Molecular heterogeneity of $\gamma\delta$ T-cell antigen receptors expressed by CD4⁻ CD8⁻ T-cell clones from normal donors: Both disulfideand non-disulfide-linked receptors are δ TCS1⁺

 $(\gamma$ -chain receptors/ δ -chain receptors/cytotoxic T cells)

Hidetoshi Seki*, Masanobu Nanno*, Pei-Feng Chen*, Kyogo Itoh*, Constantin Ioannides*, Robert A. Good[†], and Chris D. Platsoucas[‡]

*Department of Immunology, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030; and [†]All Children's Hospital, Department of Pediatrics, University of South Florida, Saint Petersburg, FL 33701

Contributed by Robert A. Good, December 21, 1988

ABSTRACT We investigated the molecular heterogeneity of $\gamma\delta$ T-cell antigen receptors (TCR) expressed on T-cell clones generated from peripheral blood lymphocytes of normal donors. Extensive molecular heterogeneity was seen at the γ chain level and, to a lesser extent, at the δ -chain level. Both disulfide and non-disulfide $\gamma\delta$ TCR were found and use different γ chains with similar molecular masses (range, 41--43 kDa). In contrast, γ chains of 55–60 kDa, which are expressed on T-cell lines derived from the peripheral blood of patients with immunodeficiency disorders, were not found on T-cell clones derived from the peripheral blood of normal donors. δ chains expressed on these T-cell clones had a molecular mass of 37 kDa and were either disulfide or nondisulfide linked. Significant δ -chain heterogeneity was identified in these clones using the anti- δ TCS1 and the anti-TCR δ 1 monoclonal antibodies. All clones tested were TCR $\delta 1^+$, whereas only 25% of the clones were $\delta TCS1^+$. The anti- $\delta TCS1$ monoclonal antibody stained and immunoprecipitated both disulfide- and non-disulfide-linked $\gamma\delta$ TCRs from different T-cell clones from normal donors.

The second T-cell antigen receptor (TCR) in humans is comprised of two distinct polypeptide chains (γ and δ), and it is expressed on a small (3-10%) subpopulation of peripheral blood lymphocytes and certain thymocytes (1-7). Both disulfide- and non-disulfide-linked $\gamma\delta$ TCR have been reported and are associated with the CD3 antigen (1-9). Three types of γ -chain polypeptides have been identified in these receptors. A 55- to 60-kDa non-disulfide-linked γ -chain polypeptide that is expressed on certain T-cell lines derived from patients with immunodeficiency disorders (1, 5) and on PEER (3) or MOLT-17 (10) tumor T-cell lines. A second γ -chain polypeptide is \approx 40 kDa and is linked to a δ chain by a disulfide bond; it is expressed on T-cell lines and clones derived from the peripheral blood or thymocytes of normal donors or cerebrospinal fluid (6-9). We and others have previously identified a third CD3-associated γ -chain polypeptide of \approx 40 kDa, which is nondisulfide linked and is expressed on T-cell lines derived from the peripheral blood of patients with immunodeficiency disorders (5), normal donors (8, 11), thymocytes (2), and the MOLT-13 T-cell line (11). In this communication we have investigated the molecular heterogeneity of $\gamma\delta$ T-cell receptors expressed on T-cell clones derived from peripheral blood lymphocytes from normal donors. Clones with both disulfide- and non-disulfide-linked TCR were identified and all were found to contain γ chains with molecular masses in the range of 40–43 kDa. The δ -chain polypeptides associated with these receptors exhibited a molecular mass of 37 kDa.

However, δ -chain heterogeneity was identified in these clones by using two different anti- δ -chain monoclonal anti-bodies (mAbs).

