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the    similar    metric   identity   by   state   (IBS)    [2] .   It   does   

not require allele/genotype frequency estimation, which 
makes it still valid when sample sizes are small. It is also 
suitable for population outlier detection, is robust to high 
linkage disequilibrium (LD) among SNPs, and can be 
rapidly calculated.

  There is a long history of using ASD and closely re-
lated metrics (either proportion of allele sharing or IBS) 
for population stratification analysis  [1–8] . Despite the 
difference in the clustering approaches employed, the 
pair-wise ASD distance matrix is nearly the same for all 
the distance-based clustering methods. It seems that the 
pair-wise ASD distance matrix contains sufficient infor-
mation for separation and is a basis for many distance-
based clustering approaches. However, to date there has 
not been a rigorous theoretical foundation for using ASD 
for human population classification.

  A.W.F. Edwards  [9]  showed that different haploid pop-
ulations can be distinguished through the half matrix of 
pair-wise distances between individuals, but it is not clear 
how the rational applies to dipoid populations. For hap-
loid populations, at a single biallelic locus there are only 
two possible categories, and they can be modeled by a bi-
nomial distribution  [9] . However, human populations are 
diploid. If we consider biallelic SNPs, then there are three 
possible categories for the genotypes at each locus, and a 
simple binomial distribution no longer applies. Does Ed-
wards’s rational still apply to diploid populations? If so, 
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 Abstract 

 There is a long history of using allele sharing distance (ASD) 
and closely related metrics for population stratification anal-
ysis. However, the theory for this practical usage has not been 
reported. In this paper, we describe the theoretical back-
ground for using ASD on single nucleotide polymorphism 
(SNP) genetic data for human population stratification analy-
sis. In showing the proof, we lay the ground work for a gen-
eral distance-based method for classifying subpopulations 
using SNPs and ASD. We also show its relation to other close-
ly related distance metrics using HapMap Phase I SNP data. 

 Copyright © 2009 S. Karger AG, Basel 

 Introduction 

 With the advent of rapid single nucleotide polymor-
phism (SNP) genotyping and the availability of genome-
wide SNPs there is a growing need for population strati-
fication detection methods that can take advantage of 
large datasets and eliminate dependency on model pa-
rameter estimations. One particularly appealing ap-
proach is using the allele sharing distance (ASD)  [1] , or 
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then human population stratification analysis can be 
greatly simplified since we can rely on the pair-wise dis-
tance matrix for the classification.

  The work in this paper extends Edwards’s idea  [9]  to 
diploid populations using a coancestry approach and lays 
the ground work for a general distance-based method for 
classifying subpopulations using SNPs and ASD. In this 
work, we derive the statistical background for using ASD 
on SNPs for population stratification detection using 
standard population genetics theory. We show that large 
numbers of random genome-wide SNPs provide suffi-
cient information for accurate clustering. Diploid indi-
viduals from different subpopulations can be separated 
using the pair-wise distance matrix without estimation 
of allele frequencies.

  Theory 

 Without loss of generality, we consider two subpopulations 
descended from a single reference ancestral population. Random 
mating is assumed within each subpopulation. The subpopula-
tions have the same expected allele frequencies in the absence of 
disturbing forces, e.g. unequal selection in different subpopula-
tions  [10] . We denote  �  as the probability that two alleles at a locus 
in the same subpopulation are identical by descent (IBD). There-
fore, different alleles within a subpopulation are related to a mag-
nitude  � .  �  is also sometimes referred to as  F  ST   [11] . We assume 
that subpopulations have reached equilibrium so that  �  is not 
changing over time  [12] .

