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to birth timing since sporadic (i.e. no familial resemblance) 
and nontransmission (i.e. environmental factors alone con-
tribute to gestational age) models are strongly rejected. 
Analyses of gestational age attributed to the infant support 
a model in which mother’s genome and/or maternally-in-
herited genes acting in the fetus are largely responsible for 
birth timing, with a smaller contribution from the paternally-
inherited alleles in the fetal genome.  Conclusion:  Our find-
ings suggest that genetic influences on birth timing are im-
portant and likely complex.  Copyright © 2009 S. Karger AG, Basel 

 Introduction 

 Preterm birth is a major public health concern. In the 
United States, 12.8% of births occur before term ( ! 37 
weeks)  [1] . Infants born before term have an increased 
risk of neonatal mortality as well as serious health prob-
lems, such as respiratory illness, blindness and cerebral 
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 Abstract 

  Objective:  While multiple lines of evidence suggest the im-
portance of genetic contributors to risk of preterm birth, the 
nature of the genetic component has not been identified. 
We perform segregation analyses to identify the best fitting 
genetic model for gestational age, a quantitative proxy for 
preterm birth.  Methods:  Because either mother or infant can 
be considered the proband from a preterm delivery and 
there is evidence to suggest that genetic factors in either 
one or both may influence the trait, we performed segrega-
tion analysis for gestational age either attributed to the in-
fant (infant’s gestational age), or the mother (by averaging 
the gestational ages at which her children were delivered), 
using 96 multiplex preterm families.  Results:  These data 
lend further support to a genetic component contributing 
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palsy  [2] . Moreover, the severity and incidence of these 
problems worsen with decreasing gestational age  [3] . The 
impact of this disorder grows with the increasing rate of 
preterm birth in recent decades  [2] .

  A wealth of evidence supports maternal genetic influ-
ences on preterm birth. For example, birth timing is 
highly consistent across pregnancies in the same woman 
 [4–9] . Moreover, the most likely age for a recurrent pre-
term birth to a given mother is the same week as the first 
preterm birth  [6, 9, 10]  suggesting that factors that are 
stable over time, such as genetics, affect birth timing. Ad-
ditionally, mothers and daughters  [11] , and sisters  [9]  
share risk for delivering preterm. Heritability studies in 
twins indicate that genes account for about 30% of varia-
tion in preterm delivery  [12, 13]  and child’s gestational 
age as continuous trait  [12, 14] , when the mother is con-
sidered the proband of a delivery. Similar studies com-
paring full and half siblings for children’s gestation age 
estimated that 14% of variation may be due to maternal 
genetic factors  [15] .

  Several lines of evidence further suggest that fetal ge-
netic effects may influence birth timing. First, fetal genes 
that are paternally imprinted mainly control placental and 
fetal membrane growth  [16] . Because the placenta and fe-
tal membranes likely play a role in preterm birth, fetal 
genes controlling these tissues may also contribute. Addi-
tionally, a study comparing the correlation in gestational 
age between full and half siblings suggests that preterm 
birth is influenced in part by fetal genetic factors  [15] . 
Lastly, several studies suggest that paternity affects risk for 
the disorder. For example, several studies indicate that 
partner changes between pregnancies reduced risk of pre-
term birth  [17, 18] ; however, changes in paternity may re-
flect association with long interpregnancy intervals rather 
than paternity effects per se. Paternal race also has been 
associated with preterm birth risk. Previous studies ob-
served that preterm birth rates are highest when both par-
ents are Black and remain higher when one parent is Black, 
whether that parent is the mother or father  [19, 20] , sug-
gesting that fetal race also influences birth timing. How-
ever, father’s family history of preterm birth has been 
shown to have only a weak association with risk. While an 
early study of a Norwegian birth registry demonstrated a 
correlation between father and children’s gestational ages 
 [21] , a more recent and extensive study of this registry sug-
gested fathers contributed little to no risk to preterm de-
livery  [22] . Similarly, a recent study  [14]  suggested that pa-
ternal genetics contributed little to gestational age, but 
could not refute the possible role of maternally-inherited 
genes expressed in the fetus. Hence, while paternally-in-

herited genes may contribute little to preterm birth or oth-
er disorders, maternally-inherited genes expressed in the 
fetus may still be important. Together, these data suggests 
that the fetal genome may contribute to birth timing, mo-
tivating further study defining the infant as the proband.