MATERIALS AND METHODS

mAbs. Anti-Leu 4, phycoerythrin-conjugated anti-Leu 4 and fluorescein isothiocyanate (FITC)-conjugated anti-WT31 mAbs were purchased from Becton Dickinson. OKT4 and OKT8 mAbs were obtained from Ortho Diagnostics. Anti- β F1 mAb (12), anti- δ TCS1 mAb (13), FITC-conjugated antiδTCS1 mAb, anti-TCRδ1 mAb (14), and FITC-conjugated anti-TCRô1 mAb were obtained from T Cell Sciences (Cambridge, MA). Cells stained with the anti-STCS1 mAb were designated in this study $\delta TCS1^+$. Cells stained with the anti-TCR $\delta1$ mAb were designated $\delta1^+$. A γ -chain-specific mAb, designated 3D5, was developed in this laboratory by immunizing mice with a hybrid protein containing a large part of the CI exon of the human $C\gamma^2$ gene segment. This hybrid protein was expressed in Escherichia coli using open reading frame vectors (unpublished results). This mAb (IgG1, κ) immunoprecipitated γ chains from denatured lysates of appropriate cells but did not stain live cells. It did not recognize any polypeptide chains in lysates of $\alpha\beta$ TCRexpressing T-cell lines and clones.

Preparation of CD3⁺ CD4⁻ CD8⁻ Cells. Human peripheral blood mononuclear cells (PBMC) from normal donors were isolated using Ficoll/Hypaque density cushions. Nonadherent lymphocytes were isolated using a nylon/wool column (15) and were primarily T lymphocytes (\approx 95% CD3⁺). Nonadherent lymphocytes were treated with anti-CD4 (OKT4) and anti-CD8 (OKT8) mAb plus rabbit complement, as described (16). Double-negative cells were isolated on a Ficoll/Hypaque density cushion and were found to contain 40–60% CD3⁺ cells, \approx 5% WT31⁺ cells, and 3% CD4⁺ or CD8⁺ cells.

Generation of T-Cell Clones. Viable double-negative PBMC were stimulated under limiting-dilution conditions (1, 3, 10, or 30 cells per well) with a mixture of allogeneic PBMC (100,000 cells per well, irradiated with 5000 rads; 1 rad = 0.01 Gy) from two or three normal donors (feeder cells), recombinant interleukin 2 (rIL-2; 100 units/ml) and phytohemagglutinin (10 μ g/ml). Fresh feeder cells were added to the cultures every 10 days. Clones derived from these cultures were expanded for analysis. T-cell clones were developed in RPMI 1640 medium supplemented with 10% fetal calf serum,

The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "*advertisement*" in accordance with 18 U.S.C. §1734 solely to indicate this fact.

Abbreviations: TCR, T-cell antigen receptors; mAb, monoclonal antibody; PBMC, peripheral blood mononuclear cells; $\delta 1$, TCR- $\delta 1$; FITC, fluorescein isothiocyanate; V, J, and C regions, variable, joining, and constant regions. [‡]To whom reprint requests should be addressed at: Department of

[‡]To whom reprint requests should be addressed at: Department of Immunology, Box 178, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030.

25 mM Hepes buffer, 2.5 mM L-glutamine, penicillin at 100 units/ml, and streptomycin at 100 μ g/ml (all purchased from GIBCO). In certain experiments AIM V medium (GIBCO) was used instead of RPMI 1640 medium.

Immunofluorescence Staining. Cell-surface immunofluorescence staining was done as described (17). Immunofluorescence analysis was done using an Epics profile analyzer (Coulter).

Cell-Mediated Cytotoxicity. Cell-mediated cytotoxicity was determined using a ⁵¹Cr release assay as described (16, 17).