  Throughout the paper we consider only biallelic SNPs. We de-
note the population frequencies of alleles  A  1  and  A  2  at a locus as 
 p  1  and  p  2 , respectively, and their values may be unknown in prac-
tice. The probability that an allele drawn from the subpopulation 
is of type  A  1  is  P ( A  1 ) =  p  1  and similarly  P ( A  2 ) =  p  2  for  A  2  and  p  1  + 
 p  2  = 1. Given that the coancestry coefficient between alleles at a 
locus is  � , the probability of observing two alleles both of type  A  1  
is  P ( A  1  A  1 ) =  �  p  1  + (1 –  � )p2

1,  and similarly  P ( A  1  A  2 ) = 2(1 –    � ) p  1  p  2 . 
If  P ( A 1m  A2

n ) is the probability of observing  m  copies of  A  1  alleles 
and  n  copies of  A  2  alleles in a random drawing of  m  +  n  alleles, 
then it can be shown  [13, 14]  that
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  The above formulas can also be derived through a Dirichlet ap-
proach  [14–16]  by realizing that the probability that the next allele 
sampled is of type  A  i  given that  m  i  copies of  A  i  have already been 
found in a set of  m  alleles is, 
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  where { p  i } are the population allele frequencies. 
 In randomly mating subpopulations, DNA profiles are essen-

tially samples of alleles  [14, 15] . Therefore, the joint genotype 
probabilities for biallelic SNP markers for randomly drawn mem-

bers of the same subpopulation with evolutionary relatedness can 
be obtained through successive implementation of equations (1) 
or (2) and are represented in the following series of equations:
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 where  p  2  = 1 –  p  1 . The equations above already account for the dif-
ferent possible ordering of the genotypes and the two alleles with-
in each genotype. 

 In order to quantify the distance among individuals and con-
struct the pair-wise distance matrix, we need a distance measure. 
ASD, and closely related distance measures, are popular metrics 
in distance-based population structure analysis with a long his-
tory  [1, 3–8] . In this work, we chose to use ASD to construct the 
distance matrix between all pairs of individuals.

  The ASD distance between individuals  i  and  j  is defined as

1

1 ,  
L

l
l

D d
L

                                                                                  (9)

  where 
 0 if individual  and  have two alleles in common

at the -th locus,

1 if individual  and  have only a single allele in
common at the -th locus,

2 if individual  and  have no allele in common
at t

l

, i j
l

, i jd l

, i j
he -th locus,l

(10)

  and  L  is the number of SNP loci used. 
 At a SNP locus, there are nine possible genotype combinations 

between individuals  i  and  j . Using the following notation, a geno-
type before a comma is from person  i  and a genotype after a com-
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ma is from person  j , there are three situations where  d  = 0, i.e., 
( A  1  A  1 ,  A  1  A  1 ), ( A  1  A  2 ,  A  1  A  2 ) and ( A  2  A  2 ,  A  2  A  2 ); four where  d  = 1, i.e., 
( A  1  A  1 ,  A  1  A  2 ), ( A  2  A  2 ,  A  1  A  2 ), ( A  1  A  2 ,  A  1  A  1 ) and ( A  1  A  2 ,  A  2  A  2 ); and 
two where  d  = 2, i.e., ( A  1  A  1 ,  A  2  A  2 ) and ( A  2  A  2 ,  A  1  A  1 ). For a given  � , 
we denote  d  as  d   �  . Therefore, the distribution of  d   �   at a locus is
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  After slightly tedious calculations, the expected value of  d   �   is 
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  and the variance of d�     is 
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  With  E ( d�     ) and  Var ( d�    )  derived, we can now examine the ef-
fects of different values for  � . In the simplest case the subpopula-
tions have been isolated since the ancestral population and alleles 
in each subpopulation are not related to those in the other. There-
fore, alleles between subpopulations are independent ( �  = 0)  [10] . 
Then 

    E ( d  0 ) = 4 p  1  p  2 (1 –  p  1  p  2 ),                                                                (14)

  and 

    Var ( d  0 ) = 4 p  1  p  2 [1 – 4 p  1  p  2 (1 –  p  1  p  2 ) 2 ].                                        (15)