  While multiple lines of evidence suggest genetic con-
tributors are important in preterm birth, a specific mode 
of inheritance has not been identified. No prominent 
simple Mendelian pattern of inheritance has been ob-
served in multiplex pedigrees identified to date. Model-
ing procedures used by twin studies suggest that additive 
genetic factors and environmental risk factors that are 
not shared between siblings both influence preterm birth 
 [12–14] . Moderate values of lambda sibling ( �  S ), a mea-
sure of risk to siblings of affected individuals compared 
to the population risk for a disorder, estimated for pre-
term birth ( �  S  (95% CI): 4.3 (4.0–4.6))  [23]  are also con-
sistent with complex genetic and environmental etiolo-
gies  [24] . Moreover, association studies have reported 
gene-gene  [25, 26]  and gene-environment  [27–29]  inter-
actions with preterm birth. Together, these studies imply 
that the etiology of preterm birth likely involves genetic 
as well as environmental factors in complex interactions. 
However, there has not been a systematic study of possi-
ble genetic models for preterm birth to date.

  In this study, we performed segregation analyses to 
identify the best fitting genetic model for gestational age, 
a quantitative proxy for preterm birth. Because either 
mother or infant can be considered the proband from a 
preterm delivery, and there is evidence to suggest that ge-
netic factors in either one or both may influence the trait, 
we performed segregation analysis for gestational age as 
a quantitative trait either attributed to the infant, infant’s 
gestational age, or to the mother, by averaging the gesta-
tional ages at which her children were delivered, using 96 
multiplex preterm families. We also tested parent of ori-
gin models for infant’s gestational age to examine wheth-
er mother’s genotype is the sole determinant of variation 
in this trait. Additionally, as pregnancies in which either 
the mother  [4, 7]  or father  [19, 20]  is Black are at increased 
risk for preterm delivery, we performed segregation anal-
ysis for each phenotype in the total sample, as well as 
stratified by Black and White race, to test for heterogene-
ity between these two groups.

  Material and Methods 

 Proband mother-infant pairs were initially identified through 
premature birth of a live singleton fetus before 37 weeks of ges-
tation  [30]  by review of delivery logs at university medical center 
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hospitals at Washington University and University of Helsinki 
or by self-identification through the study’s website from 2003 
to October 2007. To avoid misclassification bias at borderline 
gestational ages, we defined preterm birth as  ! 35 weeks in the 
US cohort and  ! 36 weeks in the Finland cohort. Our gestation-
al age criterion was less stringent in the Finland cohort due to 
the high number of early ultrasounds performed, leading to 
more accurate gestational ages in this cohort. To include only 
families with spontaneous onset of preterm singleton birth, the 
following mother-infant pairs were further excluded: elective 
deliveries without spontaneous onset of labor and deliveries in 
which either maternal (e.g. systemic infection) or fetal (e.g. mal-
formation) disease with known predisposition to premature 
birth was indicated. Families were extended through affected 
individuals on both maternal and paternal sides until no addi-
tional first degree relatives were identified as either mother or 
infant of a preterm delivery. Families were recruited into the 
study only if two or more members were mothers and/or infants 
of preterm deliveries. 55 families were recruited from the US, of 
which 31 were Black and 24 were White. 41 White families were 
recruited from Finland. In the US cohort, families ranged from 
9 to 36 individuals with phenotypic information with a median 
family size of 18 individuals. In the Finland cohort, families 
ranged from 8 to 73 individuals with phenotypic information 
with a median family size of 16 individuals. Informed consent 
was obtained from participants and the study was approved by 
the institutional review board of Washington University School 
of Medicine and the ethics committee of Helsinki University 
Central Hospital.

  From the US cohort, an individual’s gestational age was calcu-
lated based on his or her mother’s self report of expected due dates 
and actual delivery dates for a pregnancy or of how many weeks 
early that family member was born. For all individuals born at the 
Washington University School of Medicine, gestational ages were 
verified from medical records. From the Finland cohort, an indi-
vidual’s gestational age was obtained from medical records. Indi-
viduals for whom pedigree information indicated that they were 
born  ! 35 or  ! 36 weeks without a specific gestational age desig-
nated were assigned a gestational age of 34 or 35 weeks, respec-
tively. Similarly, those individuals indicated as ‘term’ were desig-
nated 40 weeks. Infant’s gestational age was treated as a quantita-
tive trait, which was standardized to a normal distribution ( �  = 
0,  �  = 1) prior to any analysis. A total of 1378 individuals had non-
missing phenotypes, with a median of 13 individuals per family 
(range 3–80). The number of sibpairs with phenotypic informa-
tion for this phenotype was 309, with a median of 3 sibpairs per 
family (range 1–7). The median number of generations with phe-
notypic information was 3 (range 1–5).

  For both cohorts, a variable representing the average gesta-
tional age of all children born to a given mother was constructed. 
For mothers who had one or more children born before 37 weeks, 
this variable was calculated as the mean of the gestational ages for 
all children born to that woman. Mothers who gave birth to all of 
their children at term ( 1 37 weeks) were assigned a value of 40 
weeks. Mothers for whom one or more children had missing ges-
tational ages were coded as missing. Additionally, all males and 
females who had not yet given birth were coded as missing. This 
phenotype was treated as a quantitative trait, which was stan-
dardized to a normal distribution ( �  = 0,  �  = 1) prior to any anal-
ysis. Univariate statistics and standardizations for each pheno-

type were performed with SAS language v. 9.1.3 for Linux OS (SAS 
Institute, Cary, N.C., USA). A total of 404 individuals had non-
missing phenotypes, with a median of 4 individuals per family 
(range 1–17). The number of sibpairs with phenotypic informa-
tion for this phenotype was 309, with a median of 0 sibpairs per 
family (range 0–5). The median number of generations with phe-
notypic information was 2 (range 1–4).

