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Abstract
Standard statistical techniques often require transforming data to have mean 0 and standard
deviation 1. Typically, this process of “standardization” or “normalization” is applied across
subjects when each subject produces a single number. High throughput genomic and financial data
often come as rectangular arrays, where each coordinate in one direction concerns subjects, who
might have different status (case or control, say); and each coordinate in the other designates
“outcome” for a specific feature, for example “gene,” “polymorphic site,” or some aspect of
financial profile. It may happen when analyzing data that arrive as a rectangular array that one
requires BOTH the subjects and features to be “on the same footing.” Thus, there may be a need to
standardize across rows and columns of the rectangular matrix. There arises the question as to how
to achieve this double normalization. We propose and investigate the convergence of what seems
to us a natural approach to successive normalization, which we learned from colleague Bradley
Efron. We also study the implementation of the method on simulated data and also on data that
arose from scientific experimentation.
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1. Introduction
This paper is about a method for normalization, or regularization, of large rectangular sets of
numbers. In recent years many statistical efforts have been directed towards inference on
such rectangular arrays. The exact geometry of the array matters little to the theory that
follows. Positive results apply to the situation where there are at least three rows and at least
three columns. We explain difficulties that arise when either numbers only two. Scenarios to
which methodology studied here applies tend to have many more rows than columns. Data
can be from gene expression microarrays, SNP (single nucleotide polymorphism) arrays,
protein arrays, alternatively from large scale problems in imaging. Often there is one column
per subject, with rows consisting of real numbers (as in expression) or numbers 0, 1, 2 (as
with SNPs). Subjects from whom data are gathered may be “afflicted” or not, with a
condition that while heritable is far from Mendelian. A goal is to find rows, better groups of
rows, by which to distinguish afflicted from other subjects. One can be led to testing many
statistical hypotheses simultaneously, thereby separating rows into those that are
“interesting” for further follow-up and those that seem not to be. Genetic data tend to be
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analyzed by test “genes” (rows), beginning with their being “embedded” in a chip, perhaps a
bead. There may follow a subsequent molecule that binds to the embedded “gene”/molecule.
A compound that makes use of the binding preferences of nucleotides and to which some
sort of “dye” is attached is then “poured.” The strength of binding depends upon affinity of
the “gene” or attached molecule and the compound. Laser light is shined on the object into
which the test “gene” has been embedded, and from its bending, the amount of bound
compound is assessed, from which the amount of the “gene” is inferred. The basic idea is
that different afflicted status may lead to different amounts of “gene”.

With the cited formulation and ingenious technology, data may still suffer from problems
that have nothing to do with differences between groups of subjects or with differences
between “genes” or groups of them. There may be differences in background, by column, or
even by row. Perhaps also “primers” (compounds) vary across columns for a given row. For
whatever reasons, scales by row or column may vary in ways that do not enable biological
understanding. Variability across subjects could be unrelated to afflicted status.

Think now of the common problem of comparing variables that can vary in their affine
scales. Because covariances are not scale-free, it can make sense to compare in
dimensionless coordinates that are centered at 0, that is, where values of each variable have
respective means subtracted off, and are scaled by respective standard deviations. That way,
each variable is somehow “on the same footing”.

Standardization, or normalization, studied here is done precisely so that both “subjects” and
“genes” are “on the same footing”. We recognize one might require only that “genes” (or
some “genes”) be on the same footing, and the same for “subjects.” The successive
transformations studied here apply when one lacks a priori opinions that might limit goals.
Thus, “genes” that result from the standardization we study are transformed to have mean 0
and standard deviation 1 across all subjects, while the same is true for subjects across all
“genes”. How to normalize? One approach is to begin with, say, row, though one could as
easily begin with columns. Subtract respective row means and divide by respective standard
deviations. Now do the same operation on columns, then on rows, and so on. Remarkably,
this process tends to converge, even rapidly in terms of numbers of iterations, and to a set of
numbers that have the described good limiting properties in terms of means and standard
deviations, by row and by column.

In this paper we show by examples how the process works and demonstrate for them that
indeed it converges. We also include rigorous mathematical arguments as to why
convergence tends to occur. Readers will see that the process and perhaps especially the
mathematics that underlies it are not as simple as we had hoped they would be. This paper is
only about convergence, which is demonstrated to be exponentially fast (or faster) for
examples. The mathematics here does not apply directly to “rates”. The Hausdorff
dimension of the limit set seems easy enough to study. Summaries will be reported
elsewhere.