Immunoprecipitation. Cells were labeled with Na¹²⁵I (specific activity, 14.8 mCi/ μ g of iodine; 1 Ci = 37 GBq; Amersham) by using the lactoperoxidase method and lysed in buffer consisting of 0.01 M Tris-HCl (pH 8.0), 0.15 M NaCl, 1 mM phenylmethylsulfonyl fluoride, aprotinin at 20 kallikrein-inhibiting units/ml, ovomucoid trypsin inhibitor at 2 mg/ml, 0.01% NaN₃, supplemented with either 5 mM 3-[(3cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS) or 1% Nonidet P-40 (all purchased from Sigma). Lysates were precleared by three subsequent incubations with 10 mg of PANSORBIN (Calbiochem-Behring) coated with normal mouse IgG. Specific immunoprecipitation was carried out with PANSORBIN coated with 2-5 μ g of specific mAbs. For immunoprecipitations with the anti-y-chainspecific 3D5 mAb, lysates were denatured and alkylated as described (5). Samples were analyzed by SDS/PAGE by use of 10% or 12.5% acrylamide gels. Gels were dried and visualized by autoradiography at -70°C on Kodak XAR-5 film using intensifying screens.

Northern (RNA) Blotting. Northern blotting was done by standard methods (18, 19). The human α -chain-specific pY1.4 (18) and the human β -chain-specific Jur- $\beta 2$ (19) cDNA probes were provided by T. Mak (Ontario Cancer Institute, University of Toronto, Toronto). The human γ -chain specific pT $\gamma 1$ probe (20) was provided by T. Quertermous and J. Seidman (Harvard Medical School, Boston).

RESULTS

Several different CD3⁺ WT31⁻ CD4⁻ CD8⁻ T-cell clones were generated from six different donors, as described. These were analyzed by cell-surface immunofluorescence, and their functional properties were investigated. Four out of sixteen clones were $CD3^+$ WT31⁻ $\delta TCS1^+$, whereas the remaining twelve were CD3⁺ WT31⁻ δ TCS1⁻ (Table 1). Eight of these $\delta TCS1^-$ clones were tested with the anti-TCR δ 1 mAb, and all were found positive (δ TCS1⁻ δ 1⁺). In addition, six clones of the CD3⁺ WT31⁺ CD4⁻ CD8⁻ $\delta TCS1^{-} \delta 1^{-}$ phenotype were obtained from the same donors. Representative results of the immunofluorescence staining profiles are shown in Fig. 1. These CD3⁺ WT31⁻ T-cell clones exhibited variable levels of nonspecific cytotoxicity and lysed cells of the K-562 tumor cell line, cells of the MEL-21 melanoma tumor cell line, OKT3 mAb-producing murine hybridomas (Table 2) and PBMC-stimulated with phytohemagglutinin either unrelated or autologous to the stimulating cells (data not shown).

The $\gamma\delta$ TCR of representative clones were analyzed biochemically. The G3.2 clone (CD3⁺ WT31⁻ CD4⁻ CD8⁻ δ TCS1⁺ δ 1⁺) expressed CD3-associated disulfide-linked $\gamma\delta$ TCR. Immunoprecipitation and SDS/PAGE under nonreducing conditions with either the anti-Leu 4 mAb or the anti- δ TCS1 mAb or the anti- γ 3D5 mAb revealed a band of 80 kDa. SDS/PAGE under reducing conditions revealed two bands of 38 kDa and 41 kDa (Fig. 2).

Biochemical analysis of the J1.2 clone (CD3⁺ WT31⁻ CD4⁻ CD8⁻ δ TCS1⁺ δ 1⁺) revealed a non-disulfide-linked TCR. Immunoprecipitation and SDS/PAGE analysis under nonreducing conditions with the anti-Leu 4 mAb revealed (in addition to the CD3 bands) two polypeptide chains of 42 kDa

Table 1. Surface phenotype of CD3 $^+$ CD4 $^-$ CD8 $^-$ T-cell clones from normal donors

