biopsy specimen underwent standard histopathology processing. The
hematoxylin and eosin stained tissue sections were evaluated by three experienced pathologists
using standard diagnostic criteria (C.C., A.M., T.D.). Consensus diagnosis (agreement of two
of the three pathologists) was used as the diagnostic gold standard. Each biopsied site was
classified as either HSIL or biopsied non-HSIL (negative for SIL or low-grade squamous
intraepithelial lesion, LSIL). All sites were further examined by a single pathologist (C.C.) for
the absence or presence of features consistent with the transformation zone.

Upon submission to pathology, the two LEEP specimens studied by imaging instrument were
cut into 12 pieces corresponding to the 12 clock directions per standard of care. From each
piece, a section extending from endocervix through the transformation zone to ectocervix was
prepared for evaluation under a microscope. For each section, a single pathologist recorded
the extent and location of any HSIL present with millimeter precision. The location and the
extent of the endocervix, transformation zone, and ectocervix were also recorded. The end
result was a combined anatomy/disease map showing the location of cervical tissue zones, as
well as the location of HSIL on the cervix.

2.3 Data Analysis
2.3.1 Contact probe—The results from four patients were excluded due to instrument
malfunctions (e.g., CCD camera overheat, probe damage). Raw spectra for each set of
measurements were examined, and those with poor overlap between repeat measurements were
excluded. We excluded three study sites for which all sets in a measurement were inconsistent
(>10% average standard deviation between measurements) as well as four sites for which the
tissue started bleeding due to probe contact.

2.3.2 Diffuse reflectance spectroscopy (DRS)—The reflectance spectra were analyzed
using the diffusion approximation model developed by Zonios et al.26 to extract properties

such as the reduced scattering coefficient,  and the absorption coefficient, μa. An analytical

expression was used to describe ;

(1)
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where the wavelength, λ, is expressed in units of microns, and λ0 is equal to 0.7 μm. The A
parameter is related to scatterer density, and the B parameter is related to the size of the Mie
scatterers. The first term on the right-hand side of this expression has been commonly used by
other researchers to model scattering from cells and tissues. We found that the second term
was required to accurately model reflectance at shorter wavelengths (<400 nm), in which
scattering from Rayleigh particles is significant. Reflectance spectra were fit over the range of
350 to 750 nm using a constrained nonlinear least-squares fitting algorithm.

The absorption coefficient was modeled as the sum of the hemoglobin and β-carotene
absorption coefficients as follows:

(2)

The absorption coefficient of hemoglobin was modified by a correction factor to account for
the fact that hemoglobin is confined to blood vessels, rather than homogeneously distributed
in the tissue.27 This effect, called vessel packaging, is caused by the fact that blood vessels are
opaque to 420 nm light, which is strongly absorbed by hemoglobin, but become more
transparent to longer wavelengths of light. As a result, the intensity of the Soret band (420 nm)
is reduced relative to that of the weaker hemoglobin absorption bands. We used the correction
factor Cdiff(λ,bυr) developed by van Veen et al.28 and Svaasand et al.29 to account for the effects
of vessel packaging:

(3)

where bυr is the effective blood vessel radius in units of mm, and  is the absorption
coefficient of whole blood in units of mm−1, given by:

(4)

where α is the oxygen saturation of hemoglobin, and εHbO2 and εHb are the well-known
extinction coefficients of oxygenated and deoxygenated hemoglobin.30 We assume that the
hemoglobin concentration of whole blood is 150 mg/mL (Ref. 28), and impose a lower limit
of 2.5 μm for bυr, since the minimum diameter of a capillary is on the order of 5 to 7 μm.31

The absorption coefficient of hemoglobin, , is then given by the expression:

(5)

where ν is the volume fraction of blood sampled and is described by the ratio:

(6)

with Hb the total concentration of hemoglobin in units of mg/mL.

