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Abstract
Psoriasis vulgaris is a multi-factorial heritable disease characterized by severe inflammation resulting
in poorly differentiated, hyperproliferative keratinocytes. Recent advances in genetic analyses have
implicated components regulating the IL-23 and NFκB pathways as risk factors for psoriasis, and
advanced our understanding of this complex disease. These inflammatory pathways exhibit increased
activity in skin lesions, and promote secretion of various cytokines such as IL-17 and IL-22.
Unrestrained, the activated inflammatory cytokine network in psoriasis may trigger a vicious cycle
of inflammation and cellular proliferation that ultimately results in lesion formation. These advances
in genetic analyses, together with the progress made in targeted biologic therapy, pave the path to
tailor treatment based on an individual’s genetic and immunologic profile.

Introduction
Psoriasis vulgaris is a chronic debilitating disease affecting 1–2% of the Caucasian population.
1 It is characterized by recurrent episodes of red, scaly, raised skin plaques, which develop
within seemingly normal skin and triggered by a large number of factors such as drugs (i.e.
beta blockers, anti-malarial drugs)2, stress, physical injury to the skin (the Koebner response),
and infection.3

Several defining histologic changes can be observed as lesions develop. These include (1) a
thickened epidermis (acanthosis) arising from rapid keratinocyte proliferation, (2) reduced or
absent granular layer (hypogranulosis) and retention of nuclei by corneocytes (parakeratosis)
as a result of aberrant differentiation of keratinocytes, (3) marked dilation of blood vessels in
the papillary dermis causing visible erythema, and (4) a dense inflammatory infiltrate
composed of clusters of CD4+ T helper cells and antigen presenting dendritic cells (DCs) in
the dermis, and CD8+ T cells and neutrophils in the epidermis.4 (Figure 1)

Psoriasis is classified by many as an immune-mediated inflammatory disease (IMID) of the
skin. Indeed, the remarkable therapeutic efficacy of a variety of immuno-modulatory
agents5–8 have reinforced the vital role of the immune system in psoriasis pathogenesis.
Furthermore, a recent explosion of knowledge surrounding emerging T cell, and DC, subsets,
have shed more light on specific immune pathways that may be central to lesion formation.
The success of targeted therapeutics, as well as advances in genomic analyses, have further
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implicated these immunological pathways. Here, we review these recent findings and
consolidate them into our current understanding of this complex disease.

Clues from Genetic Analyses
Psoriasis is a complex genetic disorder; which means that it is a multi-factorial heritable disease
that is influenced by multiple genes and environmental factors.3,9 Several psoriasis associated
chromosomal regions (PSORS 1–10) have been identified by conventional family-associated
on genetic linkage approach, with PSORS 1, tightly linked to HLA-Cw6 as the most frequent
detected allele. 12

However, the full sequencing of the human genome facilitated the identification of single
nucleotide polymorphisms (SNPs) that represent subtle coding variations between individuals.
These advances provided the means for “mapping” millions of SNPs throughout the human
genome10, 11 thus enabling genome-wide association scans (GWAS) to localize genetic
alterations that are likely to be involved in disease pathogenesis.

Recent GWAS studies confirm previous findings that the strongest genetic association for
psoriasis lies within the HLA-C region.12 HLA-Cw6 was long ago reported to be associated
with what is known as “type I psoriasis”, characterized by early age of onset (<40 years), being
more likely to be familial, and with a more severe clinical course.13 Yet, the precise role of
HLA-C in psoriasis is still unclear.

Interestingly, significant associations have also been found in gene regions involving specific
inflammatory pathways, namely, (1) IL-23 signaling (IL23A, IL12B and IL23R), (2)
modulation of Th2 immune responses (IL4, IL13), and (2) NFκB signaling.14–16 Other
associations include epidermal defense genes that are highly overexpressed in psoriasis:
DEFB417 and late cornified envelop proteins 3B and 3C (LCE3C/3D).18 Interestingly, some
of these newly found genetic loci were found to overlap with the risk of developing other
IMIDs, most notably Crohn’s disease.19

The IL-23/Th17 pathway
IL-23 is a heterodimeric cytokine composed of p19 (encoded by IL23A), and p40 (shared with
IL-12 and encoded by IL12B) sub-units, and binds to a receptor complex encoded by IL23R
and IL12RB1. IL-23 is produced by dendritic cells and macrophages,20 and is required for the
growth, survival, and effector functions of Th17 cells.21