  The expected allele sharing distance difference between individu-
als from different subpopulations and individuals from the same 
subpopulation is 
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  which is  1 0  C   p  1   D  (0, 1) since  p  1  p  2   ̂   0.25. 
 It is also possible that alleles in different subpopulations are 

related by a nonzero coancestry, e.g. when there is migration be-
tween subpopulations  [10] . However, it can be shown that the par-
tial derivative of the expected value of  d�      with respect to  �  is
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  which is  ! 0  C   p  1   D  (0, 1) since  p  1  p  2   ̂   0.25. Therefore, the expect-
ed value of  d   �   i j    is a decreasing function over  � , which means that 
the expected ASD is always greater between than within subpop-
ulations even when the coancestry between subpopulations is 
nonzero since the coancestry within is greater than between sub-
populations. This relationship holds for all allele frequencies. 

 Now suppose that there are  L  independent SNP loci (the inde-
pendent assumption is valid given the number of loci required to 
separate populations is much lower than the number of SNPs in 
the human genome), the expected value and variance of allele 
sharing distance  D  over these loci for a given  �  are
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 It is not difficult to show that the maximum value of the variance 
of  d   �   is 0.4375. Therefore, the variance of  D  decreases as more 
SNPs are used because  Var ( d   �   l  ) has the upper bound 0.4375 and  L  2  
increases much faster than the increase of  �  L  l   = 1   Var ( d   �   l  ),  Var ( D ) 
 ]  0 as  L   ]   G . Increasing the number of SNP loci used makes it 
more apparent that there are significant ASD differences between 
subpopulations, as compared with the differences within subpop-
ulations, and the expectation of  D  between individuals from the 
same subpopulation will hardly overlap with individuals from 
different subpopulations. Therefore it is possible to differentiate 
subpopulations from the half-matrix of pair-wise distances with-
out explicitly estimating allele frequencies for each subpopula-
tion. The population stratification problem is thus reduced to 
contrasting the ASD means of different groups. It is through the 
accumulated effect of many SNP loci and the coancestry among 
individuals within subpopulations that population stratification 
can be identified. 

 Numerical Examples 

 Given the ASD properties that we have just derived, we 
can use numerical examples to explore it. Specifically, for 
a given coancestry coefficient we can determine the num-
ber of SNPs required to separate subpopulations. In cal-
culating the variance of ASD, we will use the upper bound 
of variance (0.4375) for all SNP loci. Thus,  Var ( D )  ;  
0.4375/ L . This approach of variance approximation is 
simple, though slightly conservative. In order for the ex-
pected ASD of between ( E ( D   �    b  )) and within subpopula-
tions ( E ( D   �    w  )) to be  x  standard deviations apart, i.e. 
( E ( D   �    b  ) –    ( E ( D   �    w  )    6    x    �0.4375/ L ,   the    L    has to   be   at   least   
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 x  2  0.4375/( E ( D   �    b  ) –  E ( D   �    w  )) 2 . Also, while allele frequencies 
are discrete in nature, it is reasonable to approximate 
them as continuous values  [17–19] . Therefore, we model 
the distribution of allele frequencies by two kinds of dis-
tributions: Uniform and Beta.

  In the first example we consider  p  1  as the minor allele 
frequency (MAF) and model it by a Uniform [0.1, 0.5] 
distribution (consider only common SNPs). This approx-
imation is reasonable, though biased given the distribu-
tion of allele frequencies for genome-wide autosomal 
SNPs appear to be ‘flat’ in the Hapmap Phase I dataset 
under predisposed ascertainment  [20] . If we treat  E ( d�     ) 
as a function of  p  1  and denote  f ( p  1 ) =  E ( d�    ) , the expected 
ASD between individuals can be derived as