	Phenotype					
Clone	α/β TCR(WT31)	δTCS1	TCRδ1	Leu-19	Leu-7	CD16
A8.1.11	_	-	· · -	+	—	-
A8.2.18	-	_				
A8.2.20	-	-	+	+	-	-
A8.39	_	-	+	+	-	-
A9.3	-	-		+	-	-
A9.5	-	+		+		
A9.15	-	-		+		
G3.2	-	+	+	-	-	-
G3.13	-	+			-	
G8.5	-	-		-	-	-
J1.2	-	+	+	-		
J1.4	-	-		_		
S2.1	-	-	+	-	-	-
S2.3	-	-	+	-	-	-
S2.4	-	-	+	-	-	-
S2.14	_	-	+			
S2.5	+	-	-			
S2.9	+	-	-			
A8.1.1	+	-	-	-	-	-
A8.30	+	-	-	—	_	-
G3.9	+	-				
G3.15	+	-	-	-	-	-

and 37 kDa (Fig. 3). SDS/PAGE analysis under nonreducing conditions revealed that the 42-kDa band was also immunoprecipitated from denatured nonreduced lysates by the 3D5 anti- γ mAb, demonstrating that this band is a γ -chain polypeptide. Immunoprecipitation by the anti-Leu 4 mAb followed by SDS/PAGE analysis under reducing conditions revealed a broad band of 40-42 kDa. The 37-kDa band was not detected under reducing conditions. This finding provides additional evidence suggesting that this band is the δ chain. It is well established (8, 11, 21) that the apparent electrophoretic mobility under reducing conditions in SDS/PAGE of the δ -chain polypeptide is decreased to a relative molecular mass of ≈ 40 kDa. Therefore, under reducing conditions the δ -chain band overlaps with the γ -chain band. SDS/PAGE analysis under reducing conditions revealed that a polypeptide chain of \approx 42 kDa was immunoprecipitated by the anti- γ 3D5 mAb from denatured nonreduced lysates of the J1.2 cells (Fig. 3).

Biochemical analysis of a CD3⁺ WT31⁻ CD4⁻ CD8⁻ δ TCS1⁻ δ 1⁺ T-cell clone designated A8.2.20 revealed the

FIG. 1. Immunofluorescence analysis of CD3⁺ CD4⁻ CD8⁻ T-cell clones. The cells were stained with phycoerythrin-conjugated anti-Leu 4, FITC-conjugated WT31, FITC-conjugated anti- δ TCS1, or FITC-conjugated anti-TCR δ 1. Control cells were stained with FITC-conjugated goat anti-mouse IgG antibody.

rable 2. Cytolytic activity of CD3 CD4 CD6 1-cell cloth	Fable 2.	Cytolytic activity	of CD3 ⁺	CD4 ⁻	CD8-	T-cell clone
---	----------	--------------------	---------------------	------------------	------	--------------

			% ⁵¹ Cr release (E/T = 20:1)					
	Phenotype		K-562					
Clone	WT31	δTCS1	Medium	Anti-CD3*	MEL21	OKT3-Hyb†	OKT4-Hyb [†]	
A8.1.11	_	-	14	34	24	50	ND	
A8.2.18	-	-	5	46	ND	61	ND	
A8.2.20	_	-	4	47	2	58	1	
A8.39	-	_	14	16	9	53	1	
A9.3	-	-	32	27	17	66	0	
G8.5		-	2	52	36	77	1	
S2.1	-	-	0	43	1	ND	ND	
S2.4	_	-	34	68	64	ND	ND	
A9.5	_	+	5	53	2	71	5	
G3.2	_	+	5	3	6	28	0	
J1.2	-	+	1	1	ND	ND	ND	
A8.1.1	+	_	0	0	0	6	0	
A8.30	+	-	0	0	2	10	0	
G3.9	+	-	0	0	0	18	0	
G3.15	+	-	12	54	2	40	0	

ND, not done. E/T, effector cell/target cell ratio.

*Effector cells were incubated for 30 min with 1:100 dilution of ascites of anti-CD3 mAb.