The absorption coefficient of β-carotene, , is given by:
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(7)

where [β-car] is the concentration of β-carotene in mg/ml, and εβ-car is its extinction coefficient.
32 Although β-carotene has not been previously used in modeling reflectance measurements
of the cervix, there are numerous reports in the literature of its presence in cervical cells as
well as in plasma.33,34

2.3.3 Intrinsic fluorescence spectroscopy (IFS)—An intrinsic fluorescence algorithm
based on the photon-migration model was used to correct the tissue fluorescence emission
spectra for distortions introduced by absorption and scattering.14 The intrinsic fluorescence
spectra were fit using a linear combination of tissue fluorophore basis spectra. The tissue
fluorophore basis spectra were extracted from the intrinsic fluorescence spectra using
multivariate curve resolution (MCR).35 The areas under the IFS spectra, as well as the basis
spectra, were normalized to unity. We focus the analysis to IFS excited at 340 nm, an excitation
wavelength available for both the contact probe system and the imaging system. For 340-nm
excitation, the intrinsic fluorescence emission spectra could be accurately modeled as a linear
combination of two fluorophores, the reduced form of nicotinamide adenine dinucleotide
(NADH) and collagen (Coll). The IFS spectra were fit to extract the fractional contribution of
these two components.

2.3.4 Spectroscopy parameters—Using the DRS and IFS models described earlier, we
obtained nine parameters from modeling contact probe tissue reflectance and fluorescence:
A [mm−1], B, C [mm−1], Hb [mg/ml], α, bυr [mm], β-car [mg/ml], Coll, and NADH. These
nine parameters were used in the development and statistical analysis of the diagnostic
algorithms as described in the following.

2.3.5 Imaging data analysis—The same DRS and IFS analysis applied to the contact probe
data was also applied to the imaging data. Unlike the contact probe data, which extends to the
ultraviolet (UV) region, the imaging instrument collects reflectance spectra only over the
visible wavelength range. Reflectance spectra were fit over the range of 400 to 700 nm using
a constrained nonlinear least-squares fitting algorithm. For this wavelength range, the analysis
of the reflectance spectra did not require inclusion of the C parameter or bυr. Additionally,
reflectance data collected with the imaging instrument did not demonstrate the absorption
features of β-carotene. The output of the imaging data analysis is 21×21 parameter maps for
each of the six parameters: A [mm−1], B, [Hb] [mg/ml], α, Coll, and NADH.

2.3.6 Development and testing of spectroscopic algorithms—We studied
spectroscopic parameters from different zones of the cervix, using both contact probe and
imaging modes. Tissue parameters were correlated with histopathology diagnosis for all data
collected from the imaging patients and clinically suspicious sites from the probe data set. In
the case of contact probe CNS sites, tissue parameters were correlated with clinical impression.
A two-sided Wilcoxon rank sum test was used to test the hypothesis that the extracted
spectroscopic parameter distributions of different tissue zones or different groups of sites were
different. A p-value of < 0.05 was considered significant. The spectral algorithms were
developed by using logistic regression models to identify the significant spectroscopic
parameters providing the diagnostic information. The likelihood ratio test was used to assess
the significance of each of the spectroscopic parameters in the logistic regression model.36 A
p-value <0.05 was considered to be significant. Leave-one-out cross-validation (LCV) was
used to construct receiver-operator characteristic (ROC) curves for the spectral algorithms.
The ROC curve is a plot of sensitivity (true-positive rate) against 1-specificity (false-positive
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rate) for a range of cutoff points (probability thresholds). The discrimination ability was
evaluated by the area under the ROC curve (AUC), as well as the sensitivity and specificity.
The AUC represents the overall accuracy of the model across the entire range of thresholds.
Perfect separation is characterized by an AUC value of 1, and the inability to differentiate
between two groups is characterized by an AUC value of 0.5. In the following, we report a
point on the ROC curve that is the shortest distance away from the point of perfect separation
(100% sensitivity and 100% specificity), defined by:

(8)

We refer to this point whenever we quote sensitivity and specificity values.