  We used the Pedigree Analysis Package (PAP), Version 5.0  [31]  
to perform segregation analysis. Under the mixed Mendelian 
model (model 1), the phenotype is influenced by a major gene, 
polygenic background and an untransmitted environmental 
component. The major gene is biallelic (A, a), with allele A, occur-
ring at frequency p, associated with lower trait values. Mean val-
ues for the three genotypes ( �  AA ,  �  Aa ,  �  aa , where the order of the 
means is constrained to be  �  AA   ̂    �  Aa   ̂    �  aa ) and a common 
standard deviation for all genotypes are estimated. Parent-to-off-
spring transmission probabilities for the three genotypes ( �  AA , 
 �  Aa , and  �  aa ) also are included in the model.  �  AA ,  �  Aa , and  �  aa  des-
ignate the probability of transmitting allele A for the genotypes 
AA, Aa, and aa, with Mendelian expectations of 1, 0.5, 0, respec-
tively. When the  � ’s are set equal to p, there is no transmission of 
the major effect. Polygenic heritability (H) after accounting for 
the putative major gene effect was also estimated. For parent of 
origin models, heterozygotes who inherited A from their mother 
(Aa) and heterozygotes who inherited A from their father (aA) are 
distinguished from one another and allowed to have different 
means. Many of the free  � ’s models did not converge initially. In 
order to estimate these models,  �  AA  and  �  aa  were fixed to 1 and 0, 
respectively, and likelihoods calculated under these additional as-
sumptions were used for the analysis.

  All parameters were estimated using a maximum likelihood 
method. Nested models representing null hypotheses were tested 
against a more general model using a likelihood ratio test (LRT), 
in which the difference between negative twice the log-likelihood 
(–2 ln L) values for two models approximates a chi-square distri-
bution with degrees of freedom (d.f.) equal to the number of in-
dependent parameter restrictions. The most parsimonious model 
of those not rejected by likelihood ratio test (p  1  0.01) was deter-
mined using Akaike’s Information Criterion (AIC)  [32] , which is 
computed as –2 ln L of the model plus twice the number of param-
eters estimated. The model with the lowest AIC indicates the most 
parsimonious fit to the observed data.

  To account for the ascertainment of the families, the likeli-
hood of each model was conditioned on the likelihood of the pro-
band’s phenotype under the model, an appropriate correction for 
the manner in which these families were extended  [33] . While our 
criterion required 2 or more preterm first degree relatives for a 
family to be enrolled in the study, the ascertainment scheme is 
approximately equivalent to single ascertainment  [34] . Because 
not all preterm deliveries in the metropolitan St. Louis or Finnish 
health care systems occurring during the study period were cap-
tured under our ascertainment scheme, the probability that a 
family was identified through multiple probands is small and 
should be proportional to the number of affected deliveries in a 
family, as expected under single ascertainment  [35] . Under single 
ascertainment, conditioning on the proband’s phenotype is suf-
ficient to adjust for the ascertainment of families  [35] . Hence, 
analyses for infant’s gestational age were corrected for the pro-
band infant’s gestational age jointly with preterm birth ( ! 37 
weeks) affection status. Similarly, analyses attributing gestational 
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age to the mother were corrected for the proband mother’s average 
gestational age of children jointly with her preterm birth ( ! 37 
weeks) affection status.

  To test genetic heterogeneity among races, we used the hetero-
geneity  �  2  test  [36, 37]  in which the –2 ln L value under the best 
fitting model for the combined data is subtracted from the sum-
mation of –2 ln L values for stratified analyses to obtain the test 
statistic. This test statistic approximates a  �  2  distribution with d.f. 
equal to K * J – K where J is the number of subgroups and K is the 
number of parameters in the model.