[†]Anti-CD3 or anti-CD4 mAb-secreting murine hybridomas.

presence of a disulfide-linked TCR. Under nonreducing conditions a band of ≈ 80 kDa was immunoprecipitated by the anti-Leu 4 mAb or the anti- γ 3D5 mAb. SDS/PAGE analysis under reducing conditions of the material immunoprecipitated by the anti-Leu 4 mAb or the anti- γ 3D5 mAb revealed two polypeptide chains of 43 kDa and 37 kDa (Fig. 4). The 37-kDa band was clearly visible in the immunoprecipitations with both antibodies; however, it was more pronounced in the immunoprecipitation by the anti-Leu 4 mAb than by the anti- γ 3D5 mAb. Immunoprecipitation with the anti- γ 3D5 mAb was carried out from denatured nonreduced lysates. Immunoprecipitation with the anti-TCR δ 1 mAb followed by SDS/PAGE analysis under reducing conditions revealed two polypeptide chains of 37 kDa and 43 kDa (Fig. 4). Because the $\gamma\delta$ TCR of the A8.2.20 clone is disulfide linked, it cannot be determined whether the lower-molecular mass chain (presumably the δ chain) exhibits a decrease in apparent electrophoretic mobility under reducing conditions comparable to that seen with the other clones. Biochemical analysis of the

FIG. 2. Cells of the G3.2 T-cell clone (CD3⁺ WT31⁻ CD4⁻ CD8⁻ δ TCS1⁺ δ 1⁺) were labeled with ¹²⁵I and lysed in 5 mM CHAPS lysis buffer (lanes 1 and 2) or 1% Nonidet P-40 lysis buffer (lanes 3–6). Lysates were immunoprecipitated under nonreducing conditions with mouse IgG (lanes 1, 3, and 5), anti-Leu 4 mAb (lane 2), anti- δ TCS1 mAb (lane 4), or anti- γ chain mAb 3D5 (lane 6). Immunoprecipitations with the 3D5 mAb were carried out from denatured nonreduced lysates as described. Samples were solubilized in SDS sample buffer with β -mercaptoethanol (reducing conditions; R) or without (nonreducing conditions; NR) and subjected to electrophoresis on 10% (NR) or 12.5% (R) SDS/PAGE gels.

TCR molecules from the A8.1.1 T-cell clone (CD3⁺ WT31⁺ CD4⁻ CD8⁻ δ TCS1⁻ δ 1⁻), which expressed the $\alpha\beta$ TCR, is shown for the purpose of comparison (Fig. 5). Immunoprecipitation with the anti-Leu 4 mAb or the anti- β F1 mAb followed by SDS/PAGE analysis under nonreducing conditions revealed a band of 87 kDa (Fig. 5). SDS/PAGE analysis under reducing conditions revealed a broad band of 44–47 kDa. The anti- γ -chain-specific 3D5 mAb did not immunoprecipitate any bands from cells of the A8.1.1 clone or from $\alpha\beta$ TCR expressing T-cell lines.

Northern blotting analysis revealed that the A8.2.20 (CD3⁺ WT31⁻ δ TCS1⁻ δ 1⁺) T-cell clone expressed full-length γ -chain mRNA (Fig. 6). In contrast, it expressed only low levels of truncated α - and β -chain mRNAs. The G3.2 (CD3⁺ WT31⁻ δ TCS1⁺ δ 1⁺) T-cell clone expressed full-length γ -chain transcript and low levels of truncated α - and β -chain mRNA. The A8.1.1 CD3⁺ WT31⁺ δ TCS1⁻ T-cell clone expressed full-length α - and β -chain transcripts but not γ -chain mRNA.

FIG. 3. Cells of the J1.2 T-cell clone (CD3⁺ WT31⁻ CD4⁻ CD8⁻ δ TCS1⁺ δ 1⁺) were labeled with ¹²⁵I and lysed in 5 mM CHAPS lysis buffer (lanes 1, 2) or 1% Nonidet P-40 lysis buffer (lanes 3 and 4). Lysates were immunoprecipitated with mouse IgG (lanes 1 and 3), anti-Leu 4 mAb (lane 2), or anti- γ chain mAb 3D5 (lane 4). Immunoprecipitations with the 3D5 mAb were carried out from denatured nonreduced lysates as described. Samples were solubilized in SDS sample buffer with β -mercaptoethanol (reducing conditions; R) or without (nonreducing conditions; NR), and subjected to electrophoresis on 10% (NR) or 12.5% (R) SDS/PAGE gels.

