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Interpretation of Association Signals
and Identification of Causal Variants
from Genome-wide Association Studies

Kai Wang,1,* Samuel P. Dickson,2 Catherine A. Stolle,3 Ian D. Krantz,4,5 David B. Goldstein,2

and Hakon Hakonarson1,4,5,*

GWAS have been successful in identifying disease susceptibility loci, but it remains a challenge to pinpoint the causal variants in subse-

quent fine-mapping studies. A conventional fine-mapping effort starts by sequencing dozens of randomly selected samples at suscepti-

bility loci to discover candidate variants, which are then placed on custom arrays or used in imputation algorithms to find the causal

variants. We propose that one or several rare or low-frequency causal variants can hitchhike the same common tag SNP, so causal variants

may not be easily unveiled by conventional efforts. Here, we first demonstrate that the true effect size and proportion of variance

explained by a collection of rare causal variants can be underestimated by a common tag SNP, thereby accounting for some of the

‘‘missing heritability’’ in GWAS. We then describe a case-selection approach based on phasing long-range haplotypes and sequencing

cases predicted to harbor causal variants. We compare this approach with conventional strategies on a simulated data set, and we demon-

strate its advantages when multiple causal variants are present. We also evaluate this approach in a GWAS on hearing loss, where the

most common causal variant has a minor allele frequency (MAF) of 1.3% in the general population and 8.2% in 329 cases. With our

case-selection approach, it is present in 88% of the 32 selected cases (MAF¼ 66%), so sequencing a subset of these cases can readily reveal

the causal allele. Our results suggest that thinking beyond common variants is essential in interpreting GWAS signals and identifying

causal variants.
Introduction

GWAS have been very successful in identifying and repli-

cating disease-susceptibility loci for common and complex

human diseases.1–3 A commonly held view is that the

success of GWAS depends on the validity of the common

disease/common variant (CD/CV) hypothesis, which spec-

ifies that most of the genetic risk for common diseases is

due to disease loci where there is one common variant

(minor allele frequency [MAF] > 5%) with small effect

sizes.4,5 There has been a large volume of literature

debating over whether the CD/CV hypothesis describes

a large portion of the genetic susceptibility to common

and complex diseases.6–15 However, it is generally assumed

that association signals detected from GWAS represent

linkage disequilibrium (LD) between a common tag SNP

and a common causal variant with a small effect size and

therefore explain only a minor proportion of disease heri-

tability. If a common causal variant is responsible for an

association signal in GWAS, it should be straightforward

to zoom into the candidate region and identify the variant

in subsequent fine-mapping studies with small sample

sizes, although common variants with subtle effects could

be difficult to recognize as causal even once identified.

We have recently demonstrated that rare variants can

create synthetic association signals in GWAS, by occurring

more often in association with one of the alleles of
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a common tag SNP and therefore resulting in a scenario

in which common SNPs seem to confer risk for common

diseases.16 The term ‘‘synthetic’’ does not imply that the

association is spurious, but rather that it has different prop-

erties from what is commonly assumed (i.e., that one

common causal variant underlies an association signal).

An illustration of this concept is given in Figure 1, in which

two causal variants emerge recently at the same haplotype

background of a tag SNP, so the tag SNP represents the

combined effects of both causal variants in present human

populations. A third, very rare causal variant emerges in cis

with the alternative allele of the tag SNP, so it may have

minor antagonistic effects on the association signal. In

short, the nature of genealogies presents multiple chances

to partition rare variants such that an imbalance of allele

frequencies can exist between cases and controls, and

given the abundance of ancestral common SNPs in the

genome, these differences can usually be picked by

common tag SNPs. We note that the ‘‘tag’’ measure tradi-

tionally uses r2, which favors SNPs with similar allele

frequencies (due largely to the relationship between power,

sample size, and r2), whereas we focused on the D0 measure

in the current study so as to better assess the relationship

between a common tag SNP and rare causal variants.

Extensive coalescence simulations show that such syn-

thetic associations are not only possible but also inevitable;

furthermore, if an association can be accounted for by
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Figure 1. An Illustration Comparing the
Canonical Common Disease/Common
Variants Assumption and the ‘‘Synthetic
Association’’ Theory
The left panel represents a genealogy tree
showing the emergence of causal muta-
tions and tag SNPs over human evolu-
tionary history, while the right panel
illustrates the catalog of variants within
present human populations. Under syn-
thetic association, the best tag SNP captures
the combined effects of causal mutations;
additionally, since causal variants arise
recently, the tag SNP is in long-range LD
with either causal variant.
multiple causal variants, each of which is likely to be rare,

then some true causal variants could lie outside of the LD

block containing the most significant tag SNPs, and

multiple seemingly independent association signals may

be present at the same locus.16 As a corollary, resequencing

a narrow LD block at susceptibility loci in a small number

of randomly selected control samples may not reveal the

causal variants. Whole-genome imputation, even after

the completion of the 1000 Genomes Project, may not

find the causal variants either, unless rare variants (usually

ethnicity-specific) are present in the haplotype data and

can be imputed accurately.

There are a few known examples supporting the hypoth-

esis that multiple rare variants may collectively be respon-

sible for an association signal. First, three rare variants in

NOD2 (MIM 605956) (rs2066844, rs2066845 and

rs2066847, MAF range from 1% to 5%) were found to be

associated with susceptibility to Crohn disease (MIM

266600) in 200117,18 and, on the basis of functional assays,

were potentially causal.19 Although there are no known

common causal variants in NOD2, the Wellcome Trust Case

Control Consortium (WTCCC) study in 2007 implicates

a common tag SNP within NOD2 (rs17221417, MAF ¼
29%).20 In the HapMap CEU population (Utah residents

with ancestry from northern and western Europe), two

rare variants (rs2066844 and rs2066845) are in complete
The American Journal of Human
LD (D0 ¼ 1) with the tag SNP, suggest-

ing that the tag SNP may represent

the combined effects of at least two

rare variants (information for the third

rare variant is not available from

HapMap). Second, with the use of

population-wide resequencing, multi-

ple rare and ethnicity-specific muta-

tions in PCSK9 (MIM 607786) have

been associated with low-density lipo-

protein (LDL) cholesterol levels in

both European Americans and African

Americans,21 multiple rare mutations

in ANPGTL family members are

associated with plasma triglyceride

levels,22 and multiple rare mutations
in ABCA1 (MIM 600046), APOA1 (MIM 107680), and