0.5

1 10.1

1 .
0.5 0.1

E D f p dp

  Suppose  �  = 0.15 and  �  = 0 for individuals within sub-
populations and between subpopulations, then the cor-
responding values for  E ( D ) are 0.534 and 0.623, respec-
tively. For a set of 497 independent loci, the means  8  SD 
are 0.534  8  0.03 and 0.623  8  0.03. Thus, the difference 
between means, 0.089, is about 3 SD away. In cases when 
alleles in different subpopulations are related by a non-
zero coancestry, we assume  �  = 0.05, and thus,  E ( D ) = 
0.593. For a set of 1,131 independent loci, the means  8  
SD for individuals within subpopulations and between 
subpopulations are 0.534  8  0.020 and 0.593  8  0.020, re-
spectively. Thus, the difference between means, 0.059, is 
about 3 SD away. This demonstrates that it requires more 
SNP loci to reach similar separation between ASD means 
when different subpopulations are related by a nonzero 
coancestry. With enough SNP loci, the entries of the tri-
angular-matrix of pair-wise distances will divide into 
two separate groups with hardly any overlap.

  In the second example we adopt Wright’s two-state 
mutation model  [18]  for the stationary pdf of allele fre-
quencies,  q , as

4 14 14 4
1 ,

4 4
NuNvNu Nv

q q q
nu Nv

�
�

� �

  where  N  is the effective population size,  v  is the mutation 
rate from allele  a  to  A  and rate  u  for  A  to  a  and  � () denotes 
the gamma function. Assuming  N  is 10 6  and the SNP 
 mutation rate equals 10 –8 , we approximate MAF as a 
Beta(0.04, 0.04) distribution (4  !  10 6   !  10 –8  = 0.04). 
Again,  we  only  consider  common  SNPs  with MAF  D  
[0.1, 0.5]. As shown in the previous example, we can de-
rive the  E ( D ) by integration for  �  = 0.15 and  �  = 0 and get 
the corresponding means of ASD as 0.500 and 0.587, re-
spectively. For a set of 520 independent loci, the means  8  

SD are 0.500  8  0.029 and 0.587  8  0.029, respectively. 
Thus, the difference between means, 0.087, is about 3 SD 
away. When alleles in different subpopulations are relat-
ed by a nonzero coancestry, we assume  �  = 0.05, and thus, 
 E ( D ) = 0.557. For a set of 1,212 independent loci, the 
means  8  SD for individuals within subpopulations and 
between subpopulations are 0.500  8  0.019 and 0.557  8  
0.019. Thus, the difference between means, 0.057, is then 
about 3 SD away. Again, we see that with enough SNP 
loci, the entries of the triangular-matrix of pair-wise dis-
tances will divide into two separate groups with hardly 
any overlap. Individuals from different subpopulations 
are separable based on the ASD matrix without having to 
calculate the allele frequencies. 

 Relation to Other Work 

 Recently, principal component analysis (PCA)-based 
approaches were proposed to address population stratifi-
cation issues  [21, 22] , which use covariance among nor-
malized genotype scores of individuals. ASD and the co-
variance-based approaches are similar in nature. In the 
ASD-based approaches, individuals with small ASD tend 
to cluster together. While in PCA-based approaches, large 
eigenvalues (nonrandom population stratification) are 
consequences of high correlation among vectors of geno-
type scores. Intuitively, small ASD among individuals 
will correspond to high correlation among genotype vec-
tors. Both small ASD and high correlation should be due 
to the result of evolutionary relatedness, coancestry, 
which can be captured by genome-wide random SNPs.