2. Motivating Example
We introduce a motivating example to ground the problem that we address in this paper.
Consider a simple 3-by-3 matrix with entries generated from a uniform distribution on [0,1].
We standardize the initial matrix X(0) by row and column, first subtracting the row mean
from each entry and then dividing each entry in a given row by its row standard deviation.
The matrix is then column standardized by subtracting the column mean from each entry
and then by dividing each entry by the respective column standard deviation. In this section,
these four steps of row mean polishing, row standard deviation polishing, column mean
polishing and column standard deviation polishing entail one iteration in the process of
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attempting to row and column standardize the matrix. After one such iteration, the same
process is applied to resulting matrix X(1) and the process repeated with the hope that
successive renormalization will eventually yield a row and column standardized matrix.
Hence these fours steps are repeated until “convergence” - which we define as the difference
in the Frobenius norm between two consecutive iterations being less than 10−8.

In order to illustrate this numerically, we start with the following 3-by-3 matrix with
independent entries generated from a uniform distribution on [0,1]and repeat the process
described above.

(1)

The successive normalization algorithm took 9 iterations to converge. The initial matrix, the
final solution, and relative (and log relative) difference for the 9 iterations are given below
(see also figure 1):

(2)

(3)

The whole procedure of 9 iterations takes less than 0.15 seconds on a standard modern
laptop computer. We also note that the final solution has effectively 3 distinct entries. When
other random starting values are used, we observe that convergence patterns can vary in the
sense that convergence may not be monotonic. The plots below (see Figure 2) capture the
type of convergence patterns that are observed in our simple 3-by-3 example.

Despite the different convergence patterns that are observed, when our successive
renormalization is repeated with different starting values - a surprising phenomenon
surfaces. The process seems always to converges, and moreover the convergence is very
rapid. One is led naturally to ask whether this process will always converge and if so under
what conditions. These questions lay the foundation for the work in this paper.

3. Preliminaries
We establish the notation that we will use by revisiting a normalization/standardization
method that is traditional for multivariate data. If the main goal of a normalization of a
rectangular array is achieving zero row and and column averages, then a natural approach is
to “mean polish” the row (i.e., subtract the row mean from every entry of the rectangular
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array), followed by a column “mean polish”. This cycle of successive row and column
polishes is repeated until the resulting rectangular array has zero row and and column
averages. The following theorem proves that this procedure attains a double mean
standardized rectangular array in one iteration where an iteration is defined as constituting
one row mean polish followed by one column mean polish.

Lemma 3.1
Given an initial matrix X(0), an iterative procedure to cycle through repetitions of a row
mean polish followed by a column mean polish until convergence terminates in one step.

Proof—Let X(0) be an n × k matrix and define the following:

Now the first part of the iteration, termed as a “row mean polish” subtracts from each
element its respective row mean:

The second step of the iteration, termed a “column mean polish” subtracts from each
element of the current matrix its respective column mean:

where

After the second step of the iteration it is clear that the columns sum to zero; the previous
operation enforces this. In order to prove that the iterative procedure terminates at the
second part of the iteration it is sufficient to show that the rows of the current iterate sum to
zero. Now note that

The remaining is to show that the row sum of this matrix X(2) expressed as the elements of
X(0) sum to zero. So,
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Note that the above double standardization is implicit in a 2-way ANOVA, and though not
explicitly stated it can be deduced from the work of Scheffé [9]. It is nevertheless presented
here first in order to introduce notation, second as it is not available in this form above in the
ANOVA framework, but third for the intuition it gives since it is a natural precursor to the
subject of work in the remainder of this paper.

3.1. Example 1(cont.): A 3-by-3 example with only mean polishing
We proceed to illustrate the previous theorem on the motivating example given after the
introduction and draw contrasts between the two approaches. As expected the successive
normalization algorithm terminates in one iteration. The initial matrix, the final solution, and
the column and row standard deviations of the final matrix are given below:

(4)

(5)

(6)

(7)

(8)

We note unlike in the motivating example, and as expected, the row and column means are
both 0; but the standard deviations of the rows and the columns are not identical, let alone
identically 1. Since mean polishing has already been attained, and we additionally require
that row and column standard deviations to be 1, it is rather tempting to row and column
standard deviation polish the terminal matrix Y(final) above. We conclude this example by
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observing the simple fact that doing so results in the loss of the zero row and column
averages.

3.2. The 2-by-2 problem
We now examine the successive row and column mean and standard deviation polishing for
a 2 × 2 matrix and hence illustrate that for the results in this paper to hold true, the minimum
of row(k) and column dimension(n) of the matrix under consideration must be at least 3, that

is min(k, n) ≥ 3. Consider a general 2 × 2 matrix: . If a < b and c < d, then

after one row normalization, ; so . Therefore, allowing for both
inequalities to be reversed, and, assuming that, for example, a, b, c, and d are iid with

continuous distribution(s), then , in which case the procedure is no longer
well-defined.

A moment’s reflection shows that if X is n × 2, with n odd, then after each row
normalization, each column has an odd number of entries, each entry being −1 or +1.