ANPGTL4 are associated with high-density lipoprotein

(HDL) cholesterol levels.23,24 Recent GWAS on dyslipide-

mia convincingly identified association between these

genes and the corresponding lipid traits, through the use

of common tag SNPs (rs11206510 for PCSK9, MAF ¼ 19%;

rs10889353 for ANPGTL3, MAF ¼ 33%; rs964184 for

APOA1, MAF ¼ 14%; rs1883025 for ABCA1, MAF ¼ 26%;

rs2967605 for ANPGTL4, MAF ¼ 16%).25 Third, Zhu et al.

sequenced the angiotensinogen gene and found that

multiple rare variants contribute to variation in angiotensi-

nogen levels; interestingly, most of these variants sit on the

same haplotype background created by three common

SNPs.26 Fourth, three common tag SNPs encompassing

MC1R (MIM 155555) were ‘‘independently’’ associated

with melanoma in a recent GWAS.27 However, resequenc-

ing of the candidate gene, MC1R, indicates that these

signals can be completely explained by the combined

effects of several rare nonsynonymous mutations, suggest-

ing that ‘‘ignoring rare variants can lead to incorrect

inferences on the potential role of candidate genes carrying

common SNPs identified by GWAS’’ (F. Demenais at al.

[2009]. Importance of sequencing rare variants after a

genome-wide association study (GWAS): the MC1R gene,

16q24 region and melanoma story, paper presented at

American Society of Human Genetics 59th Annual
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Meeting, Honolulu, HI, USA). Fifth, many hundreds of

human leukocyte antigen (HLA) alleles and haplotypes

exist in human populations, and some of them cause auto-

immune diseases.28 Although some SNPs can tag individual

HLA alleles well,29,30 many association signals in GWAS

by diallelic SNP markers potentially represent synthetic

association, whereby one SNP allele tags multiple HLA

alleles. Sixth, we have shown that even a single rare causal

allele (MAF ¼ 3.6%) can create significant association

signals in a GWAS for sickle cell anemia (p ¼ 1.1 3 10�136

for rs7120391, MAF ¼ 11%) and that genome-wide signifi-

cant (p < 5 3 10�8) signals can extend over 2.5 Mb across

many dozens of r2-based LD blocks visually discernable in

the HapMap population.16 The causal allele is under strong

positive selection to protect against malaria, representing

a classic example of heterozygote advantage,31 but it also

represents an example that recently emerged causal alleles

can leave a trace of long-range haplotypes surrounding

the allele. Finally, we have shown that hearing loss, with

hundreds of known causal mutations at the GJB2 ([MIM

121011])-GJB6 ([MIM 604418]) loci but without common

causal variants,32 is associated with several seemingly inde-

pendent common tag SNPs around GJB2.16 In summary,

none of these association signals on common tag SNPs

discussed above are spurious signals; instead, they may

represent scenarios whereby multiple causal variants work

together to create genome-wide significant association

signals, which are being accredited to one common tag SNP.

The purpose of the current study is not to speculate on the

fraction of association signals that can be attributed to the

presence of multiple causal alleles. Rather, our aim is to

accept the possibility that some signals in GWAS emerge

from rare causal variants, and to use this possibility to

leverage the extensive GWAS data in the search for causal

variants. On the basis of the observation of differential LD

between tag SNPs in cases compared to controls, together

with the observation of long-range haplotypes surrounding

tag SNPs, we present an approach for selecting cases to

maximize the chance of finding causal variants. We evalu-

ated this approach on a simulated data set and compared

it with conventional fine-mapping approaches to identify

causal variants. We also tested the approach on a GWAS

on hearing loss, in which we know the identity of the causal

variants, and we have sequenced all available cases for the

presence of causal variants. We believe that our theoretic

framework and our case-selection approach will have signif-

icant implications for the design of follow-up studies after

a successful GWAS in order to facilitate success in finding

the causal genes and their causal variants.
Material and Methods

Definition of a Synthetic Causal Marker
When more than one rare variant is present in the same gene in

a population, in order to facilitate modeling of their joint effect,

we create a synthetic marker that represents the combined effect

of several rare variants. To simplify the description below, suppose
732 The American Journal of Human Genetics 86, 730–742, May 14,
that there are two rare causal variants with minor (causal) allele

frequencies of pM and pN, respectively. Given that both variants

are rare and recent, and that they are physically close (within

the same gene), it is reasonable to assume that they are in

complete LD with opposite direction (that is, that M and N alleles

never occur in cis, or that only three haplotypes are present in

population: Mn, mN and mn). Therefore, for the synthetic

marker, the genotype is heterozygous when the two homologous

chromosomes are in configuration of Mn/mn or mN/mn, and

it is homozygous when the two homologous chromosomes are

in configuration of Mn/mN, Mn/Mn, or mN/mN.

Let the two alleles for the synthetic marker be A as risk allele and

a as non-risk allele. The allele frequency of the synthetic marker is

the sum of M and N alleles. If the two causal variants are not in

perfect LD, that is, if the MN haplotype exists in population, we

can assume that that penetrance of an MN haplotype is identical

to that of Mn or mN, whichever is larger. If we suppose that Mn is

more penetrant than mN, then effectively we could consider

a modified second causal variant with allele frequency of pN�pMN

and pnþpMN, which has complete LD with the first causal variants.

A synthetic causal marker can then be built from these two causal

variants. Similarly, multiple causal variants can be modeled in

a stepwise fashion. In cases where causal variants are protective,

the allele frequency of the synthetic marker needs to be subtracted

by that of the protective allele.

Relationship of Allelic Odds Ratio between the

Synthetic Causal Marker and the Tag SNP
A general formula describing the allelic odds ratio (OR) for the tag

SNP (with alleles B and b), based on the OR estimated from the

synthetic causal variant (with alleles A and a), is

ORB ¼ 1þ DðORA � 1Þ
pB½ð1� pBÞ þ ðpAð1� pBÞ �DÞðORA � 1Þ� (Equation 1)

in which the allele frequency is pA < pB and D is the LD coefficient.