Th17 cells are CD4+ effector T helper cells that are developmentally and functionally distinct
from the classic Th1 and Th2 lineages.22 Defined by the ability to produce IL-17, Th17 cells
have also been shown to secrete other cytokines including IL-22.23 Similar to Th1 and Th2
cells, Th17 cells are thought to have evolved to provide adaptive immunity against pathogens.
Organisms that can trigger a Th17 response include gram-positive bacteria Propionibacterium
acnes; gram-negative bacteria Citrobacter rodentium, Klebsiella penumoniae and Bacteroides;
Borrelia; Mycobacterium tuberculosis; and fungi Candida albicans.24–28 If Th17 cell
differentiation is impaired, as in hyper IgE syndrome, recurrent C. albicans and Staph infections
are observed.29

Three psoriasis-associated gene signals, IL23A, IL12B and IL23R, involve components of the
IL-23/IL-23R ligand-receptor complex prompting speculation that inappropriate immune
responses in psoriasis might center on aberrations in IL-23 signaling.30 Indeed, IL-23 and Th17
cells were found to be markedly abundant in psoriasis lesions,20,31 perhaps as a direct effect
of genetic variations in regulatory regions of the above-mentioned genes.
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The over-expression of the IL-23/Th17 pathway in psoriasis can explain the overproduction
of psoriasin (S100A7) and other innate-defense molecules that typify psoriasis.32 Th17
associated cytokines, IL-17 and IL-22, have been shown to induce keratinocyte expression of
anti-microbials β-defensin 2, β-defensin 3, lipocalin and S100 proteins.33,34 Alternatively,
genetic polymorphisms in DEFB4 that encodes β-defensin 2 may also contribute to anti-
microbial resistance. The expression of another anti-microbial peptide, cathelicidin, can also
be enhanced by IL-17 in the presence of vitamin D3.35 These proteins may function as key
inflammation inducers as discussed later, and also to decrease skin infections under conditions
of a dysfunctional epidermal barrier.

IL-17 may also function as a potent pro-inflammatory cytokine that stimulates keratinocytes
to produce neutrophil-attracting CXC chemokines (such as CXCL1, CXCL5 and CXCL8/
IL-8), as well as CCL20 that draws CCR6+ cells into sites of inflammation.34,36 CCR6+ cells
relevant to the inflammation in psoriasis include myeloid dendritic cells (mDCs) as well as
Th17 cells.34,37 Finally, IL-17 can induce fibroblasts to produce IL-6,38 a cytokine that
commits naïve T cells to the Th17 lineage, potentially activating a positive feedback loop that
perpetuates Th17 inflammation.

Recently, CD8+ T cells (Tc17) that produce IL-17 have been identified within the psoriatic
epidermis.39 These cells may have an important role in promoting psoriatic epidermal response
as their contributions obviate the need for cytokines to diffuse from the dermis.30 It is still
unclear whether human Tc17 cells are influenced by the same conditions as Th17 cells,
although murine models suggest that they might also be driven by IL-23.40 Ustekinumab, a
recently FDA-approved monoclonal antibody that binds to the p40 sub-unit, has been shown
to be highly effective for the treatment of psoriasis,41 thus further supporting the fundamental
role of the IL-23/Th17 pathway in the pathogenesis of psoriasis. (Figure 2)

IL-22 function and regulation
IL-23 also stimulates the production of IL-22, an IL-10 family member cytokine that acts
mainly on epithelial cells lining the digestive, respiratory and integumentary systems. IL-22
promotes epithelial resistance to injury after microbial infections of the lungs and gut, and may
be involved in homeostasis and first-line defense against pathogens.23

In psoriasis, IL-22 is remarkably over-expressed most probably as a result of upregulated IL-23
and IL-6 levels.42,43 As noted above, IL-22 works synergistically with IL-17 to enhance the
expression of anti-microbial peptides that are elevated in psoriasis.33 More significantly, it
mediates epidermal acanthosis and abnormal differentiation of keratinocytes that are key
pathologic findings in psoriasis.33,34,44 (Figure 2)

IL-22 production is commonly attributed to Th17 cells based on early studies utilizing murine
models.33,43 Accordingly, we found that ~40% of IL-22-producing T helper cells in psoriasis
are Th17 cells.45 However, we have also consistently observed very little overlap between T
cells expressing IL-17, and those expressing IL-22, in normal or psoriatic skin.34,45 This has
been affirmed by other groups who have also found that majority of IL-22+ cells are single
producers that do not co-express IL-17 or the Th1 cytokine, IFNγ.46