To examine the impact of including CNS sites in the validation set, we constructed and tested
five data sets with varying percentages of CNS sites. For each percentage of CNS sites, we
determined the significant parameters that differentiate HSIL sites from everything else
(biopsied non-HSILs and CNS). In order to evaluate the discrimination ability based on
absorption, scattering, and fluorescence separately, we first tested a logistic regression
algorithm based on each of the parameters alone. Next, we developed a logistic regression
model based on a combination of significant spectroscopic parameters providing the highest
diagnostic power.

3 Results
3.1 Data Set

As shown in Table 1, our contact probe data set consisted of 33 CNS sites and 51 clinically
suspicious biopsied sites, out of which 30 were negative for SIL, 12 were LSIL, and 9 were
HSIL. For the purposes of developing a diagnostic algorithm that aims to detect the clinically
significant HSIL sites, the sites evaluated on histology as negative for SIL and the LSIL sites
were combined as biopsied non-HSIL. We emphasize that these biopsied non-HSIL sites do
not include the 33 CNS sites. The imaging data was collected from two LEEP patients, which
were entirely free of HSIL by histopathology. Imaging data provided 51 additional normal
squamous (NS) sites and 45 additional normal transformation zone (NT) sites, representing all
analyzable data in these two categories.

3.2 Microscopic Characterization
Histopathology evaluation confirmed that 36 of 51 contact probe biopsied sites were from the
transformation zone. Fifteen sites could not be histologically confirmed as transformation zone
(e.g., stroma was not visible on the histology slides to ensure full assessment, or glandular
elements were not present). All of the HSIL sites except one for which stroma was not visible
were confirmed to be from the transformation zone.

3.3 Normal Squamous Mucosa and Normal Transformation Zone Are Spectrally Different
3.3.1 Contact probe results—In order to determine the spectroscopic differences between
the transformation zone and normal squamous mucosa, we compared histologically confirmed
normal transformation zone (NT) sites with the CNS sites. Our data set consisted of 20 NT
sites that showed no evidence of dysplasia. Based on the Wilcoxon rank sum test, the majority
of the extracted spectroscopic parameters were significantly different between the CNS and
NT sites. Compared to the NT sites, the CNS sites exhibited significantly higher values of
Coll and A, and lower values of C, Hb, α, β-car, and bυr. When logistic regression and LCV
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were performed, CNS could be differentiated from NT based on Coll and Hb with an AUC,
sensitivity, and specificity of 0.87, 90%, and 73%, respectively. The contribution of other
parameters was negligible. The box plots of the three most significant parameters, A, Hb, and
Coll, as well as the ROC curve for differentiating CNS from NT, are shown in Fig. 1.

3.3.2 Imaging results—In order to ensure that the results shown in Fig. 1 were not strictly
due to clinically suspicious nature of contact probe NT sites, we used imaging data to perform
the same comparison. Based on the Wilcoxon rank sum test, all extracted reflectance and
fluorescence parameters were significantly different between the NS and NT sites. Just as in
the case of the contact probe data, the NS sites exhibited significantly higher values of Coll
and A and lower values of Hb and α than NT sites. Additionally, NS sites exhibited higher
values of the B parameter than for the NT sites. When logistic regression and LCV were
performed, CNS could be differentiated from NT based on Coll and Hb, with an AUC,
sensitivity, and specificity of 0.98, 98%, and 98%, respectively. The box plots of the three most
significant parameters, A, Hb, and Coll, as well as the ROC curve for the logistic regression
model for differentiating the NS from the NT sites using imaging data, are shown in Fig. 2.