The formula has been previously described.33

Assuming that the causal marker and the tag SNP have complete

LD with identical direction, we have D ¼ pA(1-pB). The above rela-

tionship can therefore be simplified as:

ORB � 1

ORA � 1
¼ pA

pB

(Equation 2)

Relationship of the Locus-Specific Sibling Recurrence

Risk Ratio between the Synthetic Causal Marker and

the Tag SNP
The locus-specific sibling recurrence risk ratio, or lS, can be calcu-

lated as

lS ¼ 1þ ðVA=2þ VD=4Þ
K2

(Equation 3)

in which VA is the additive genetic variance, VD is the dominance

genetic variance, and K is the population prevalence of the

disease.34 Let Va¼ VA /f0
2 and Vd¼ VD /f0

2, in which f0 is the pene-

trance of the wild-type genotype, as shown before,35 and the

formula can be rewritten as

lS ¼ 1þ ðVa=2þ Vd=4Þð1� PARÞ2

For the causal marker with A and a alleles in which PAR is the

population attributable risk, we have:
2010



Table 1. Effect Sizes of Three Causal Variants and the Tag SNP at the NOD2 Locus for Crohn Disease

SNP Function MAF GRR (Het) GRR (Hom) PAR lS

Proportion of Genetic
Risk Explaineda

Causal Variants

rs2066844 Arg702Trp 4.1% 1.71 2.73 5.55% 1.018 0.54%
rs2066845 Gly908Arg 1.5% 2.53 12.13 4.55% 1.040 1.2%
rs2066847 Leu1007fsinsC 1.9% 3.64 12.06 9.29% 1.118 3.4%
Three-SNP Combination 18.2% 1.184 5.1%

Tag SNP

rs17221417 Tag SNPb 28.7% 1.29 1.93 16.4% 1.023 0.69%

The three causal variants have a combined lS similar to that observed in linkage studies, explaining the heritability at the locus. The lS estimate based on the tag
SNP creates a false impression of ‘‘missing heritability.’’ MAF, minor allele frequency; GRR, genotype relative risk; Het, heterozygotes; Hom, homozygotes; PAR,
population attributable risk.
a The total lS for Crohn disease is estimated to be 27.2, following 50.
b rs17221417 is the tag SNP reported in Table 2 of the WTCCC paper.20 The MAF and GRR were estimated with the use of WTCCC data.
VaðAÞ ¼ 2pApa

�
pað1�GRRAaÞ þ pAðGRRAa �GRRAAÞ

�2
(Equation 4)

VdðAÞ ¼ p2
Ap2

a ½1þGRRAA � 2GRRAa�2 (Equation 5)

1� PARðAÞ ¼
1

GRRAAp2
A þ 2GRRAapApa þ p2

a

(Equation 6)

In the study, we plot the relationships between lS for the

synthetic causal marker and the tag SNP, given prespecified values

of genotype relative risk (GRR) and a ladder of allele frequencies.

Simulation of Sequencing Data on a Susceptibility

Locus
We simulated sequencing data that mimic the scenario described

in Table 1 in order to evaluate different resequencing strategies

for identifying causal variants from a susceptibility locus detected

in GWAS when multiple causal variants are present. In the

simulation, we assumed that three causal variants with MAF

of ~1%, 2%, and 4% are present at the same locus with a GRR

of ~3. Genealogical trees were simulated with GENOME,36 with

an effective population size of 10,000 and a mutation rate of

10�8 used. A random gene genealogy was drawn, with mutations

distributed along the genealogy, and disease-causing mutations

were assigned at random from those variants that were within

the allowed frequency range. Two simulated haplotypes were

randomly selected with replacement for each individual, and

1000 individuals were generated, including an equal number of

cases and controls. Case or control status was designated on the

basis of the assigned risk. The simulation data sets can be down-

loaded from the website listed in the Web Resources section.

The simulation data set contains a total of 4116 segregating sites

within a 2 Mb region. To simulate genotyping data on these

subjects in a GWAS, we randomly selected SNPs so that their

MAF distribution followed a uniform distribution between 0 and

0.5. In total, 504 SNPs were selected as if they were genotyped

by a GWAS, with an average intermarker distance of ~4 kb. We

tested all variants in the hypothetical genotyping array for associ-

ation with disease status, by allelic association tests in PLINK.37

Genome-wide Search for Long-Range

Haplotypes in Cases
Because rare causal variants arose recently, they often exist on

long-range haplotypes spanning multiple blocks of high LD (as
The Ame
observed in control populations), which recombination has not

yet had a chance to further fragment. The concept of the long-

range haplotype has been widely used in human genetics research.

For example, it has been used for inferring positive selection from

the human genome,38,39 used in population-based linkage anal-

ysis for identifying disease-susceptibility loci,37–40 and used in

inferring the population origin of private alleles.41 In addition,

previous resequencing studies on rare variants clearly demon-

strated the presence of long-range haplotypes, suggesting that

rare causal alleles were generally recent in origin.42 Furthermore,

contrasting LD patterns in cases versus controls offers improved

power to localize some association signals.43,44 Therefore, long-

range haplotypes that are preferentially observed in cases tend

to be those that harbor rare causal alleles, and such loci will display

differences in LD structure between cases and controls.