However, each row has exactly one −1 and one +1. Thus  occurs only
on a set of product Lebesgue measure 0. With min(k, n) ≥ 3, both tend to 1 a.e. as m ↗ ∞.
Henceforth, assume min(k, n) ≥ 3.

4. Theoretical Considerations
For a matrix X as defined, take x ∈ ℛn×k. Let λ denote Lebesgue measure on ℛn×k, and P be
the probability on the coordinates that renders them iid N (0, 1). That is, Xij (xij) = xij. Xij are
iid N (0, 1). What is more, for any orthogonal linear transformation  that preserves
orthogonality, X ~ X, that is, X is distributed as X Muirhead [8], Anderson [1].

Because λ and P are mutually absolutely continuous, if  = {algorithm for successive row
and column normalization converges}, then P ( ) = 1 iff λ(ℛn×k\ ) = 0, though only one
direction is used.

For the remainder, assume that P governs X. Positive results will be obtained for 3 ≤ min(n,
k) ≤ max (n, k) < ∞. Our arguments require notation, to which we turn attention now. We
redefine the notation and symbols introduced in Lemma 3.1 as we now bring in row and
column standard deviation polishing. Define X = X(0).

, where ; a.s.  since k ≥ 3 > 1.

By analogy, set
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Arguments sketched in what follows entail that a.s.  since n ≥ 3.

For m odd, , with  and  defined by analogy
to previous definitions.

For m even, , again with  and  defined by
analogy to earlier definitions.

Back to the general problem
We first note that because the process we study is a coordinate process, there is no
difference between regular conditional probabilities and regular conditional distributions
(see Durrett [4], Section 4.1.c, p33 and pp. 229–331 for more details). They can be
computed as densities with respect to Lebesgue measure on a finite Cartesian product
×Sph(q), where q = k refers to after row normalization and where q = n if subsequent to
column normalization. In a slight abuse of notation, for any positive integer q we define
Sph(q) = {x ∈ ℛq: ||x||2 = q}, where the norm is the usual Euclidean norm.

Let {rij: i = 1, …, n; j = 1, …, k} be a set of n · k rational numbers, not all 0. Obviously,

An inductive argument involving conditional densities shows that

(9)

Consequently

Further, a.s. X(m) is defined and finite for every m.

What we know about the t distribution Efron [5] and geometric arguments entail that X(1)

can be viewed as having probability distribution on ℛn×k that is the n-fold product of
independent uniform distributions on Sph(k) × … × Sph(k). For the sake of clarity we note
again that conditional probabilities are always taken to be “regular” and concentrated on the
relevant product of spheres. Readers will note that in the cited arguments for
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, and , relevant conditional probabilities and densities are

used. Of course, after the mth row standardization ,
and analogously for column standardization and X(2m).

As an aside, write g1(X) = X(1) on { }. Elsewhere, let g1(X) = 0. Necessarily g1
depends on X only through its direction in ℛn×k. Equivalently, g1 is a function of X that is
homogeneous of degree 0. Moreover, g1(X) ~ g1( X) for all orthogonal linear  on ℛn×k.
X(1) has independent rows, each uniformly distributed on Sph(k).

We turn now to study  as m increases without bound. Note first that for m = 1, 2, …
X(2m−1) has joint distribution that is unchanged if two columns of X are transposed,
therefore if two columns of X(2m−1) are transposed. Since every permutation is a product of
transpositions, X(2m−1) is column exchangeable. Each is also row exchangeable.

Write π for a permutation of the integers {1, …, k}; let be the finite σ-field of all subsets of
{π}. The marginal probability induced on {π} from the joint distribution of (X, {π}) is
discrete and uniform, assigning probability 1/k! to each π.

Write  to be the σ-field

THEOREM 3.2—  a.s. for m = 1, 2, …

Proof: Write , where IA is the indicator function of the

event A. Obviously,  is  measurable; {αq1,q2} is a set of real numbers,
doubly indexed by {αq1,q2) ∈ F; F is a finite subset of {1, …, k} × {1, 2,…}. Form

.

Note that  is generated by {B × Q}, B of the cited form and Q ∈ Π. In particular, each

. Proof of our claim is complete if we show that for m = 2, 3, …

The left hand side of the display can be expressed
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Now, for any π, the expression inside the sum is (k)(1/k) = 1 if π ∈ Q and 0 if not. That is,
the expression constituting the sum is k I[π(1)=l] I[π∈Q]. Now the, expectation factors into P

(B)P (π(1) = l|π ∈ Q) P (π ∈ Q) = P (B) P (Q).Retracing steps shows clearly that 

in the computation just completed could be replaced by  with all equalities remaining
true. The claim is now proven.

Convergence of 

The backwards martingale convergence theorem Doob [3] entails that  converges

a.s. as m → ∞. So, for each fixed j ∈ {1, …, k},  converges a.s. It follows

that [ ] converges a.s. as m → ∞.