3.4 Normal Squamous Mucosa and HSIL Are Spectrally Different Due to Anatomy Differences
As we have shown in the previous section, normal anatomical variations are reflected in tissue
spectroscopy. To determine whether normal variations in anatomy impact spectroscopy
differences between normal squamous mucosa and HSIL, the vast majority of which are found
in the transformation zone, we investigated the spectral difference between CNS and biopsied
non-HSIL and HSIL. Based on the Wilcoxon rank sum test, a majority of the extracted
parameters were significantly different for CNS and biopsied non-HSIL, as well as HSIL. Just
as in the case of CNS versus NT, the CNS sites exhibited higher values of Coll and A and lower
values of C, Hb, α, and bυr than both biopsied non-HSIL and HSIL sites. When logistic
regression and LCV were performed, biopsied non-HSIL sites could be differentiated from
CNS using Coll and Hb, with an AUC, sensitivity, and specificity of 0.88, 81%, and 85%,
respectively. With these same parameters, HSIL sites could be differentiated from CNS with
an AUC, sensitivity, and specificity of 0.92, 89%, and 97%, respectively. Box plots for the
three most significant parameters, A, Coll, and Hb, are shown in Figs 3(a) –3(c), respectively.
The corresponding ROC plots are shown in Fig. 3(d).

3.5 Diagnostic Performance for HSIL Detection Is A Function of the Percentage of CNS Sites
Included in the Validation Set

To quantify the effect of including CNS sites in the validation set on diagnostic performance
for identifying HSIL, we constructed and tested five data sets with varying percentages of CNS
sites. For each data set, we used the same nine HSIL sites as the positive group, while the
negative group contained percentages of CNS sites ranging from 0 to 100%, randomly selected
from all CNS sites, as shown in Table 2.

For each data set, we first determined the significant parameters for differentiating the positive
(HSIL) group from the negative (biopsied non-HSIL and CNS) group using the Wilcoxon rank
sum test. As shown in Table 2, non-HSIL sites (0% CNS group) can be differentiated from
HSIL by A, Hb, and Coll parameters. As the percentage of CNS in the negative group increased,
the number of significant parameters increased. All spectroscopic parameters except β-carotene
were significantly different when the negative group consisted only of CNS sites.

We then calculated the AUC for the logistic regression model based on each of the significant
parameters separately, and finally for the combination of parameters that produced the best
diagnostic performance. For each data set, a combination of Coll and Hb provided the best
diagnostic performance. For the individual parameters (Fig. 4), as well as the combination
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providing the best diagnostic performance, the AUC increased as the percentage of CNS
increased.

4 Discussion
Although the potential confounding effect of anatomical variations on spectroscopic diagnostic
algorithms have long been suspected,3,19 these effects have never been formally examined.
Specifically, in spite of known spectroscopic differences between normal squamous mucosa
and transformation zone, these anatomically different tissue sites have been historically
combined during development of diagnostic algorithms for cervical neoplasia.2,4,6,8,10 In this
paper, we demonstrate that combining anatomically different sites into the diagnostic algorithm
will result in higher than clinically relevant levels of diagnostic performance.

The results from the contact probe (Fig. 1) and imaging studies (Fig. 2) demonstrated that the
transformation zone is spectroscopically distinct from the normal squamous mucosa.
Regardless of the clinical impression (suspicious versus not), no differences in the parameter
trends were observed, confirming that the spectroscopic differences are related to anatomy and
not clinical impression. Both contact probe and imaging data demonstrated that NT sites exhibit
lower values of Coll and A and higher values of Hb compared to the normal squamous sites.
These findings are consistent with the transformation zone comprising both squamous and
glandular features. Higher hemoglobin concentration for NT sites compared to normal
squamous sites could be explained by the fact that the normal squamous mucosa is covered by
stratified squamous epithelium, while in the glandular mucosa, small capillary loops are located
directly beneath the single layer of mucus-secreting columnar cells. The lower scattering within
NT is likely related to less stromal collagen fibers than in the squamous mucosa. The same
anatomical difference may explain the lower collagen fluorescence in NT compared to
squamous mucosa. Thus, normal squamous mucosa is anatomically and spectroscopically
different from the transformation zone (comprising both squamous and glandular features),
even in the absence of clinical and histological abnormality.