We performed genome-wide scanning of the SNP genotype data

to identify regions likely to harbor long-range haplotypes in cases,

by contrasting LD patterns between cases and controls with the

use of index SNPs. This analysis was facilitated with the use of

the ‘‘clumping’’ function in the PLINK software.37 The clumping

procedure takes all significant SNPs (by default p < 1 3 10�4) as

index SNPs and forms clumps of all nearby SNPs (by default

p < 0.01), using the ‘‘--clump-r2 0’’ argument to include all SNPs

regardless of r2 with the index SNP. Next, we compared the D0

values between the index SNP and all nearby clumped SNPs in

cases versus controls. Our rationale is that even if two SNPs are

not in LD in the control population, if two alleles in the two

SNPs happen to be in the same long-range haplotypes that were

carried through the genealogy, then greater LD should be detected

in cases that enrich for such long-range haplotypes. Thus, for

a given index SNP, we calculated the D0 with all nearby SNPs in

cases (D0case) and in controls (D0control), as well as the ratio of the

D0 measure in cases versus in controls (D0case / D0control). For each

index SNP, summary statistics can be calculated as the median of

these ratios, and a higher value indicates better correlation of adja-

cent SNPs in cases than in controls.
Phasing Long-Range Haplotypes at Susceptibility Loci
Assuming that rare causal variants can be tagged by specific long-

range haplotypes, we attempted to identify a subset of tag SNPs

that are maximally informative for long-range haplotype

construction, because these tag SNPs need to differentiate the

effect of long-range haplotypes and ancestral short-range LD
rican Journal of Human Genetics 86, 730–742, May 14, 2010 733



0
5

10
15

O
R

 (
ca

us
al

 m
ar

ke
r)

1 1.1 1.2 1.3 1.4 1.5
OR (tag SNP with MAF=30%)

MAF=1%
MAF=2%
MAF=5%
MAF=10%

Causal marker

Figure 2. Illustration of an Odds Ratio for a Tag SNP and
a Synthetic Causal Marker
The relationship between the odds ratio (OR) observed on a tag
SNP with MAF ¼ 30% and the true OR for a synthetic causal
marker is shown, with MAF ranging from 1% to 10%. In all
scenarios, the tag SNP underestimate the true effect size, especially
when the causal marker is relatively rare.
blocks in the human genome. Therefore, from the ‘‘clump’’ of

SNPs at a susceptibility locus, we specifically chose SNPs that

appear to be tightly linked to the index SNP in cases versus in

controls, on the basis of D0case / D0control. In the hearing-loss data,

possibly due to the presence of one major risk allele, the ratio tends

to be relatively large, so we arbitrarily picked a threshold of > 2 to

select SNPs for haplotype phasing. In the simulation data, we used

a threshold of > 1.2 to select six SNPs.

We relied on the fastPHASE program45 for building long-range

haplotypes for cases and controls together, using the SNPs selected

from the previous step. All default parameters were used, and the

‘‘-i’’ option was used to minimize individual error as opposed to

switch error.

Identify Subset of Cases for Sequencing
After haplotype phasing, we aimed to identify a subset of cases to

enrich for samples who are more likely to harbor causal variants.

The best-guess haplotypes for each sample are used to assess the

frequency of each haplotype in cases and controls, and Fisher’s

exact test is used to assess whether a long-range haplotype is asso-

ciated with disease status. We acknowledge that fastPHASE does

not account for haplotype-phasing uncertainty, but it offers

greatly improved speed. Because our purpose is to enrich a subset

of cases carrying specific causal variants, some phasing errors can

be tolerated. On the basis of the hypothesis that the first few long-

range haplotypes that are overrepresented in cases versus controls

could tag the major classes of rare causal variants, we can select

cases that carry these specific haplotypes for resequencing studies.
Results

Effect Sizes May Be Underestimated in GWAS

One of the most consistent themes from analysis of GWAS

data is that, with rare exceptions, the effect sizes of the

susceptibility loci tend to be modest, with an OR typically

less than 1.3 2. Because the power of association studies

depends on effect sizes, it likely that most additional unde-

tected susceptibility loci have even smaller effect sizes.

However, if an association signal is due to the presence of

multiple rare variants, then the estimated effect size merely

reflects that assigned to the tag SNPs, which could be very

different from those of the causal variants. This possibility

has been recognized, but mainly in the context of the

assumption that the causal site is imperfectly tagged by

the common variant. The possibility that much of the

signal comes from multiple rare variants has not been

systematically addressed.

To investigate the relationships of effect sizes between

common tag SNPs and rare causal variants in a quantitative

manner, we need to create an artificial ‘‘synthetic causal

marker,’’ which represents the combined effect of one or

more causal variants. Assuming that causal variants do

not occur in cis (one variant masks the effect of another

if they do), the allele frequency of the synthetic marker is

the sum of all causal variants, whereas the effect sizes

(odds ratio and GRR) can be expressed as a weighted sum

from those of the causal variants. In the discussion below,

we treat the susceptibility locus as if there is only one

synthetic causal marker (with A as risk allele and a as
734 The American Journal of Human Genetics 86, 730–742, May 14,
non-risk allele), and we examine how well the tag SNP

(with B as risk allele and b as non-risk allele) represents

the effects of this synthetic causal marker. It is well known

that differences in odds ratio estimates could exist if allele

frequencies of a tag SNP differ much from a causal variant

in LD.33 This relationship is illustrated in Figure 2, by

assuming that the tag SNP has an MAF of 30% whereas

the causal marker has an MAF ranging from 1% to 10%.

In all scenarios, the tag SNP underestimates the true effect

sizes of the causal marker. For example, when the MAF ¼
1% for the causal marker, the OR of 1.2, as suggested by

the tag SNP, actually reflects a true OR of 7 for the causal

marker.

To demonstrate the underestimation of genetic effects

with the use of real data, we next examined the NOD2

locus for Crohn disease as an example. Three nonsynony-

mous or frameshift mutations in NOD2 were previously

associated with Crohn disease17,18 and were subsequently

confirmed by many replication studies and meta-anal-

ysis.46 The three mutations have been studied by in vitro

biochemical assays and by mouse models with introduced

mutations,19 therefore confirming that they play causal

roles rather than are in LD with a causal variant. A large-

scale meta-analysis on NOD2 reported estimates on allelic

OR for the three causal variants (ranging from 2.2 to

4.1),46 and a recent NOD2 genetic study has estimated

the GRR (ranging from 1.7 to 3.6 for heterozygotes)47

(Table 1). In the WTCCC study,20 the NOD2 locus was

convincingly associated with Crohn disease, through the

use of the common tag SNP rs17221417 (MAF ¼ 29%,

OR ¼ 1.37).20 Comparing the true effect size of causal vari-

ants with that inferred from rs17221417 (Table 1), it is clear

that the tag SNP severely underestimates the true effect size

of any one of the three causal variants.
2010
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effect sizes with multiplicative genetic models. In all cases, the
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Heritability Due to Identified GWAS Loci May Be

Underestimated

A question that often arises in GWAS is ‘‘Where is the

missing heritability?’’48,49. This question refers to the fact

that the collection of variants discovered in GWAS explains

only a minor fraction of the heritability, even for diseases

or traits that are highly heritable. Multiple reasons have

been proposed to explain the missing heritability.48

However, the presence of multiple rare causal variants offers

additional explanations: First, some rare causal variants

may tag the non-risk allele of a common tag SNP (see

example in Figure 1), antagonizing the effect size of the

tag SNP; similarly, a rare protective variant may tag the

risk allele of a common tag SNP, antagonizing the observed

effect size. Second, even if a tag SNP represents the

combined effects of all causal variants perfectly (D0 ¼ 1),

its heritability measure may dramatically underestimate

the true contribution of the susceptibility locus.