  Results 

 Modeling of Gestational Age Attributed to the Infant 
 We first analyzed gestational age of the infant. The 

number of subjects and descriptive statistics for this phe-
notype are shown in  table 1 .  Table 2  presents the LRTs 
and AIC values for segregation analysis of infant’s gesta-
tional age for 17 models of inheritance. The parameter 
estimates for segregation analysis of infant’s gestational 

Combined Blacks Whites

Infant’s gestational age
Numbers (<37 weeks) 1,130 (33.63%) 301 (41.53%) 829 (30.76%)
Mean 37.12 36.12 37.49
Standard deviation 4.09 4.83 3.73
Kurtosis 1.73 0.24 2.47
Skewness –1.45 –1.08 –1.58

Mother’s average gestational age
Numbers (<37 weeks) 191 (54.97%) 48 (70.83%) 143 (49.65%)
Mean 35.69 34.22 36.19
Standard deviation 4.24 4.45 4.07
Kurtosis –0.24 –0.66 0.17
Skewness –0.76 –0.32 –0.95

Table 1. General characteristics of the 
study subjects as a single cohort and 
stratified by race

Table 2. Segregation analysis of infant’s gestational age in 96 multiplex families (n = 1,224 nonfounders)

Model Estimated
parameters

‘–2 ln L’ Test χ2 d.f. p value AIC

1 Mixed 6 2,266.85 2,278.85
2 Sporadic 2 2,754.87 2 vs. 1 488.02 4 <0.001 2,758.87
3 Multifactorial 3 2,690.72 3 vs. 1 423.87 3 <0.001 2,696.72
4 Additive 5 2,303.33 4 vs. 1 36.48 1 <0.001 2,313.33
5 Recessive 4 2,545.26 5 vs. 1 278.41 2 <0.001 2,553.26
6 Dominant 4 2,305.64 6 vs. 1 38.79 2 <0.001 2,313.64
7 Mixed recessive 5 2,544.08 7 vs. 1 277.23 1 <0.001 2,554.08
8 Mixed dominant 5 2,270.77 8 vs. 1 3.92 1 0.05 2,280.77
9 Mixed free τ’s 9 2,100.61 1 vs. 9 166.24 3 <0.001 2,118.61

10 Mixed equal τ’s 6 2,354.73 10 vs. 9 254.12 3 <0.001 2,366.73
11 Recessive free τ’s 8 2,291.99 7 vs. 11 252.09 3 <0.001 2,307.99
12 Recessive equal τ’s 5 2,354.73 12 vs. 11 62.74 3 <0.001 2,364.73
13 Dominant free τ’s 8 2,106.20 8 vs. 13 164.57 3 <0.001 2,122.20
14 Dominant equal τ’s 5 2,354.73 14 vs. 13 248.53 3 <0.001 2,364.73
15 Parent of origin1 6 2,078.97 2,090.97
16 Maternal 4 2,320.79 16 vs. 15 260.83 3 <0.001 2,328.79
17 Paternal 4 2,356.23 17 vs. 15 296.27 3 <0.001 2,364.23

1 Most parsimonious model.
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age are listed in  table 3 . The hypotheses of no familial re-
semblance (model 2), no major gene effect (model 3), and 
no multifactorial effect (model 4) are rejected, suggesting 
the presence of both a major gene and a multifactorial ef-
fect. Additionally, the equal  � ’s hypotheses (models 10, 12 
and 14) are rejected for the mixed, recessive mixed and 
dominant mixed models, respectively. In the free  � ’s mod-
els, the estimated  �  Aa  differed from 0.5, expected under 
the Mendelian model, and fit the data better than their 
respective general models (models 1, 7 and 8) for all 
groups. Together, this evidence supports a genetic com-
ponent for preterm birth transmitted from parents to off-
spring and suggests that the transmitted effect is com-
plex. Similar models were tested for general parent of 
 origin effects, as well as maternal-specific and paternal-
specific effects under Mendelian transmission (models 
15–17). The parent of origin model (model 15) best fit the 
data as judged by AIC values and was chosen as the most 
parsimonious model ( table 2 ). This model suggests that, 
when attributing gestational age to the infant of a deliv-
ery, genetic factors influence this trait and the parent 
from whom such factors are inherited influences the 
overall trait value.

  Modeling of Gestational Age Attributed to the Mother 
 We also analyzed gestational age attributed to the 

mother, by averaging the gestational ages at which her 
children were delivered (see  table 1 ).  Table 4  presents the 
likelihood ratio tests and AIC values for segregation anal-
ysis on mother’s average gestational age of children for 14 
models of inheritance. The parameter estimates for the 
combined dataset are listed in  table 5 . The hypotheses of 
no familial resemblance (model 2), no major gene effect 
(model 3), and no multifactorial effect (model 4) are re-
jected, suggesting the presence of both a major gene and 
a multifactorial effect. The equal  � ’s (models 10, 12 and 
14) are rejected. None of the free  � ’s models (models 9, 11 
and 13) converged initially. In order to estimate these 
models,  �  AA  and  �  aa  were fixed to 1 and 0, respectively. 
Only  �  Aa  was estimated and, in each case, differed from 
0.5, expected under the Mendelian model. Additionally, 
the free  � ’s models fit the data better than their respective 
general models (models 1, 7 and 8), perhaps suggesting 
that the major effect observed is more complex than the 
single biallelic locus modeled here. Together, this evi-
dence supports a genetic component for preterm birth 
transmitted from parents to offspring and suggests that 
the transmitted effect is complex. The mixed free  � ’s 