If previous arguments are perturbed so that π denotes a permutation of {1, …, n}, with

 replaced by  by  by , and 

by , then one concludes that also [ ] converges a.s. as m →; ∞.
Without further argument it is unclear the a.s. limits along odd, respectively even, indices
are the same; and it is crucial to what remains that this is in fact true.

Obviously, , so in a certain sense measurability is the same. Obviously,
too, randomization of index is by columns in the first case and by rows in the second. But
now a path to the required conclusion presents itself. Given success in proving a.s.
convergence along odd indices after randomizing columns and along even indices
randomizing rows, and given a requirement of our approach is that these two limits be
identical a.s., perhaps there is a path by simultaneously randomizing both columns and
rows? Fortunately, that is the case. Thus, let π1 be a permutation of {1, …, n} and π2 be a
permutation of {1, …, k}. With obvious product formulation of governing probability
mechanism and further obvious formulation of decreasing σ-fields, as an example of what
can be proved,

From this arguments for the display there are several paths by which one concludes that a.s.,

simultaneously for all (i, j), [ ] converges. Dominated convergence entails that the
limit random matrix has expectation 1 in all coordinates. As a consequence of this

convergence, a.s. and simultaneously for all (i, j),  as m → ∞.

Convergence of [ ]

We turn now to key ideas in extending our argument that [ ] converges almost surely
simultaneously to the same conclusion with the square removed. To limit notational
complexity, we study first only odd indices as m grows without bound. Conclusions are
identical for even indices, and by extension for indices not constrained to be odd or even.

A first necessary step is to show that for arbitrary j,
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To that end, let A be the event [ ]. Obviously,

 regardless of square roots taken. We show that P
{A} = 0.

By way of contradiction, suppose that P{A} > 0. Write

We know that the first term tends to 1 a.s. on A. Therefore, also the second term tends to 1

a.s. on A. Since for m > 1,  is bounded a.s.,  is a finite-valued
random variable C = C(x). Simple considerations show that the only possibilities are that for

all l, C = +1 or C = −1 a.s. Similar arguments show that  is +1 or −1. It
is clear that there is no sequence {mk} of {m} along which

It follows that  exists a.s. on A, and that the limit of the sequence is +1 or −1 on
A.

Recall that X ~ −X, and this equality is inherited by all joint distributions of X(m). However,

when X is replaced by its negative, any limit of  becomes its negative; a.s.
convergence is a property of the probability distribution of X; and

. Therefore, the only possibility is that C = 0,

which entails that  and . The upshot is that P {A} = 0;

.

Again, let us fix j. Consider a sample path of {X(2mq−1)} along which .

Clearly, . Indeed, let

. Row and column exchangeability of
X(m) entail that necessarily the cardinality of E is at least 2.

Let i0≠ i1 ∈ E. Because min(n, k) ≥ 3, there is a further subsequence of {{mq (i)}} – for
simplicity again write it {mq} – along which
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The first two requirements can always be met off of the set of probability 0 implicit in
eqn(9). That the third can be met as well is a consequence of the argument just concluded. In
any case, if there were no such subsequence, then our proof would be complete because all

 for j fixed tend to the same number. But now, write

Since  a.s., and likewise with i0 replaced by i1, the first
expression of the immediately previous display has limit 0. Thus, so too does the second

expression. This is possible only if  (where we have taken the positive square
root). Further,

As a corollary to the above, one sees now that . Since the original {mq} could
be taken to be an arbitrary subsequence of {m}, we conclude that:

•
 a.s.;

•
 a.s.; and

•
 converges a.s.

Now replace arguments for (i) and (ii) on columns by analogous arguments on rows. Deduce
that every infinite subsequence of positive integers has a subsequence along which our
desired conclusion obtains.

5. Properties of successive normalization
We now comment on theoretical properties of successive normalization. In particular, we
elaborate on the generality of the result by showing that the Gaussian assumption is not
necessary and serves only as a convenient choice of measure. We also discuss convergence
in Lebesgue measure and the domains of attraction of successive normalization.

5.1. Choice of probability measure
Write λ for Lebesgue measure on ℛn×k. Thus, x ∈ ℛn×k is an n × k rectangular array of real
numbers. Let P be a measure on the Borel sets of ℬ of ℛn×k that is mutually absolutely
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continuous with respect of λ. By this is meant that if B ⊂ ℛn×k is Borel measurable, then λ
(B) = 0 iff P (B) = 0. One obvious example of such a P is the measure on ℬ that renders its nk
coordinates iid Gaussian. If xrc is the (r, c) coordinate of X ∈ ℛn×k, and P (r,c) is the
marginal measure of P on its (r, c) real coordinate, then P (r,c)((−∞, x0]) = Φ (x0), where Φ
is the standard normal cumulative distribution function. This is what we mean by P
henceforth. The iid specification entails that P is an nk-fold product of identical
probabilities, and because P is now defined uniquely for all product rectangles, necessarily it
is defined uniquely for all B ∈ ℬ. It is obvious that Φ being mutually absolutely continuous
with respect to one-dimensional Lebesgue measure means that the product measure P is
mutually absolutely continuous with respect to the nk-fold Borel product measure λ.