The theoretic foundation of differing familial risk

between a common and a rare variant, which are in com-

plete LD (D0 ¼ 1) but have different allele frequencies,

has been previously described in an excellent article by

Hemminki et al.35 Although this article serves the purpose

of explaining the discordance between population attrib-

utable risk (PAR) and familial risk, it turns out that the

statistical derivation can also be applied to an investigation

of our hypothesis. In our analysis, we considered a tag SNP

with an MAF of 30% and a causal marker with an MAF

ranging from 1% to 10% (with a 1% ladder of increase).

We then investigated the relationships of the locus-specific

lS estimates based on the tag SNP or the causal marker. The

lS represents the relative risk of siblings of patients divided

by the population prevalence of the disease, and it is used

to calculate the proportion of heritability explained by

a locus for binary phenotypes.34 We tested several effect

sizes for the causal marker by assuming multiplicative

models (Figure 3). In all cases, it is clear that the lS esti-

mates based on the tag SNP severely underestimate that

based on the causal marker, supporting previous specula-

tions that rare functional alleles could explain a much

larger proportion of familial aggregation of cases than

common tag SNPs.35

To investigate the missing heritability in real data, we

again examined the NOD2 locus in the Crohn disease

data set (Table 1). First, the PAR for the tag SNP is almost

identical to the PAR for the three causal variants combined

together (16.4% versus 18.2%), demonstrating that the tag

SNP indeed captures information from all three causal vari-

ants together. Next, using the GRR estimates,47 we calcu-

lated the locus-specific lS for the three causal variants.

Their combined effects result in a lS estimate of 1.184,

which is quite close to the estimate of lS ¼ 1.3 for NOD2

observed in linkage study.18 Therefore, two-thirds of the

familial risk at NOD2 can be explained by these three

causal variants. In fact, assuming a total lS of 27.2 for

Crohn disease (weighted estimate from multiple studies50),

the three causal variants explain> 5% of the genetic risk of
The Ame
Crohn disease, suggesting that NOD2 is a major disease

locus. Examination of the tag SNP rs17221417 reported

by WTCCC20 reveals a locus-specific lS estimate of merely

1.023, which is not even remotely close to the expected

value of 1.3. Therefore, the tag SNP creates the false impres-

sion that the association signal explains a tiny fraction of

the linkage signal at NOD2 and that some major-effect

causal variants cannot be tagged by rs17221417. In other

words, the tag SNP creates a scenario of ‘‘missing herita-

bility,’’ in which the strongest Crohn disease-susceptibility

locus, NOD2, explains only ~1% of the total genetic risk for

Crohn disease, if we simply take the GWAS results at face

value. Altogether, extending previous studies, our analysis

suggests that the ‘‘missing heritability’’ observed in GWAS

may not be as severe as it appeared to be, if multiple rare

variants are responsible for at least a proportion of the

discovered susceptibility loci.

Comparative Strategies for Identifying Causal

Variants in a Simulated Data Set

After a successful GWAS, the next natural extension is to

fine-map the discovered susceptibility loci to identify causal

variants. Researchers may sequence a few dozen subjects

on the entire HapMap r2-based LD block harboring the

most significantly associated SNPs, identify all common

and rare variants in these subjects, then design a custom

fine-mapping panel with all of these variants to examine

a large number of cases and controls. We note that these

approaches have already been adopted for multiple diseases

by many groups (for example, see P. Deloukas and WTCCC

[2008], High throughput approaches to fine mapping in

regions of confirmed association, paper presented at 58th

Annual meeting of American Society of Human Genetics,
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Philadelphia, PA, USA). However, as of today, these types

of efforts have not identified ‘‘smoking gun’’ mutations

(O. Harismendy et al. [2009], Population resequencing

and functional annotation of the 9p21 interval associated

with coronary artery disease and type 2 diabetes, paper pre-

sented at The Biology of Genomes, Cold Spring Harbor, NY,

USA; G. McVean and WTCCC [2009], Targeted resequenc-

ing and fine-mapping of variants in association studies,

paper presented at The Biology of Genomes. Cold Spring

Harbor, NY, USA).51 This could be due to the insufficient

power for identifying the ‘‘needle’’ from a haystack of

common variants with very similar association statistics,

or it could be due to the properties of synthetic associations.

If multiple rare variants exist, then we would expect the

following: (1) causal variants may fall outside of the r2-based

LD block naturally observed in control subjects; (2) some

causal variants may not be observed in selected subjects

and therefore may not be designed on the custom arrays;

and (3) some causal variants may be on the custom arrays,

but their test statistics (p values) may not be as significant

as common tag SNPs that represent multiple causal variants.

To examine the effectiveness of conventional approaches

for pinpointing causal variants when multiple causal

variants exist, we analyzed a simulated data set with geno-

types for a disease locus in 1000 subjects (500 cases and

500 controls). The locus contains three causal variants

with a MAF of ~1%, ~2%, and ~4% and a GRR of ~3. We

simulated genotypes for 4116 segregating sites in a 2 Mb

region by a coalescence model, and we then randomly

selected 504 SNPs with MAF following a uniform distribu-

tion between 0 and 0.5, as if there are 504 SNPs in a hypo-

thetical genotyping array for this region. The most signifi-

cantly associated SNP (SNP2276) is a common tag SNP

with p ¼ 1.1 3 10�10 and a MAF of 28% in cases and 16%

in controls.