Table 3. Parameter estimates for segregation analysis of infant’s gestational age in 96 multiplex families (n = 1,224 nonfounders)

        Model A allele
frequency
p

Transmission probabilities Mean values for genotypes Common
standard
deviation, σ

Herit-
ability
HτAA τAa τaA τaa μAA μAa μaA μaa

1 Mixed 0.27 [1] [0.5] [0.5] [0] –1.73 0.52a [μAa] 0.37a 0.56 0.38
2 Sporadic [1] [1] [0.5] [0.5] [0] 0.01 [μAA] [μAA] [μAA] 0.92 [0]
3 Multi-factorial [1] [1] [0.5] [0.5] [0] 0.24 [μAA] [μAA] [μAA] 0.91 0.33
4 Additive 0.27 [1] [0.5] [0.5] [0] –1.82 0.46a [μAa] 0.31a 0.56 [0]
5 Recessive 0.03 [1] [0.5] [0.5] [0] –1.55 [μAA] [μAa] 0.32 0.71 [0]
6 Dominant 0.26 [1] [0.5] [0.5] [0] –1.84 0.39 [μAa] [μAa] 0.57 [0]
7 Mixed-recessive 0.03 [1] [0.5] [0.5] [0] –1.56 [μAA] [μAa] 0.33 0.71 0.05
8 Mixed-dominant 0.27 [1] [0.5] [0.5] [0] –1.75 0.45 [μAa] [μAa] 0.56 0.36
9 Mixed- free τ’s 0.05 1.00 0.99 [τAa] 0.16 –1.60 0.42 [μAa] 0.58 0.55 0.42

10 Mixed-equal τ’s 0.33 [p] [p] [p] [p] –1.84 0.40 [μAa] 0.40 0.58 0.28
11 Recessive free τ’s 0.01 0.98 0.70 [τAa] 0.04 –1.77 [μAA] [μAa] 0.42 0.57 0.25
12 Recessive equal τ’s 0.06 [p] [p] [p] [p] –1.84 [μAA] [μAa] 0.40 0.58 0.28
13 Dominant free τ’s 0.05 1.00 0.98 [τAa] 0.16 –1.56 0.49 [μAa] [μAa] 0.55 0.40
14 Dominant equal τ’s 0.33 [p] [p] [p] [p] –1.84 0.40 [μAa] [μAa] 0.58 0.28
15 Parent of origin1 0.20 [1] [0.5] [0.5] [0] –2.38 –0.69 0.60 0.58 0.37 [0]
16 Maternal 0.09 [1] [0.5] [0.5] [0] –1.71 [μAA] 0.40 [μAa] 0.57 [0]
17 Paternal 0.12 [1] [0.5] [0.5] [0] –1.81 0.39 [μAA] [μAa] 0.57 [0]

A bracketed number (e.g. [1]) denotes that the parameter was set and not estimated.
1 Most parsimonious model.
a Parameter estimates are approximately equal within standard error.



 Plunkett et al.  Hum Hered 2009;68:209–219 214

Table 4. Segregation analysis of mother’s average gestational age of children in 96 multiplex families (n = 192 
nonfounders)

Model Estimated
parameters

‘–2 ln L’ Test χ2 d.f. p value AIC

1 Mixed 6 175.06   187.06
2 Sporadic 2 222.42 2 vs. 1 47.36 4 <0.001 226.42
3 Multifactorial 3 216.37 3 vs. 1 41.31 3 <0.001 222.37
4 Additive 5 181.57 4 vs. 1 6.50 1 0.01 191.57
5 Recessive 4 187.88 5 vs. 1 12.82 2 0.002 195.88
6 Dominant 4 182.62 6 vs. 1 7.55 2 0.02 190.62
7 Mixed recessive 5 186.70 7 vs. 1 11.63 1 <0.001 196.70
8 Mixed dominant 5 175.68 8 vs. 1 0.62 1 0.43 185.68
9 Mixed free τ’s1, 2 7 153.94 1 vs. 9 21.13 3 <0.001 167.94

10 Mixed equal τ’s 6 173.56 10 vs. 9 19.62 3 <0.001 185.56
11 Recessive free τ’s2 6 184.09 7 vs. 11 2.60 3 0.46 196.09
12 Recessive equal τ’s 5 173.56 12 vs. 11 –10.54 3 n/a 183.56
13 Dominant free τ’s2 6 157.15 8 vs. 13 18.53 3 <0.001 169.15
14 Dominant equal τ’s 5 173.56 14 vs. 13 16.40 3 <0.001 183.56

1 Most parsimonious model.
2 Indicates the model did not converge on its own. τAA was set equal to 1 and τaa set equal to 0 in order to 

estimate the model.