Immunology: Seki et al.

FIG. 4. Cells of the A8.2.20 T-cell clone (CD3⁺ WT31⁻ CD4⁻ CD8⁻ δ TCS1⁻ δ 1⁺) were labeled with ¹²⁵I and lysed in 5 mM CHAPS lysis buffer (lane 3) or 1% Nonidet P-40 lysis buffer (lanes 1, 2, 4, and 5). Lysates were immunoprecipitated with mouse IgG (lanes 1 and 4), anti- γ chain mAb 3D5 (lane 2), anti-Leu 4 mAb (lane 3), or anti-TCR δ 1 mAb (lane 5). Immunoprecipitations with the 3D5 mAb were carried out from denatured nonreduced lysates as described. Samples were solubilized in SDS sample buffer with β -mercaptoethanol (reducing conditions; R) or without (nonreducing conditions; NR), and subjected to electrophoresis on 10% (NR) or 12.5% (R) SDS/PAGE gels.

DISCUSSION

These results demonstrate significant molecular heterogeneity of the $\gamma\delta$ TCR. Both disulfide and non-disulfide-linked $\gamma\delta$ TCR were expressed on T-cell clones derived from the peripheral blood of normal donors. Extensive heterogeneity of the γ chain and, to a lesser degree, of the δ chain was observed. Disulfide-linked and non-disulfide-linked $\gamma\delta$ TCR expressed on T-cell clones derived from the peripheral blood of normal donors employed different γ chains, although the TCR had similar molecular masses (41–43 kDa). These γ -chain polypeptides are coded by different γ -gene segments. The disulfide-linked 41- to 43-kDa γ -chain polypeptide is encoded by the constant (C) γ 1 gene segment, whereas the

FIG. 5. Cells of the A8.1.1 T-cell clone (CD3⁺ WT31⁺ CD4⁻ CD8⁻ δ TCS1⁻) were labeled with ¹²⁵I and lysed in 5 mM CHAPS lysis buffer (lanes 1 and 2) or 1% Nonidet P-40 lysis buffer (lanes 3–6). Lysates were immunoprecipitated with mouse IgG (lanes 1, 3, and 5), anti-Leu 4 mAb (lane 2), anti- γ chain mAb 3D5 (lane 4), or anti- β F1 mAb (lane 6). Immunoprecipitations with the 3D5 mAb were carried out from denatured nonreduced lysates as described. Samples were solubilized in SDS sample buffer with β -mercapto-ethanol (reducing conditions; R) or without (nonreducing conditions; NR) and subjected to electrophoresis on 10% (NR) or 12.5% (R) SDS/PAGE gels.

FIG. 6. Blot hybridization analysis of RNA isolated from various T-cell clones and other lines. α -, β -, and γ -chain-specific cDNA probes are described elsewhere. The samples are as follows: 1, PEER; 2, HPB-ALL; 3, G3.2; 4, A8.2.20; 5, A8.1.1; 6, Epstein-Barr virus-transformed B cell.

non-disulfide-linked 41- to 43-kDa γ -chain polypeptide is encoded by a Cy2 gene segment containing two CII exons (11, 21, 22). The γ -chain polypeptide of 55–60 kDa that we and others (1, 3, 5, 10) have found on T-cell lines derived from the peripheral blood of patients with primary immunodeficiency disorders or on certain tumor T-cell lines is encoded by a C γ 2 gene segment that contains three CII exons instead of two (11, 21, 22). This γ -chain polypeptide of 55–60 kDa was not found in any of the T-cell clones or lines derived from the peripheral blood of normal donors, although this polypeptide appears to be the most frequently observed γ chain on T-cell lines derived from the peripheral blood of patients with primary immunodeficiency disorders (1, 5). Whether or not $\gamma\delta$ TCR using different γ -chain polypeptides exhibit different functions remains to be investigated; the fact that they are expressed on cells of different differentiation or maturation stages supports this possibility. Although the 55to 60-kDa γ -chain polypeptide has not been found on T-cell clones or lines derived from the peripheral blood from normal donors, we have recently developed from tumor-infiltrating lymphocytes from a patient with Wilms tumor a T-cell line that expressed a non-disulfide-linked $\gamma\delta$ TCR, using a 60-kDa γ -chain polypeptide (data not shown).