Now, let f1, f2, … be a sequence of ℬ-measurable functions, ℛn×k → ℛn×k. Then
. When fm(x) converges,

then , where for any set C, IC is its indicator. Because each
fm is ℬ-measurable, lim fm(x) is also ℬ-measurable. If we are given that {fm} converges P -
almost everywhere, then {fm converges} is a Borel set of P -measure 1. Necessarily its
complement has P -measure 0, therfore λ measure 0. It follows that {fm} converges except
for a Borel subset of ℛn×k of Lebesgue measure 0.

In the present paper, the (r, c) coordinate of {fm} is the set of successive normalizations of
the initial real entry multiplied by the indicator of the subset of ℛn×k that is {successive
normalizations possible}. The latter is clearly a Borel subset of ℛn×k of P -measure 1, so its
complement is a Borel set of λ -measure 0. It is immaterial to convergence whether the first
initialization is by row or by column. Readers should note that any study of asymptotic
properties of {fm} under P may entail that {fm(x)} has properties such as row and column
exchangeability, where the coordinate functions are taken to be random variables. They
should note, too, that: (i) changing the original measure to one more conducive to
computation is standard, and is what happens with “exponential tilting” as it applies to the
study of large deviations of sums; and (ii) the interplay between measure and topology, as is
utilized here, is a standard approach in probability theory that is applied seldom to statistical
arguments; the lack thus far owes only to necessity.

5.2. Convergence in pth mean for Lebesgue measure
Whenever standardization is possible, after one standardization the sum over all nk
coordinates of squares of respective values is bounded by nk it follows from dominated
convergence that as m grows without bound, each term converges not only P-almost
everywhere but also in pth mean for every ∞ > p ≥ 1 so long as P remains the applicable
measure. Because λ is not a finite measure, convergence in pth mean for underlying measure
λ does not follow. It is impossible for such convergence to apply to Lebesgue measure on
the full Euclidean space ℛn×k. This is because there is a set of positive Lebesgue measure
whose members are not fixed points for normalization by both rows and columns. No matter
which normalization comes first in any infinite, alternating sequence, the normalization is
invariant to fixed scale multiples of each x ∈ ℛn×k, in particular to fixed scale multiples of x
in the set of positive Lebesgue measure just described. Obviously, no further arguments are
required, and convergence in pth mean is immediate if Lebesgue measure λ is restricted to a
bounded subset of ℛn×k.

5.3. Domains of attraction
Reviewers of research presented here have wondered if we can describe simply what
successive and alternating normalization does to rectangular arrays of data, beyond
introductory comments about putting rows and columns on an equal footing and the analogy
to computing correlation from covariance. We begin our reply here, though details await

Olshen and Rajaratnam Page 12

Ann Stat. Author manuscript; available in PMC 2010 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



further research and a subsequent paper. Please remember invariance to either row or
column normalization (when possible), to scale multiples of x ∈ ℛn×k. In other words,
results of normalization are constant along rays defined by these multiples, and without loss
of generality we can assume that x lies in an n-fold product of Sph(k), where each of the n
components is orthogonal to the linear one-dimensional subspace of ℛk consisting of its
equiangular line; call it Sph(k)\{1}. Thus, without loss we assume that the object under study
is X(m) subject to a row normalization of the process of successive normalization. We study
only subsets of the n-fold product space that was described and that is complementary to

{ }, where {rij } are rational. The set in braces just before the
comma has P-measure 0; and we know that on its complement, X(m) can be defined for all m
= 1, 2, …

Because normalization always involves subtraction of a mean and division by a standard
deviation, and because each X(m) is row and column exchangeable, the limiting process we
study here when P applies seems on superficial glance to be analogous to “domains of
attraction” as that notion applies to sequences of iid random variables. One obvious
difference is that here limits are almost sure rather than in distribution. While a.s. limits of
X(m) are shown to have row and column means 0 and row and column standard deviations 1,
n × k arrays of real numbers with this property are obviously the only fixed points of the
alternating process studied here. The Hausdorff dimension of the set of fixed points is not
difficult to compute, but we have been unable thus far to give rigorously supported
conditions for the domain of attraction (in the sense described) of each fixed point. The
simple case for which domains of attraction for limits in distribution were described was a
major development in the history of probability (see Feller [6], Gnedenko and Kolmogorov
[7], Zolotarev [10]). We report some intuitive results, and next a mathematical question that
arose in our study of domains of attraction for which at present we have only a heuristic
argument.