Table 5. Parameter estimates for segregation analysis of mother’s average gestational age of children in 96 multiplex families (n = 192 
nonfounders)

Model A allele
frequency
p

Transmission probabilities Mean values for genotypes Common
standard
deviation, σ

Herit-
ability
HτAA τAa τaa μAA μAa μaa

1 Mixed 0.27 [1] [0.5] [0] –1.02 0.89 0.99 0.45 0.58
2 Sporadic [1] [1] [0.5] [0] 0.55 [μAA] [μAA] 0.87
3 Multifactorial [1] [1] [0.5] [0] 0.74 [μAA] [μAA] 0.86 0.44
4 Additive 0.25 [1] [0.5] [0] –1.28 0.72 0.94 0.48 [0]
5 Recessive 0.04 [1] [0.5] [0] –0.94 [μAA] 0.89 0.49
6 Dominant 0.28 [1] [0.5] [0] –1.08 0.87 [μAa] 0.48
7 Mixed-recessive 0.04 [1] [0.5] [0] –1.06 [μAA] 0.91 0.47 0.43
8 Mixed-dominant 0.28 [1] [0.5] [0] –1.01 0.94 [μAa] 0.45 0.59
9 Mixed free τ’s1, 2 0.16 [1] 0.77 [0] –1.01 0.87 1.08 0.44 0.52

10 Mixed equal τ’s 0.40 [p] [p] [p] –1.00 0.92 0.92 0.45 0.61
11 Recessive free τ’s2 0.02 [1] 0.66 [0] –0.85 [μAA] 0.91 0.49 0.02
12 Recessive equal τ’s 0.08 [p] [p] [p] –1.00 [μAA] 0.92 0.45 0.61
13 Dominant free τ’s2 0.18 [1] 0.75 [0] –0.96 0.96 [μAa] 0.44 0.54
14 Dominant equal τ’s 0.40 [p] [p] [p] –1.00 0.92 [μAa] 0.45 0.61

A bracketed number (e.g. [1]) denotes that the parameter was set and not estimated.
1 Most parsimonious model.
2 Indicates the model did not converge on its own. τAA was set equal to 1 and τaa set equal to 0 in order to estimate the model.
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model (model 9) best fit the data as judged by the AIC 
values and was chosen as the most parsimonious model 
( table 4 ). This model suggests that a complex genetic 
model most likely best accounts for variation in gesta-
tional age, when the trait is attributed to the mother of a 
delivery.

  Heterogeneity between Blacks and Whites 
 Since pregnancies in which either the mother  [4, 7]  or 

father  [19, 20]  is Black are at increased risk for preterm 
delivery, we tested for evidence of genetic heterogeneity 
between these two groups. Segregation analyses of in-
fant’s gestational age and mother’s average gestational age 
over all her children also were performed in Black and 
White subgroups.  Table 1  documents the number of sub-
jects and descriptive statistics for both phenotypes by 
race. The segregation analyses of infant’s gestational age 
supported similar conclusions in the combined sample 
and Black and White subgroups. However, several results 
differed in the segregation analysis of mother’s average 
gestational age of children when the sample was stratified 
by Black and White race, compared to the combined sam-
ple. In the race-stratified samples, final estimates of the 
free  � ’s models had higher –2 ln likelihoods than did sim-
ilar models with fewer parameters, indicating that the 
maximum likelihood was not reached. As a result, the 
equal  � ’s hypotheses (models 10, 12 and 14) and the free 
 � ’s hypotheses (models 9, 11 and 13) were not rejected for 
the mixed, recessive mixed and dominant mixed models, 
respectively, in Black and White subgroup analysis. The 
best fitting model according to AIC values was the mixed 
equal  � ’s model and was selected as the most parsimoni-
ous model in both race subgroups (data not shown).

  To test formally for heterogeneity between Blacks and 
Whites, we used the heterogeneity  �  2  test  [36, 37]  in which 
the –2 ln L value under a given model for the combined 
data is subtracted from the summed –2 ln L values from 
stratified analyses. For infant’s gestational age, evidence 
for genetic heterogeneity among races was observed when 
comparing values under the multifactorial model ( �  2  = 
 � (698.07 Black + 2010.02 White) – 2690.72 combined = 
17.37, 3 d.f., p = 0.0006). Of note, parameter estimates for 
Blacks and Whites differed, particularly estimates of p, H 
and  �  AA  which were generally higher in Blacks than 
Whites. For the multifactorial model, H was estimated as 
0.46 (95% CI: 0.27–0.65) for Blacks and 0.23 (95% CI: 
0.13–0.33) for Whites. While these point estimates are 
quite different, the 95% CI overlap, indicating that this 
difference may not be statistically significant. For moth-
er’s average gestational age of children, evidence for ge-

netic heterogeneity among races was observed when 
comparing values under the multifactorial model ( �  2  = 
 � (54.92 Black + 213.58 White) – 216.37 combined = 52.13, 
3 d.f., p = 2.81  !  10 –11 ). Of note, parameter estimates for 
Blacks and Whites differed, particularly estimates of H, 
which are generally higher in Blacks than Whites. For the 
mixed free  � ’s model, H was estimated as 0.70 (95% CI: 
0–1) for Blacks and 0.23 (95% CI: 0–0.57) for Whites. As 
the 95% confidence intervals overlap, this difference is 
not significant in the sample size analyzed here.