(For figures see next pages.)
  Fig. 1.  Cluster results for the CEU, YRI and CHB + JPT individu-
als (Dimension 1 vs. 2). This figure shows the clustering results 
using different distance metrics and clustering methods with a 
number of genome-wide random autosomal SNP loci. In the left 
column, ( a ), ( d ) and ( g ) correspond to the clusters generated using 
the covariance matrix and PCA. In the middle column, ( b ), ( e ) 
and ( h ) correspond to the clusters generated using the ASD matrix 
and MDS. In the right column, ( c ), ( f ) and ( i ) correspond to the 
clusters generated using the correlation matrix and MDS. In the 
top row, ( a ), ( b ) and ( c ), 100 SNPs are used. In the middle row, ( d ), 
( e ) and ( f ), 500 SNPs are used. In the bottom row, ( g ), ( h ) and ( i ), 
2,000 SNPs are used. Abbreviation: SNP, single nucleotide poly-
morphism; PCA, principal component analysis; ASD, allele shar-
ing distance; MDS, multidimensional scaling. 
  Fig. 2.  Cluster results for the CEU, YRI and CHB + JPT individu-
als (Dimension 1 vs. 3). The figure legend is the same as that in 
figure 1. 
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  While ASD and correlation-based methods are relat-
ed, they lend themselves to different types of analysis and 
this makes it difficult to make a definitive statement 
about the superiority of one method over another. De-
pending on the starting matrix, different ordination or 
clustering methods can be used to inspect the ethnic re-
lationship among individuals. If a dissimilarity matrix 
like ASD is used, multidimensional scaling (MDS) and 
Ward’s minimum variance method can be used  [1, 2, 23] . 
If the starting matrix is a correlation matrix, PCA can be 
used instead  [21, 22]  as well as MDS.

  We used HapMap Phase I SNP data  [20, 24]  to explore 
the relation between different distance metrics, i.e. ASD 
vs. correlation/covariance, using corresponding cluster-
ing methods, MDS as implemented in R (http://www.
r-project.org/) and PCA as implemented in the software, 
EigenSoft (http://genepath.med.harvard.edu/reich/Soft-
ware.htm). In the HapMap Phase I SNP data, about 1.1 
million SNPs were genotyped genome-wide in 269 indi-
viduals from four ethnic populations: Yoruba in Ibadan 
(YRI), CEPH in Utah residents with ancestry from north-
ern and western Europe (CEU), Han Chinese from Bei-
jing, China (CHB), and Japanese from Tokyo, Japan 
(JPT), among which there are 209 unrelated individuals: 
60 CEU, 60 YRI, 45 CHB and 44 JPT. For this study, we 
only used unrelated individuals and genomewide ran-
dom autosomal SNPs. The cluster results are plotted in 
 figures 1 – 4 .  Figures 1 ,  2  and  3  show the clustering results 
(Dimension 1 vs. 2, Dimension 1 vs. 3 and Dimension 2 
vs. 3, respectively) for the CEU, YRI and CHB + JPT in-
dividuals using different distance metrics and clustering 
methods with a number of genome-wide autosomal SNP 
loci. 100, 500 and 2,000 SNPs are used in the top, middle 
and bottom panel, respectively.  Figure 4  shows the clus-
tering results for the CHB and JPT individuals using dif-
ferent distance metrics and clustering methods with a 
number of genome-wide autosomal SNP loci. 1,000, 5,000 
and 20,000 SNPs are used in the top, middle and bottom 
panel, respectively. In  figures 1 – 4 , clusters in the left, 
middle and right column are generated using the covari-
ance matrix and PCA, the ASD matrix and MDS, the cor-
relation matrix and MDS, respectively.

   Figures 1 – 4  show the same pattern: with the increasing 
number of SNPs used, the within subpopulation individu-
als are closer and closer to each other while the between 
subpopulation individuals are farther and farther away 
from each other. Moreover, different distance metrics, 
ASD and correlation/covariance, with different clustering 
methods, MDS and PCA, identified very similar clusters 
in these data sets except that covariance + PCA and ASD 

+ MDS showed better separation on CHB and JPT indi-
viduals than correlation + MDS did when enough SNPs 
were used, e.g. 2000 SNPs, in  figures 2  and  3  g and h versus 
i. Multiple runs also gave similar results (data not shown).