CNS sites are spectroscopically distinct from the transformation zone, and the same parameters
that distinguish CNS from transformation zone also separate CNS from HSIL (Fig. 3). These
findings indicate that the spectral differences seen between normal squamous and HSIL sites
are largely due to anatomical differences between normal squamous mucosa and the
transformation zone, and not due to a disease state. These findings also explain why Mourant
et al.7 and Georgakoudi et al.3 saw an improvement in diagnostic performance for dysplasia
when CNS was included in their analysis. Similarly, other studies including clinically normal
squamous sites (biopsied or not) in the analysis may have reported higher levels of performance
than clinically relevant.2,4,6,8,10

We further demonstrate that the magnitude of the confounding effect is directly proportional
to the percentage of CNS sites included in the validation (Fig. 4). We find that as the percentage
of CNS in the negative group decreases, the number of significant parameters differentiating
HSIL from everything else also decreases (Table 2). The data demonstrate that the confounding
influence of including CNS affects not only the performance levels but also the number of
specific spectroscopic parameters that can be used in the diagnostic algorithm. The affected
parameters include those describing the scattering, absorption, and fluorescence properties of
tissue.

5 Conclusions
Normal transformation zone is anatomically, histologically, and spectroscopically different
from the normal squamous mucosa. As the vast majority of the HSILs are found in the
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transformation zone, the spectral differences between normal squamous mucosa and HSIL are
largely due to normal anatomical differences. Based on our findings, including clinically
normal squamous sites into the data set that is used to develop or evaluate the performance of
the algorithm for detection of HSIL is a confounding artifact that artificially increases
performance values with respect to the key differentiation to be made—namely, distinguishing
HSILs from clinically suspicious non-HSILs. In order to properly evaluate the accuracy of
clinical disease detection, spectroscopic data must be analyzed within the appropriate
anatomical context. This becomes a critical issue for wide-area imaging, where data must be
appropriately processed to account for underlying normal anatomical variations. The
importance of considering anatomy likely applies to other organs and disease states and
requires further investigation.
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Fig. 1.
Discrimination of CNS from NT using contact probe data. Box plots of: (a) A parameter
(mm−1); (b) hemoglobin concentration (Hb), (mg/ml); (c) fraction of IFS due to collagen
(Coll); (d) LCV ROC plot for the logistic regression algorithm differentiating CNS from NT
based on Coll and Hb: ROC curve (solid line), the 45-deg line (AUC=0.5), the point of
representative sensitivity/specificity (circle), and the shortest distance from the point of perfect
separation (dashed line). Box plots: median (horizontal line within the box), upper and lower
quartiles (upper and lower edges of the box, respectively), extent of the data (whiskers), and
outliers (crosses, data points that are more than 1.5 times the interquartile range below the
lower quartile or above the upper quartile).
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Fig. 2.
Discrimination of CNS from NT using imaging data. Box plots of (a) A parameter, (b) Hb, (c)
Coll (same units as in Fig. 1), and (d) LCV ROC curve for the logistic regression algorithm
based on Coll and Hb for differentiating CNS from NT sites: ROC curve (solid line) and the
45-deg line (AUC=0.5).
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Fig. 3.
Discrimination of CNS from HSIL and non-HSIL. Box plots of (a) A parameter, (b) Hb, (c)
Coll (same units as in Fig. 1), and (d) LCV ROC curve for the logistic regression algorithm
based on Coll and Hb for differentiating CNS sites from HSIL sites (dashed line), and CNS
sites from non-HSIL sites (solid line), the 45-deg line (AUC=0.5), and the points of
representative sensitivity/specificity (circles).
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Fig. 4.
Area under the LCV ROC curve (AUC) for logistic regression models based on (1) A parameter
(circles), (2) Coll (diamonds), (3) Hb (squares), and (4) Coll and Hb (crosses) as a function of
percentage of CNS sites included in the data set.
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Table 1

Contact probe data set.

Clinical category Histology category Number of sites

Normal (CNS) Not biopsied 33

Suspicious
Non-HSIL

Negative for SIL 30

LSIL 12

HSIL 9
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