All δ chains, identified in these T-cell clones from the peripheral blood of normal donors, as well as those on other T-cell clones generated from tumor-infiltrating lymphocytes from patients with metastatic melanoma or Wilms tumor (unpublished results), exhibited essentially the same molecular mass (37-40 kDa) (Figs. 2 and 3 and unpublished results), suggesting that only one δ -chain gene segment is used. This was the case in both disulfide- and non-disulfide-linked $\gamma\delta$ TCR. The small differences in molecular mass (range 37- to 40-kDa) are probably due to the use of different variable (V) δ chains. However, significant δ -chain heterogeneity was identified using the anti- $\delta TCS1$ (13) and the anti- $TCR\delta1$ (14) mAbs. All $\gamma\delta$ clones examined, generated from the peripheral blood of normal donors or from tumor-infiltrating lymphocytes (unpublished results) were $\delta 1^+$, whereas $\approx 25\%$ of these clones were $\delta TCS1^+$. Several clones were $\delta TCS1^- \delta 1^+$. Because the anti- $\delta TCS1$ mAb recognizes a V δ determinant (13), this heterogeneity may be due to the use of different variable regions of the δ chain. Furthermore, the anti- δ TCS1 mAb stained and immunoprecipitated both disulfide-linked and non-disulfide-linked $\gamma\delta$ TCR expressed on T-cell clones derived from either peripheral blood from normal donors or tumor-infiltrating lymphocytes from patients with metastatic melanoma (unpublished results). These findings contrast

with those of Bottino *et al.* (23), who reported that $\delta TCS1^+$ cells express only non-disulfide-linked receptors.

It remains to be determined whether these different types of the $\gamma\delta$ TCR exhibit different functions and respond to different antigens or recognize different ligands. The structural diversity of the C γ gene segments in these receptors may be associated with different functions during T-cell development and maturation. To answer this question it will be important to determine whether different C γ segments are rearranged preferentially with different V γ and joining (J) γ segments. An additional question to be answered is whether or not $\gamma\delta$ TCR using different C γ gene segments are derived from each other or from a common precursor.

Note Added in Proof. Four additional δTCS^+ T-cell clones expressing disulfide-linked $\gamma\delta$ TCR have been recently developed in our laboratory. One of these clones was derived from peripheral blood T lymphocytes from a normal donor, two clones were from a patient with partial DiGeorge syndrome, and one clone was from tumor-infiltrating lymphocytes from a patient with malignant melanoma.

This work was supported in part by Grants AI-24669 and AG-05628 from the National Institutes of Health, Grant CH-420 from the American Cancer Society, a grant from the Eleanor Naylor Dana Charitable Trust and a grant from The University Cancer Foundation of the M. D. Anderson Cancer Center.