From the simulation data, we evaluated a conventional

strategy of selecting a random set of 30 controls for the

identification of variants by sequencing. We performed

1000 replicate experiments, and we found that 397, 500,

and 73 of these experiments were able to include one,

two, and three causal variants from the 30 subjects, respec-

tively. Therefore, this experimental design is unlikely to

lead to the discovery of all three causal variants to be

placed in custom fine-mapping arrays. Furthermore, even

under the assumption that all three causal variants are

indeed on the fine-mapping arrays, we then examined

their association statistics by comparing cases versus

controls: their p values are 2.3 3 10�4, 2.0 3 10�8 and

1.0 3 10�10, respectively. However, in the entire simula-

tion data set, there is also a common variant, SNP 2034,

with p ¼ 8.8 3 10�12, which completely tags all three

causal variants (D0 ¼ 1). Because most researchers assume

the existence of one common causal variant, they would

usually consider only the most significant p value in

a region in fine-mapping studies, so these causal SNPs

would be missed. Finally, we examined the role of condi-

tional regression analysis, by including SNP 2034 as cova-
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riate in a logistic regression model and assessing associa-

tion of all other variants. Although all three causal

variants show some levels of residual association, only

one of them ranks at the top of the list. Therefore, even

by conditional regression analysis, we still cannot identify

all three true causal variants. On the basis of our experi-

ments above, if multiple causal variants do exist at a suscep-

tibility locus, the traditional fine-mapping approaches are

unlikely to identify all of them.

To address this issue and to improve the likelihood of

success, we propose a case-selection approach based on

examining long-range haplotypes, which are haplotypes

expected to contain recently emerged causal alleles. The

rationale is that resequencing studies must be focused on

subjects who are more likely to carry causal alleles, in order

to ensure a reasonably good chance of identifying these

variants for the design of fine-mapping panels. We treated

SNP2276 (the most significant SNP in the hypothetical

genotyping array) as an index SNP and identified five addi-

tional SNPs, which have higher D0 with the index SNP in

cases versus controls. Interestingly, these SNPs range

from 241 kb to the left of to 207 kb to the right of the index

SNP. We then phased all cases and controls and identified

a few haplotypes that appear to have higher frequency in

cases versus controls. Strikingly, 96/100, 59/112, and

21/36 subjects carrying the first, second, and third haplo-

types do carry each of the three causal variants, respec-

tively. Therefore, the presence of long-range haplotypes

improves the prediction of the carrier status of the causal

variants, although it is not perfect. In any case, the selec-

tion procedure resulted in high enrichment of subjects

for each of the three causal variants, potentially facilitating

the discovery of these variants and subsequent fine-

mapping efforts by custom arrays.

To further examine how the long-range haplotype-based

method works, we performed additional experiments by

constructing local haplotypes. We used PLINK37 to esti-

mate haplotype blocks for SNPs on the hypothetical geno-

typing array, and we identified an LD block with four

SNPs encompassing SNP2276. We then followed the same

procedure described above to identify haplotypes associ-

ated with disease, but only one haplotype showed higher

frequency in cases than in controls. This haplotype is

carried by 235 cases, including 98, 23, and 68 subjects with

the three causal variants, respectively. Therefore, compared

to long-range haplotypes, SNPs within a local LD block per-

formed less well in enriching subjects with specific causal

variants.

Case-Selection Approach Identifies Causal Variants

in a Real Data Set

Next, we used a real GWAS data set on hearing loss to test

the case-selection method based on long-range haplo-

types. Hearing loss represents an extreme example because

of the existence of a major-effect locus near GJB2-GJB652

(similar to the MHC region for type 1 diabetes [MIM

222100]), making it different from many other complex
2010



Table 2. A List of SNPs that Are Associated with Hearing Loss with p < 0.01 and Are within 1 Mb from the Index SNP rs870729

SNPa Distance to rs870729 p Value r2
case

b D0case
b r2

control
b D0control

b D0 Ratioc

rs2992950 �853628 0.002274 0.001 0.106 0 0.014 7.57

rs17080523 �849341 0.002406 0 0.092 0 0.002 46.00

rs7329467 �62457 6.87E-08 0.117 0.495 0.003 0.071 6.97

rs7984378 �47459 0.003742 0.015 0.234 0.002 0.084 2.79

rs2313475 �31103 0.00413 0.056 0.257 0 0.027 9.52

rs3751385 �18923 1.50E-09 0.744 0.889 0.673 0.843 1.05

rs6490527 2550 0.006606 0.211 1 0.265 1 1.00

rs7319601 56340 0.007069 0.026 0.237 0.009 0.166 1.43

rs9509124 59891 0.005835 0.031 0.256 0.01 0.172 1.49

rs9315439 63701 0.000129 0.051 0.235 0 0.007 33.57

rs7992230 66438 0.001725 0.081 0.663 0.036 0.5 1.33

rs1537788 82693 4.71E-05 0.075 0.373 0.033 0.277 1.35

rs9285110 85313 9.38E-05 0.057 0.369 0.03 0.305 1.21

rs1547721 86181 0.004168 0.075 0.639 0.037 0.51 1.25

rs7327522 89416 0.007661 0.035 0.261 0.001 0.048 5.44

rs4769989 93031 0.002192 0.04 0.313 0.001 0.048 6.52

rs7323752 95958 0.002151 0.04 0.323 0.002 0.084 3.85

rs7323769 95987 0.00054 0.043 0.409 0.008 0.202 2.02

rs1953516 99267 0.00039 0.049 0.447 0.01 0.236 1.89

rs7337231 114739 0.002022 0.028 0.309 0.009 0.204 1.51

rs9509167 125622 0.001591 0.016 0.215 0.008 0.173 1.24

rs12868032 128169 0.003955 0.017 0.211 0.006 0.151 1.40

rs9550637 130648 0.007389 0.029 0.221 0.002 0.06 3.68

a SNPs selected for constructing long-range haplotypes are marked in bold font.
b r 2 and D0 measure correlation between each SNP and the index SNP rs870729.
c D0 ratio is defined as D0case / D0control.
diseases (such as type 2 diabetes [MIM 125853]). Neverthe-