  Discussion 

 The importance of this work is to provide theoretical 
support for the observation that human populations can 
be separated simply through a pair-wise distance matrix, 
which has been shown in a large empirical study using 
Hapmap  [20, 24]  and Perlegen  [25]  SNP data sets  [1] . 
Moreover, through the derivation of the distance meth-
od, the population stratification problem is reduced to 
contrasting the means of different clusters. We focus on 
explaining why ASD works in population stratification 
analysis rather than how to cluster genetic data using 
ASD. Based on the ASD matrix, standard statistical clus-
tering algorithms, e.g. Ward’s minimum variance and 
MDS methods, can be used to further inspect the ethnic 
relationship among individuals. We concentrate on bial-
lelic SNPs in this study. The multiallelic genetic markers, 
microsatellites, are also effective in human evolutionary 
studies using the pairwise distance matrix of proportion 
of allele sharing  [3]  and should follow similar reasons: 
individuals within subpopulations have a higher propor-
tion of allele sharing than between subpopulations since 
the match probabilities within is greater than between 
subpopulations due to coancestry.

  From the ASD derivation, we see that when sufficient 
SNP loci are used in the analysis, the distribution of with-

(For figures see next pages.)
  Fig. 3.  Cluster results for the CEU, YRI and CHB + JPT individu-
als (Dimension 2 vs. 3). The figure legend is the same as that in 
fig ure 1. 
  Fig. 4.  Cluster results for the CHB and JPT individuals. This fig-
ure shows the clustering results using different distance metrics 
and clustering methods with a number of genome-wide random 
autosomal SNP loci. In the left column, ( a ), ( d ) and ( g ) correspond 
to the clusters generated using the covariance matrix and PCA. In 
the middle column, ( b ), ( e ) and ( h ) correspond to the clusters gen-
erated using the ASD matrix and MDS. In the right column, ( c ), 
( f ) and ( i ) correspond to the clusters generated using the correla-
tion matrix and MDS. In the top row, ( a ), ( b ) and ( c ), 1000 SNPs 
are used. In the middle row, ( d ), ( e ) and ( f ), 5,000 SNPs are used. 
In the bottom row, ( g ), ( h ) and ( i ), 20,000 SNPs are used. Abbre-
viation: SNP = single nucleotide polymorphism; PCA = principal 
component analysis; ASD = allele sharing distance; MDS = mul-
tidimensional scaling. 
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in-subpopulation ASD and between-subpopulation ASD 
hardly overlap with each other and the subpopulations 
are separable. One of the advantages of the distance 
method is that there is no need to specify the allele fre-
quencies explicitly. Therefore, population allele frequen-
cies do not have to be approximated by sample allele fre-
quencies. This is important because sample allele fre-
quencies may give biased results due to high variability. 
The allele frequencies and coancestry information are 
embedded in the pair-wise distance matrix over a large 
number of random SNP loci. In contrast, model-based 
methods, like, STRUCTURE  [26]  and  L -POP  [27] , which 
use sample allele frequencies as surrogates for subpopula-
tion allele frequencies, need relatively large data sets for 
each subpopulation in order to estimate allele frequencies 
reliably, which may not be feasible in practice. Another 
advantage of the distance method is it is easy to calculate 
with no decrease in accuracy and is also suitable for pop-
ulation outlier detection (it is unlikely to know the allele 
frequencies for the outlier individuals).

  In summary, we have shown the theoretical founda-
tion for using ASD for human population stratification 
analysis. The ASD method combined with SNP markers 
have considerable power in population stratification 
analysis and it is not necessary to estimate allele frequen-
cies to separate individuals with different ethnic back-
grounds. The correlation/coancestry among individuals 
within subpopulations, which can be captured by the 
ASD, contributes to the classification. Diploid individu-
als from different subpopulations can thus be separated 
from half-matrix of pair-wise distances.
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