- Brenner, M. B., McLean, J., Dialynas, D. P., Strominger, J. L., Smith, J. A., Owen, F. L., Seidman, J. G., Ip, S. F., Rosen, F. & Krangel, M. S. (1986) *Nature (London)* 322, 145– 149.
- Bank, I., DePinho, R. A., Brenner, M. B., Cassimeris, J., Alt, F. W. & Chess, L. (1986) Nature (London) 322, 179-181.
- 3. Weiss, A., Newton, M. & Crommie, D. (1986) Proc. Natl. Acad. Sci. USA 83, 6998-7002.
- Moingeon, P., Ythier, A., Goubin, G., Faure, F., Nowill, A., Delmon, L., Rainaud, M., Forestier, F., Daffos, F., Bohuon, C. & Hercend, T. (1986) Nature (London) 323, 638-640.
- Ioannides, C. G., Itoh, K., Fox, F. E., Pahwa, R., Good, R. A. & Platsoucas, C. D. (1987) Proc. Natl. Acad. Sci. USA 84, 4244-4248.
- Borst, J., van de Griend, R. J., van Oostveen, J. W., Ang, S.-L., Melief, C. J., Seidman, J. G. & Bolhuis, R. L. H. (1987) *Nature (London)* 325, 683–688.

- Lanier, L. L., Federspiel, N. A., Ruitenberg, J. J., Phillips, J. H., Allison, J. P., Littman, D. & Weiss, A. (1987) J. Exp. Med. 165, 1076-1094.
- Brenner, M. B., McLean, J., Scheft, H., Riberdy, J., Ang, S.-L., Seidman, J. G., Devlin, P. & Krangel, M. S. (1987) *Nature (London)* 325, 689-694.
- Ang, S.-L., Seidman, J. G., Peterman, G. M., Duby, A. D., Benjamin, D., Lee, S. J. & Hafler, D. A. (1987) *J. Exp. Med.* 165, 1453-1458.
- Tighe, L., Forster, A., Clar, D. M., Boylston, A. W., Lavenir, I. & Rabbitts, T. H. (1987) Eur. J. Immunol. 17, 1729-1737.
- Hochstenbach, F., Parker, C., Mclean, J., Gieselmann, V., Band, H., Bank, I., Chess, L., Spits, H., Strominger, J. L., Seidman, J. G. & Brenner, M. B. (1988) *J. Exp. Med.* 168, 765– 776.
- Brenner, M. B., McClean, J., Scheft, H., Warnke, R. A., Jones, N. & Strominger, J. L. (1987) J. Immunol. 138, 1502– 1509.
- Wu, Y.-J., Tian, W., Snider, R. M., Rittershaus, C., Rogers, P., LaManna, L. & Ip, S. H. (1988) J. Immunol. 141, 1481– 1484.
- Band, H., Hochstenbach, F., McLean, J., Hata, S., Krangel, M. S. & Brenner, M. B. (1987) Science 238, 682–684.
- 15. Itoh, K., Balch, C. M. & Platsoucas, C. D. (1988) Cell. Immunol. 115, 36-56.
- Platsoucas, C. D. & Good, R. A. (1981) Proc. Natl. Acad. Sci. USA 78, 4500–4505.
- 17. Platsoucas, C. D. (1984) Eur. J. Immunol. 14, 566-577.
- Yanagi, Y., Chan, A., Chin, B., Minden, M. & Mak, T. W. (1985) Proc. Natl. Acad. Sci. USA 10, 3430-3435.
- Yoshikai, Y., Anatoniou, D., Clark, S. P., Yanagi, Y., Sangster, R., Van den Elsen, P., Terhorst, C. & Mak, T. W. (1984) *Nature (London)* 312, 521-524.
- Dialynas, D. P., Murre, C., Quertermous, T., Boss, J. M., Leiden, J. M., Seidman, J. G. & Strominger, J. L. (1986) Proc. Natl. Acad. Sci. USA 83, 2619–2623.
- 21. Lefranc, M.-P., Forster, A. & Rabbitts, T. H. (1986) Proc. Natl. Acad. Sci. USA 83, 9596-9600.
- Littman, D. R., Newton, M., Crommie, D., Ang, S.-L., Seidman, J. G., Gettner, S. N. & Weiss, A. (1987) Nature (London) 326, 85-87.
- Bottino, C., Tambussi, G., Ferrani, S., Ciccone, E., Varese, P., Mingari, M. C., Moretta, L. & Moretta, A. (1988) *J. Exp. Med.* 168, 491-505.