Is there a set E ⊂ ℛn×k for which P (E) = 1; X(m)(x) converges for x ∈ E; and for each fixed
i lim Xij (x) ≠ lim Xij′(x) for all j ≠ j′ if x ∈ E? Clearly one could ask the equivalent question
for each fixed j, and a corresponding subset E′ ⊂ ℛn×k. We conjecture the existence of E ∩
E′. However, arguments available thus far do not confirm existence rigorously. Therefore,
suggestions regarding domains of attraction as X(m) grows without bound should be taken as
only heuristic for now.

Given that  on a subset of ℛn×k with complementary P-measure 0, therefore
Lebesgue measure 0, almost surely ultimately (meaning for m = m(x) large enough), row
normalization does not perturb the (strict) sort of any row. By analogy, a.s. ultimately
column normalization does not perturb the (strict) sort of any column. Thus, a.s. ultimately,
successive and alternative row and column normalization do not perturb any row or column
sort. This joint strict sort determines an open subset of ℛn×k. If we restrict ourselves to
rows, then we may speak more precisely of n-fold products of sorts of members of Sph(k)
\{1}. For a fixed row there are k! strict sorts of the squared entries. Given a fixed sort of the
squares there are, say, f (k) assignments of sign to the square roots of the k entries so that the
sum of entries for that row is 0. For any assignments of signs to the necessarily non-trivial
values of the k squares that renders the sum of entries for the row 0, there is always a scaling
so that the sum of squares is any fixed value, therefore so that the variance of the set of
numbers in that row is 1. One computes f (3) = 2; f (4) = 4; and so on. Computation of the
exact value of f (k) is slightly tricky and is not reported here. For all k, f (k) ≥ 2. To
summarize, for each fixed row there are a.s. ultimately f (k)k! disjoint (open) invariant sets
following row normalization, making for [f (k)k!]n a.s. ultimately (open) invariant sets
simultaneously for all n rows. If we count a.s. ultimately invariant sets subsequent to column
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normalization, then entirely analogous arguments result in a.s. ultimately [f (n)n!]k disjoint
(open) sets simultaneously for all columns.

From computations, after a row normalization the surface area of the sphere in k-space
orthogonal to the equiangular line - that corresponds to only one row of

 for k ≥ 21. The expression → 0 as k ↗ ∞. Even for k
= 4, the quantity is only about 14.7 (larger than the actual value). Remember that there are at
most [f (k)k!] a.s. ultimately non-empty “invariant sets” for row normalization. Thus, one

sees that for k large the quantity  is nearly 0.

6. Computational Results and Applications
We include three examples to highlight and illustrate some computational aspects of our
iterative procedure. The first two examples are studies by simulation whereas the third
example is an implementation on a real dataset.

For the simulation study, we consider a 3-by-3 matrix and a 10-by-10 matrix both with
entries generated independently from a uniform distribution on [0,1]. For a given matrix, the
algorithm computes/calculates the following 4 steps at each iteration:

a. Mean polish the column

b. Stand deviation polish the column

c. Mean polish the row

d. Stand deviation polish the row

These fours steps, which constitute one iteration, are repeated until “convergence” - which
we define as when the difference in some norm-squared (the quadratic/Frobenius norm in
our case) between two consecutive iterations is less than some small prescribed value -
which we take to be 0.00000001 or 10−8.

6.1. Example 2: Simulation study on a 10-by-10 dimensional example
We proceed now to illustrate the convergence of the successive row and column mean-
standard deviation polishing for the simple 10-by-10 dimensional example cited. The
algorithm took 15 iterations to converge. The initial matrix, the final solution, and
relative(and log relative) difference for the 15 iterations are:

(10)
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(11)

(12)

We note once more how the relative differences decrease linearly on the log scale(though
empirically) and is once again suggestive of the rate of convergence. As both the figure (see
Fig. 3) and the vector of relative differences indicate, there is a substantial jump at iteration
2; and then the curve behaves linearly.

The whole procedure takes about 0.37 seconds on a standard modern laptop computer and
terminates after 15 iterations. It might appear that the increase in the number of iterations
increases with increase in dimension. For instance, the number of iterations goes from 9 to
15 as we go from dimension 3 to 10. We should however bear in mind that when we go
from dimension 3 to 10 the “tolerance level” is kept constant at 0.00000001. The number of
elements that must be close to their respective limiting values, however, goes from 9 in the
3-dimensional case, to 100 in the 10-dimensional case. The rapidity of convergence was
explored further, and the process above was repeated over 1000 simulations. The
convergence proves to be stable in the sense that the mean and standard deviation of the
number of steps till convergence over the 1000 simulations are 14.5230 and 2.0331
respectively. A histogram of the number of steps till convergence is given below (fig. 4).