less, because hundreds of causal variants have been docu-

mented in many studies sequencing this region (Con-

nexin-deafness database), the knowledge regarding the

known causal variants helps us test our method of identi-

fying them by sequencing. We previously performed

a GWAS on 418 cases and 6892 control subjects, and we

identified genome-wide significant associations within

the GJB2-GJB6 locus, the most significant tag SNP being

rs870729 (MAF ¼ 19%, p ¼ 3.4 3 10�11, OR ¼ 1.7).16

Here, we surveyed the whole-genome genotype data to

search for loci with evidence of long-range haplotypes in

cases, using a simple summary statistic called the median

D0case / D0control ratio. In essence, the summary statistic eval-

uates differences in LD patterns in cases compared to

controls in a given locus surrounding an index SNP (the

most significant SNP at a locus). A locus on 10q25.1

showed the strongest evidence of long-range haplotypes

(with rs7085286 as index SNP, association p ¼ 2.1 3

10�5, median D0case / D0control ratio ¼ 3.3). The GJB2-GJB6
The Ame
locus (with rs870729 as index SNP) showed the second

strongest evidence of long-range haplotypes (median

D0case / D0control ratio ¼ 1.8). At the GJB2-GJB6 locus, for

23/23 (100%) of the SNPs, we observed a higher D0 value

in cases than in controls (Table 2), and some of the stron-

gest D0 ratios were observed 850 kb away from the index

SNP across multiple LD blocks, supporting the assumption

that a long-range haplotype is indeed present in cases.

Next, we obtained sequencing data on the GJB2 locus

for a set of 329 cases, whose DNA were available for

sequencing. On the basis of well-documented annotations

of mutations, a total of 19 unique causal variants were

observed. Not surprisingly, we found that 37 cases carry

the 35delG mutation, which has an MAF of 8.2% in cases,

far higher than the known frequency (1.25%) in controls

of European ancestry.53 Several less frequently observed

causal variants in cases include M34T (MAF ¼ 1.4%),

167delT (MAF ¼ 1.2%), L90P (MAF ¼ 1.1%), V37I (MAF ¼
0.5%), and a GJB6 deletion (MAF ¼ 0.3%), and they

collectively account for 86% of the causal mutations at
rican Journal of Human Genetics 86, 730–742, May 14, 2010 737



Table 3. A List of Haplotypes and Their Estimated Frequencies in Hearing Loss Cases and Controls

Haplotypea Frequency (Cases) Frequency (Controls) Odds Ratio p Valueb Cases with 35delG Cases with 167delT

212121121112 0.053 0.008 6.8 0 88% (28/32)

212121121111 0.010 0.001 12.7 4.73E-05 67% (4/6)

211111121112 0.010 0.002 4.08 0.00608

211121121112 0.015 0.006 2.55 0.00967

121212212221 0.018 0.009 2.08 0.0212

211111221112 0.009 0.003 2.81 0.0276

121112212221 0.014 0.008 1.77 0.111

211112221112 0.021 0.016 1.35 0.267 38% (5/13)

211122121112 0.015 0.011 1.37 0.342

211122212211 0.009 0.007 1.27 0.482

211112222111 0.011 0.009 1.23 0.519

a Best-guess haplotypes with > 1% frequency in cases and with an OR > 1 are shown; 1 and 2 in the haplotype refers to the A and B alleles for SNPs listed in Table
2, per Illumina’s TOP/BOT allele designation.
b p value is calculated by Fisher’s exact test.
the GJB2-GJB6 locus in our data. Interestingly, 35delG is

in high LD with the tag SNP rs870729 (D0 ¼ 0.95). The

other five causal variants (M34T, 167 delT, L90P, V37I,

GJB6 deletion) are in complete LD with rs870729 (D0 ¼ 1),

though we acknowledge that LD calculation is unstable

when the MAF for one variant is very low. However, it is

clear that the MAF of rs870729 is far higher than that of

any causal variants, so if we had sequenced only a handful

of control subjects for variant discovery, we would not find

many of these rare causal variants. Because we cannot put

these causal variants into custom arrays or use them in

imputation, we would not identify them by traditional

fine-mapping efforts.

We then focused on whether we can confidently identify

a subset of cases carrying the 35delG mutation, using SNP

genotype data alone. We set a D0case / D0con > 2 threshold,

and we selected 11 SNPs (bold font in Table 2) for phasing

long-range haplotypes by fastPHASE45 and comparing the

best-guess haplotype frequencies in cases versus controls

(Table 3). The most striking difference was observed for

a long-range haplotype that has an allele frequency of

0.8% in controls but 5.3% in cases, suggesting that it

may tag a causal allele with major effects. By comparison

with the resequencing data, we found that 28/32 (88%)

of the cases carrying this haplotype also have the 35delG

mutation, indicating a high positive predictive value of

this haplotype for the presence of 35delG. The allele fre-

quency of 35delG is 66% in these 32 cases, suggesting

that sequencing a few of these cases can easily identify

the causal variants. In addition, the case-selection method

has high specificity, because only 0.8% of the controls

carry this long-range haplotype, and some of them prob-

ably do carry the 35delG mutation. Our results thus

provide strong evidence supporting the validity and effec-

tiveness of the case-selection approach.
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Several additional haplotypes also show enrichment as

being overrepresented in cases versus controls, so we inves-

tigated whether they were tagging additional rare variants.