  Discussion 

 Preterm birth likely has a complex etiology involving 
both genetic and environmental risk factors, based on ev-
idence from previous studies. This study is the first to 
explicitly test different modes of inheritance for birth 
timing, by assessing gestational age as a phenotype of ei-
ther mother or infant. These data lend further support to 
a genetic component contributing to birth timing since 
sporadic (i.e. no familial resemblance) and nontransmis-
sion models, in which gestational age is attributed to en-
vironmental factors alone, are strongly rejected ( tables 2  
and  4 ). Our findings suggest that genetic influences on 
birth timing are important and likely complex.

  For infant’s gestational age, the parent of origin mod-
el (model 15) best fit the data according to the AIC values 
and was chosen as the most parsimonious model ( table 2 ). 
Based on the mean estimates for AA, Aa, aA and aa under 
this model ( table 3 ), it appears that this parent of origin 
effect is largely maternal. Heterozygotes who inherit the 
A allele from their mother (Aa) have a mean closer to, but 
not equal to, AA. Under a strict maternal model, AA and 
Aa would be equivalent, since mother’s A allele would be 
expected to be the sole determinant of phenotype. In con-
trast, heterozygotes who inherited the A allele from their 
father (aA) have a mean that is approximately equivalent 
to that of aa, suggesting that father’s A allele has little ef-
fect on phenotype. A model in which the maternally-in-
herited allele was the sole determinant of the phenotype 
(model 16) did not fit the data better than the parent of 
origin model in which the entire genotype was consid-
ered. Importantly, father’s genes also affect phenotype in 
this model, aligning with previous work showing pater-
nity  [17, 18]  as well as paternal race  [19, 20]  influence pre-
term birth risk. Hence, both maternal and paternal alleles 
seem to contribute to infant’s gestational age, with mater-
nally-inherited alleles having a stronger effect on pheno-
type than those inherited from the father. This finding 
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may support previous studies that have observed stronger 
effects of mother’s race  [19, 20]  and family history on risk 
for preterm birth  [22]  than those of the father. These data 
suggest that maternally-inherited genes acting in the fe-
tus and/or maternal genes acting in the mother are large-
ly responsible for birth timing; however, these two pos-
sibilities are not easily distinguished. Maternal genetic 
effects can create the same pattern of phenotypic varia-
tion as genomic imprinting  [38] . These two classes of ef-
fects can be distinguished by comparing the offspring of 
heterozygous mothers  [38] ; however, such comparisons 
are not possible in our dataset in which individuals were 
assigned probabilities for each possible genotypic state, 
rather than having known genotypes measured empiri-
cally. Previous studies in cattle  [39, 40]  have observed ma-
ternal genetic effects on gestational age, but did not con-
sider parent of origin effects. Consequently, further study 
is needed to determine whether maternal effects or im-
printing account for our observations. In either case, con-
sidering the mother of a preterm delivery as proband may 

be most useful in identifying genetic contributions to 
preterm birth.

  Segregation analysis of mother’s average gestational 
age of children also supported a complex genetic model. 
The mixed free  � ’s model (model 9) best fit the data ac-
cording to the AIC values and was chosen as the most 
parsimonious model ( table 4 ). This model, in combina-
tion with results from LRTs, suggests that genetic influ-
ences on birth timing are important and likely complex. 
Importantly, fewer individuals are informative when 
mother is considered the proband in a preterm delivery 
( fig. 1 ), and the smaller sample size affects the power of 
the analysis. As a result, the parameter and likelihood 
estimates made when considering mother as proband are 
more affected by sampling variance; however, conclu-
sions made by comparing across models should be less 
affected by sample size. 

 Overall, mother-based and infant-based analyses both 
support the importance of genetic factors, perhaps pri-
marily acting in the mother or maternally-inherited al-
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  Fig. 1.  A representative pedigree of famil-
ial preterm birth with gestational age in 
weeks of each individual indicated. Ques-
tion marks indicate that the gestational 
age for that individual is unknown. Panel 
A depicts the pattern of affection status 
( ! 37 weeks) if the infant is considered pro-
band of a preterm delivery. Panel B depicts 
the pattern of affection status ( ! 37 weeks) 
if the mother is considered proband of a 
preterm delivery. Multiple births are ex-
cluded due to the likelihood of singleton 
and multiple births having different mech-
anisms for early birth.   