A closer look at the vector of successive differences suggests that the “bulk of the
convergence” is achieved during the first iteration. This seems reasonable since necessarily
the first steps render the resulting columns, then, rows, members of their respective unit
spheres (and even within cited subsets of them). Convergence then is only within these
spheres. Our numerical results also indicate the the sequence of matrices X(i) changes most
drastically during this first iteration. It suggests that mean polishing to a larger extent is
responsible for the rapidity of convergence and is reminiscent of the result in Lemma 1 -

Olshen and Rajaratnam Page 15

Ann Stat. Author manuscript; available in PMC 2010 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



which states that if only row and column mean polishing are performed, then convergence is
achieved immediately. We explore this issue further by looking at the distance between X(1)

and X(final), and compare it to the distance between X(0) and X(final). The ratio of these two
distance is defined below:

For our 10-by-10 example, we simulated 1000 initial starting values and implemented our
successive normalization procedure. The average value of the distance from the first iterate
to the limit, as a proportion of the total distance to the limit from the starting value, is only
2.78%. One could interpret this heuristically as saying that on average the crucial first step
does as much as 97.2% of the work towards convergence. We therefore confirm that the
bulk of the convergence is indeed achieved in the first step (termed as a “one-step analysis”’
from now onwards). The distribution of the ratio defined above is graphed in the histogram
below (fig. 5). We also note that none of the 1000 simulations yielded a ratio of over 10%.

Yet a another illuminating perspective of our successive normalization technique is obtained
when we track the number of sign changes in the individual entries of the matrices from one
iteration to the next. Please remember that this is related to the “invariant sets” that were
described in subsection 5.3. Naturally, one would expect the vast majority of sign changes to
occur in the first step as the bulk of the convergence is achieved during this first step. We
record the number of sign changes at each iteration, as a proportion of the total number of
sign changes until convergence, over 1000 simulations, in our 10-by-10 case. The results are
illustrated in the table below1 (see Table 1). An empirical study of the occurrence of the sign
changes reveals interesting heuristics. We note that on average 95% of sign changes occur
during the first step and an additional 3% in the next step. The table also demonstrates that
as much as 99% of sign changes occur during the first three iterations. When we examine
infrequent cases where there is a sign change well after the first few iterations, we observe
that the corresponding limiting value is close to zero, thus indicating that a sign change well
into the successive normalization technique (i.e., a change from positive to negative or vice
versa) amounts to a very small change in the actual magnitude of the corresponding value of
the matrix.

We conclude this example by investigating more thoroughly whether the dimensions of the
matrices have an impact on either the rapidity of convergence and/or on the one-step
analysis. The following table gives the mean and standard deviations of the number of
iterations needed for convergence for various values of the dimension of the matrix -
denoted by p and n when keeping the total number of cells in the matrix constant 2. Once
more our successive normalization procedure is applied to 1000 uniform random starting
values. Results of this exercise are given in the table below (see Table 2).

We find that when n and p are close convergence appears to be faster, keeping everything
else constant. Interestingly enough, a one-step analysis performed for the different scenarios
above tends to suggest that the onestep ratio, defined as the distance from the first iterate to
the limit as a proportion of the total distance to the limit from the starting value, seems
largely unaffected by the row or column dimension of the problem.

1Since the number of iterations to convergence depends on the starting point, the length of the vector of the number of sign changes
will vary accordingly. We summarize this vector by averaging over all the 1000 simulations the relative frequency of the number of
sign changes for the first nine iterations. The first nine iterations were chosen as each of the 1000 simulations required at least 9
iterations to converge.
2or approximately constant
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6.2. Example 3: Simulation study on a 5-by-5 dimensional example
We now proceed to further investigate the successive normalization procedure when one
begins with column mean-standard deviation polishing followed by row mean-standard
deviation polishing or vice versa on a simple 5-by-5 dimensional example. The theory
developed in the previous sections proves convergence of the successive normalization
procedure whether the first normalization that is performed on the matrix is row polishing or
column polishing.

The algorithm took 30 iterations to converge when one begins with column mean-standard
deviation polishing, and when one begins with row mean-standard deviation polishing it
took 26 iterations to converge. The initial matrix, the final solutions, log relative differences
and their respective plots for both approaches are given below (see Fig. 6).

(13)

(14)

(15)

(16)
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As expected the final solutions are different. The simulations were repeated with different
initial values, and we note that the convergence patterns (as illustrated in Fig. 6) are similar
whether the procedure starts with column polishing or row polishing, though actual the
number of iterations required to converge can vary.