These IL-22 producing T helper cells, Th22, co-express CCR6 and skin homing receptors
CCR4 and CCR10,47,48 thus may presumably respond to the elevated CCL20 levels in psoriatic
skin. IL-6 and TNF, both upregulated in psoriasis, have been shown to enhance Th22
differentiation, while the addition of IL-1β to this mix may promote differentiation of Th17
cells that produce both IL-17 and IL-22.48 Potentially, different DC subsets in psoriasis lesions
might regulate Th17 vs. Th22 activation. CD11c+ dermal DCs have been shown to stimulate
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Th17 cells, while epidermal langerhans cells (LCs) have been shown to stimulate Th22
responses.49

Th1-Th2-Th17 imbalance
Psoriasis lesions contain an excess of Th1 T cells that are activated and produce IFNγ. We
have previously demonstrated that IFNγ induces numerous inflammatory molecules in
keratinocytes and contributes to inflammation in psoriasis.34 Much of this biology is described
in past reports,50 so it will not be furthered discussed here. Recently, IFNγ has been shown to
stimulate DCs to produce IL-1 and IL-23 that are Th17 and Th22 promoting cytokines.39

(Figure 2)

IL-4 and IL-13 are cytokines produced by T cells committed to the Th2 lineage. These
cytokines have been shown to negatively regulate pathways induced by TNF, as well as the
Th1 cytokine IFNγ, in keratinocytes via the activation of STAT6, SOCS1 and SOCS3.51

Significant clinical improvement was observed with IL-4 treatment for psoriasis,52 that might
be attributed to the reduced expression of IL-12 and subsequently Th1 cells.53 IL-4 and IL-13
have been shown to inhibit development of Th17 cells from naïve T cells.54,55 As Th2 T cells,
and consequently IL-4 and IL-13 expression, are decreased in psoriasis lesions, this suppression
of Th1 and Th17 T cell activity is likely absent. Thus, genetic signals from the IL4/IL13 locus
that promote an imbalance in effector T cell subsets might be a determinant for psoriasis.
(Figure 3)

Dysregulated NFκB signaling
Nuclear factor-κB (NFκB) is a major transcription factor that plays a crucial role in
immunology. In resting cells, NFκB is kept inactive by inhibitor of kB (IkB) proteins. Innate
“danger” signals, i.e. TNF, IL-1 and toll-like receptor (TLR) signaling, trigger a cascade that
phosphorylates, ubiquitinates and ultimately degrades IkB, releasing NFκB which translocates
inside the nucleus to promote the transcription of responsive inflammatory genes.56 When
unrestrained, chronic NFκB activation is associated with multiple autoimmune diseases.57 It
is, thus, important to have negative feedback mechanisms in place to regulate the NFκB
pathway.

One of these regulators is the ubiquitin-editing protein A20, encoded by TNFAIP3.56 Mice
that are deficient in A20 expire from massive inflammation and tissue damage caused by
sustained NFκB activation and enhanced cytokine production.58 This indicates that A20 is
crucial for the termination of innate immune responses, and that genetic variations in TNFAIP3
may result in sustained inflammation. This could be relevant for psoriasis pathogenesis as TNF
is over-expressed, in part from TNF and iNOS-expressing dendritic cells (TIP-DCs) that are
abundant psoriatic dermis.59 In addition to TNF and other innate defense molecules, IL-17 has
recently been shown to activate the classical NFκB pathway.60 (Figure 4)

TNIP1 is another negative regulator that binds to A20 to inhibit NFκB activation.56 (Figure 4)
Counter-intuitively, TNIP1 was found to be upregulated in the skin of psoriasis patients versus
controls.15 This might imply that defective protein may be produced by gene variations in
TNIP1. An alternative explanation could be that excessive TNIP1 inhibits RARα61 potentially
disrupting the Th17/Treg balance in psoriasis.62

Consolidating the immunologic pathways
We now have compelling scientific evidence that points to dysregulated immunologic circuits
as the core of psoriasis inflammation. But what triggers the inflammatory cascade?
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Infections or injury to the skin can promote lesion formation in susceptible individuals. These
triggers have recently been shown to stimulate keratinocyte production of the anti-microbial
cathelicidin (LL-37)63 that, when complexed with self-DNA, binds to TLR9 on plasmacytoid
DCs (pDCs).64 These pDCs produce massive amounts of IFNα and are implicated in the
initiation of psoriasis lesions.65 (Figure 5) Accordingly, patients treated with a topical pDC
agonist, imiquimod, upregulate IFNα and experience exacerbations in psoriasis.66