 Mother’s Genome or Maternally-Inherited
Genes Influence Gestational Age 

 Hum Hered 2009;68:209–219 217

leles acting in the fetus, in birth timing. The genetic com-
ponent influencing preterm birth likely involves many 
genes in interaction with environmental and other ge-
netic factors. These results are consistent with previous 
studies suggesting that genes and environments  [12–14] , 
as well as gene-gene  [25, 26]  and gene-environment  [27–
29]  interactions influence preterm birth. Estimates from 
the multifactorial model (model 3,  tables 2  and  4 ) indicate 
30–40% of variation in gestational age, attributed to ei-
ther mother or infant, can be explained by genetics, con-
sistent with estimates from previous twin studies  [12, 14] . 
As twins may not be representative of the population as a 
whole, our heritability estimates corroborate the general 
importance of genetics in birth timing. Heritability esti-
mates were generally higher in mother-based analyses 
(0.44 (95% CI: 0.11–0.77)) than in infant-based analysis 
(0.33 (95% CI: 0.24–0.42)), but not significantly different 
( tables 3 ,  5 ). While many genes may be contributing to the 
observed genetic influence on birth timing, the moderate 
heritability observed suggests that the cumulative effect 
of these genes accounts for an important amount of vari-
ation in gestational age.

  Although alternative methods for segregation analysis 
exist, we considered PAP to be the best method for our 
primary goal of identifying the best-fitting genetic mod-
el for birth timing. Using PAP, we were able compare 
models directly and identify the most parsimonious 
model. In contrast, Markov Chain Monte Carlo (MCMC) 
methods, such as those used by the Loki  [41]  and Morgan 
 [42]  packages, generate a series of posterior probabilities 
for various models, but no one model is identified as su-
perior. Moreover, MCMC methods model several Men-
delian loci simultaneously but do not include a polygenic 
component, which we wanted to include in the models we 
examined. Furthermore, one cannot correct for ascer-
tainment within MCMC analysis, in contrast to PAP. One 
of the disadvantages of using PAP exclusively was that we 
were not able to estimate the approximate number of loci 
contributing to birth timing, as could be done with 
MCMC methods. Additionally, MCMC methods may be 
better at handling large, complex pedigrees than PAP 
 [43] ; however, since our families were relatively small and 
simple (e.g. containing no inbreeding), we did not con-
sider this a limitation.

  We have likely enriched for genetic and/or common en-
vironmental effects by using 96 multiplex families, all of 
whom were recruited based on having two or more first 
degree relatives delivered preterm. These multiplex fami-
lies provided a large sample size from which genetic effects 
could be examined. However, the ascertainment scheme 

also introduces bias, as the families were not collected ran-
domly and may overestimate the importance of certain 
genetic models. To minimize errors due to such bias, all 
analyses were corrected for ascertainment by condition-
ing on the initial proband, either the mother or the off-
spring depending which phenotype was considered, that 
led to the ascertainment of the family, assuming single as-
certainment. However, if our assumption of single ascer-
tainment is incorrect, conditioning on probands in this 
manner may create bias in estimating model parameters 
 [44] , leading to inaccurate conclusions about the best-fit-
ting model for familial preterm birth. Because we believe 
our ascertainment scheme is consistent with single ascer-
tainment, these results appear to be most appropriate for 
modeling genetic effects in familial preterm birth. Yet, it 
is possible that our conclusions drawn from familial cases 
of preterm birth may not generalize to all instances of this 
disorder. Familial cases of preterm birth may have a dif-
ferent genetic contribution than isolated cases, perhaps 
having different etiologies than isolated cases.

  This study is also limited by the phenotypes studied. 
Information on gestational age was collected by self-re-
port data from questionnaires for many individuals used 
in this analysis. While it was possible to verify gestation-
al ages from medical records in some cases, including all 
births delivered at the participating institutions, many 
gestational ages could not be verified and may be subject 
to reporting errors. Additionally, many individuals for 
whom we could not verify precise gestational ages were 
reported as ‘full term’ and assigned gestational age of 40 
weeks. While this is the most likely gestational age for 
infants to be born  [6] , we may lose some variability in the 
overall distribution of gestational age by doing so. As 
modeling of trait variance is essential to segregation anal-
ysis, this approach also may have affected our results.

  Our findings suggest that genetic influences on birth 
timing are important. Modeling for both mother and in-
fant phenotypes indicate that a genetic component influ-
ences gestational age and is complex in nature. In analy-
ses using either mother or infant as proband, monogenic 
Mendelian models were strongly rejected, suggesting that 
a single gene model cannot fully explain birth timing in 
these families. A number of genes probably contribute to 
the genetic influence on birth timing and preterm birth 
described. Analyses of gestational age attributed to the 
infant support a model in which mother’s genome and/or 
maternally-inherited genes acting in the fetus are largely 
responsible for birth timing, with a smaller contribution 
from the paternally-inherited alleles in the fetal genome. 
Hence, considering the mother of a preterm delivery as 
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