6.3. Example 4: Gene expression data set: 20426-by-63 dimensional example
We now illustrate the convergence of the successive row and column mean-standard
deviation polishing for a real life gene expression example -a 20426-by-63 dimensional
example. This dataset arose originally from a study of human in-stent restenosis by Ashley
et al. [2]. The algorithm took considerably longer in terms of time and computer resources
but converged in eight iterations. The initial matrix and the final are too large to display, but
the relative(and log relative) difference for the eight iterations are given subsequently:

(17)

Note once more how the relative differences decreases linearly on the log scale(though
empirically) and is once again suggestive of the rate of convergence. As both the figure (see
Fig. 7) and the vector of relative differences indicates, there is a jump between iteration 1
and 2 and then the curve behaves linearly.

Additionally the whole procedure takes about 853.2 seconds or approximately 14.22 minutes
on a desktop computer3 vs 0.4 seconds for the 10-by-10 example. However, the algorithm
terminates after only eight iterations. In this example the number of iterations does NOT
change with the increase in dimensionality. It may make sense to investigate this behavior
more thoroughly, empirically, using simulation for rectangular but not square matrices. It
seems that the ratio of the two dimensions or the minimum of the two dimensions may play
a role. We should also bear in mind that the tolerance level, which is the sum of the
individual differences squared, has been kept constant at 0.00000001.

7. Conclusion
In this section we attempt to lend perspective to our results and to point the way for future
developments. Readers please note that for rectangular n × k arrays of real numbers with
min(k, n) ≥ 3, the technique beginning with rows (alternatively columns) and successively
subtracting row (column) means and dividing resulting differences, respectively, by row
(column) standard deviations converges for a subset of Euclidean ℛn×k whose complement
has Lebesgue measure 0. The limit is row and column exchangeable given the Gaussian
probability mechanism that applies in our theoretical arguments. We do not offer other
information on the nature of the exact set on which successive iterates converge. A single
“iteration” of the process we study has four steps, two each respectively for rows and
columns. Note that on the set for which the algorithm converges, convergence seems
remarkably rapid, exponential or even faster, perhaps because after a half an iteration, the

32GHz Core 2 Duo processor and 2GB of RAM
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rows (alternately columns) lie as n (respectively k) points on the surface of the product of
relevant unit spheres. Further iterations adjust only directions, not lengths.

Viewing the squares of the entries as the terms of a backwards martingale entails maximal
inequalities for them, and therefore implicitly contains information on “rates of
convergence” of the squares; but these easy results appear far from the best one might
establish. Our arguments for (almost everywhere) convergence of the original signed entries
do not have information regarding rates of convergence. One argues easily that if successive
iterates converge, and no limiting entry is 0, then after finitely many steps, (the number
depending on the original values and the limiting values) signs are unchanged. In our
examples of small dimension, evidence of this can be made explicit. In particular we
observe empirically that the vast majority of sign changes that are observed do indeed take
place in the first few iterations. Any sign changes that are observed well after the first few
iterations correspond to sign changes around entries with limiting values close to zero. We
also have no information on optimality in any sense of the iterated transformations we study.
One reason for our thinking that our topic is inherently difficult is that we were unable to
view successive iterates as “contractions” in any sense familiar to us.

If we take any original set of numbers, and multiply each number by the realized value of a
positive random variable with arbitrarily heavy tails, then convergence is unchanged.
Normalization entails that after half a single iteration the same points on the surface of the
relevant unit spheres are attained, no matter the multiple. The message is that what matters
to convergence are the distributions induced on the surfaces of spheres after each half
iteration, and not otherwise common heaviness of the tails of the probability distributions of
individual entries.
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Fig 1.
Relative differences at each iteration on the log scale - 3-by-3 dimensional example
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Fig 2.
Convergence patterns for the 3-by-3 example
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Fig 3.
Relative differences at each iteration on the log scale - 10-by-10 dimensional example
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Fig 4.
Distribution of the number of steps to convergence
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Fig 5.
Distribution of distance to limit after 1-step as a proportion of distance to limit from initial-
step
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Fig 6.
Relative differences at each iteration on the log scale for 5-by-5 dimensional example (a)
starting with column polishing (b) starting with row polishing
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Fig 7.
Relative differences at each iteration on the log scale - 20426-by-63 dimensional example
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Table 1

Distribution of the occurrence of sign changes

Iteration no. relative frequency relative cumulative frequency

1 94.97% 94.97%

2 3.15% 98.12%

3 1.03% 99.15%

4 0.40% 99.55%

5 0.20% 99.75%

6 0.12% 99.87%

7 0.05% 99.92%

8 0.03% 99.95%

9 0.02% 99.97%

10 and above 0.03% 100.00%

Total 100% —
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Table 2

Rapidity of convergence and one-step analysis for various p and n combinations

p 3 4 5 10

n 33 25 20 10

mean(count) 34.0870 22.3500 18.0720 14.5790

std(count) 5.3870 3.3162 2.5477 2.1099

mean(ratio) 2.7026 2.5812 2.6237 2.7207

std(ratio) 1.8483 1.5455 1.4768 1.2699
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