We found that the second haplotype, despite being rare,

actually also tagged the 35delG causal variant, with 4/6

(67%) of the cases predicted to harbor this haplotype

carrying the 35delG variant. Additionally, we also found

that another haplotype, with a frequency of 1.6% in

controls and 2.1% in cases, predicts the presence of the

167delT mutation, as 5/13 (38%) of the cases with this

haplotype also carry a 167delT mutation. No other haplo-

types seem to be tagging other causal variants, such as

M34T, L90P, or V37I. In practice, given limited sequencing

resources, some researchers may choose to sequence one

best-candidate haplotype first, but other haplotypes should

also be surveyed to find a more comprehensive ensemble of

causal variants. Altogether, if we had sequenced a dozen

cases carrying a few specific long-range haplotypes, we

could have easily identified at least one causal mutation

for hearing loss in the GWAS data. It is likely that diseases

that are more complex than hearing loss may not be as

straightforward to analyze, but as an extreme example,

the hearing loss data suggest the potential utility of enrich-

ing cases to discover causal variants.
Discussion

In the current study, we illustrated the potential effect-size

distortion of causal variants in GWAS and the potential

underestimation of heritability explained for loci detected

by GWAS, through the analysis of a well-known locus

for Crohn disease. We then proposed a case-selection

approach that enriches samples likely to carry long-range

haplotypes containing causal alleles, and we demonstrated
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the effectiveness of this approach on a simulated data set

and on a real data set with resequencing data. There are

several caveats related to the three major aspects of this

study:

When an association signal on a common tag SNP was

due to one or more rare variants, our simple theoretical

calculation and real-data analysis confirmed that tag

SNPs may underestimate the true effect sizes of causal vari-

ants in GWAS. However, we stress several issues here in

the interpretation of effect sizes. First, the magnitude of

underestimation depends on the allele frequency of the

synthetic causal marker rather than each individual causal

variant, because the tag SNP measures the combined

effects of several causal variants. Second, given that rare

mutations have emerged relatively recently, the casual

variants in the same gene may vary between ethnicity

groups (for example, causal variants in PCSK9 for low-

density lipoprotein cholesterol levels differ completely

between European Americans and African Americans21).

Therefore, in the presence of synthetic association, a tag

SNP may be associated with the same phenotype in

different ethnicity groups, but the effect sizes could differ

substantially or even be in opposite directions, because

the tag SNP may tag different sets of causal variants. Third,

synthetic association could result in distortion of disease

models, whereas causal variants with dominant or reces-

sive effects could manifest as if they increase disease risk

in a somewhat multiplicative fashion. Finally, synthetic

association does not exclude the possibility that rare vari-

ants with strong effects and common variants with modest

effects coexist at the same locus. Many disease loci (for

example, KCNJ11 for type 2 diabetes54) were discovered

through study of a few families with extreme or Mendelian

form of the disease, whereas common variants with lower

penetrance were later discovered at the same loci (for

example, the E23K mutation in KCNJ11 has an OR value

less than 255 and is functionally validated as potentially

causal56).

If a susceptibility locus is subject to synthetic associa-

tion, how can we estimate the magnitude and recover

the missing heritability? In the absence of resequencing

data at the locus on many subjects, this question cannot

be answered directly by association results from GWAS

alone, because we do not know a priori the distribution

of frequencies and effect sizes of causal variants at the

locus. However, for many diseases, it is feasible to dig out

old linkage results on the same locus: although the LOD

scores may not reach stringent criteria for statistical signif-

icance, the identity-by-descent sharing statistics at the

locus can be used to estimate heritability explained.34 If

several linkage studies are examined and they show largely

consistent results, one could in principle recover the true

heritability explained by the locus from linkage statistics.

Therefore, old linkage data sets could be very useful for

interpreting new GWAS results. This idea remains to be

tested, after large-scale sequencing data on many subjects

is available for some disease loci.
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Many current fine-mapping efforts aim at first se-

quencing a small group of subjects to discover variants,

because we do not yet have a comprehensive catalog of

genetic variants in humans in diverse ethnicity groups.

Our study highlights the importance of the 1000 Genomes

Project to catalog rare variants, but we caution that some

ethnicity-specific variants that contribute to risk could be

well below the threshold of detection in the 1000

Genomes Project. Additionally, our study also suggests

the need to generate high-coverage sequencing data, so

that we can have reasonably accurate estimates of allele

frequencies of some rare variants in control populations.

This is because most sequencing studies of candidate loci

will generate high levels of coverage (303 or more) to

ensure accurate genotyping, but if only 4–63 coverage is

available on the 1000 Genomes Project data, we could

not determine whether a given rare variant is overrepre-

sented in cases, unless we sequence our own controls at

high coverage as well. Furthermore, imputation algorithms

may work less well for rare variants than for common

ones for low-coverage sequencing data. Therefore, the

availability of high-coverage data from the 1000 Genomes

Project will reduce the need of individual investigators to

sequence controls, so that valuable sequencing resources

can be focused on more cases for improving the power of

finding associated variants.

We also acknowledge that a case-only design for rese-

quencing could potentially induce false positives (inflated

type I error); that is, many of the discovered variants from

sequencing could be spuriously associated with disease.

This issue has already been extensively discussed before.57

Therefore, researchers should not utilize custom arrays

only on the original GWAS data set to infer causal variants.

Instead, just like a replication study on GWAS, a custom

array with candidate causal variants should always be

tested in independent sample sets for assessment of their

true effects. Finally, functional validation is the ultimate

answer to the causality of candidate causal variants, and

it is required for the biological understanding of disease-

locus relationships.

In conclusion, in those instances when the association

signals detected in GWAS are due to the presence of

multiple causal variants, researchers need to take caution

in interpreting the true effect sizes and heritability ex-

plained by the causal variants. With the successful identifi-

cation of hundreds of disease-susceptibility loci, many

research groups have now started to apply fine-mapping

experiments to identify causal alleles, mostly by designing

custom fine-mapping arrays, which require large amounts

of investments and human endeavor. These types of custom

arrays, which in design may miss many rare variants

(because of the way in which variants were ascertained),

cannot interrogate the full spectrum of causal alleles. On

the other hand, it is important to consider the possibility

of ‘‘synthetic association’’ when designing fine-mapping

experiments, in order to gain at least empirical data

supporting the comparative effectiveness between custom
rican Journal of Human Genetics 86, 730–742, May 14, 2010 739



SNP panels versus targeted long-range resequencing in

finding causal variants. It is also a priority to develop

methods for selecting extreme cases for resequencing

studies and performing subsequent association tests on

rare variants.57–59 Ultimately, resequencing a few well-phe-

notyped cases, supplemented with the deep-sequencing

data from the 1000 Genomes Project, may turn out to be

more cost efficient and may provide more insights than

what could be gleaned from traditional fine-mapping

approaches.
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