In addition to stimulating pDCs, LL-37 has been shown to complex with self-RNA to trigger
the activation of myeloid DCs (mDC) through TLR8.67 This stimulates mDC production of
TNFα and IL-6, and promotes their differentiation into mature DCs.67 (Figure 5) Interestingly,
the self-RNA complexes were found to co-localize with the clusters of DC-LAMP+ mDCs in
psoriasis dermis67 previously described by Lowes et al in 2007.59 As myeloid dendritic cells
in psoriasis have been shown to produce IL-2320, it is plausible that self-RNA complexes might
potentially initiate the inflammatory cascade. (Figure 5)

Upon initiation of the inflammatory cascade, dysregulations in the IL-23 pathway may lead to
expansion and activation of Th17 and Th22 T cells. Effects of their cytokine products, as well
as TNF and INF-γ, on keratinocytes induce complex inflammatory circuits that stimulate
keratinocyte proliferation, vascular proliferation and further leukocyte accumulation and
activation in psoriasis lesions. In addition, genetic variations in the IL4/IL13 locus may cause
downregulated Th2 responses and promote unregulated Th17/Th1 activity. Finally, decreased
efficiency of negative NFκB regulators, TNFAIP3 and TNIP1, might sustain inflammation
initiated by TNF, IL-1, TLR ligation, and IL-17, in susceptible individuals.

Recent advances in genetics and immunology have demonstrated the immune pathways
relevant to psoriasis pathogenesis. The simultaneous expansion of our pharmacologic
armamentarium for psoriasis have made it conceivable that we may eventually be able to
stratify patients based on genetic risk factors and immunologic profiles, and tailor their
individual treatment accordingly.
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Figure 1.
Comparative histologic pictures of non-lesional and lesional psoriatic skin demonstrate marked
acanthosis (a) and dermal inflammation (i) in psoriasis lesions compared to non-lesional skin
(H&E stain). Inflammatory infiltrates in the psoriatic lesion consist of numerous T cells (CD3)
as well as dendritic cells (CD11c), many of which are mature (DC-LAMP).
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Figure 2. Model of immune interactions in the psoriatic lesion
Antigen-presenting cells (APC) produce IL-23 and stimulate Th17 and Th22 cells, and possibly
Tc17 cells, to release IL-17 and IL-22. Keratinocytes (KC), in response to IL-17, upregulate
pro-inflammatory chemokines that attract T cells, neutrophils (neut) and mononuclear cells
(mono) into the lesion. IL-22 promotes epidermal acanthosis, while both cytokines trigger anti-
microbial protein (AMP) production. IFNγ, from Th1 cells, modulates numerous KC
responsive genes, and stimulates APCs to release IL-23. Ustekinumab, an FDA-approved
monoclonal antibody, blocks the p40 sub-unit of IL-23. Recently identified genes associated
with psoriasis (box) include IL23A, IL12B and IL23R.
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Figure 3. Model of Th1-Th2-Th17 interactions
Effector T cells subsets stimulated by antigen-presenting cells (APC) in psoriasis include Th1
and Th17 cells. Th2 cells and associated cytokines, IL-4 and IL-13, that can suppress Th1 and
Th17 activity, are decreased in psoriasis. Genes that confer risk of having psoriasis include IL4
and IL13 (box).
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Figure 4. NFκB pathway in psoriasis
Multiple “danger” signals, including TNF, IL-1, toll-like receptor (TLR) ligands and IL-17,
may stimulate the transcription factor, nuclear factor kappa-light-chain-enhancer of activated
B cells (NFκB), to translocate into the nucleus and promote the transcription of inflammatory
genes. Gene polymorphisms that promote unregulated NFkB activity may contribute to
psoriasis susceptibility. Genome-wide associated studies (GWAS) have identified
polymorphisms in TNFAIP3 and TNIP1, both negative regulators of the NFκB pathway (box).
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Figure 5. Potential initiators of the inflammatory cascade in psoriasis
Infection and injury stimulate keratinocytes (KC) to release the anti-microbial, cathelicidin
(LL-37). LL-37 forms complexes with self-DNA from damaged cells, and stimulates
plasmacytoid dendritic cells (pDC) to release IFNα that activates myeloid dendritic cells
(mDC). Simultaneously, LL-37 might form complexes with self-RNA to stimulate pDCs, as
well as mDCs triggering the release of inflammatory cytokines TNF, IL-6 and, possibly, IL-23.
Activation of mDCs by self-RNA-LL37 complexes promotes maturation of dendritic cells
(DC-LAMP+ mature DCs) that enhances antigen-presenting capabilities to T cells. Double-
label immunofluorescence demonstrates proximity of dendritic cells (CD11c, red) and T cells
(CD3, green) in psoriatic dermis. White line delineates dermo-epidermal junction.
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