
The Journal of Nutrition

Ingestive Behavior and Neurosciences

Dietary Choline Reverses Some, but Not All,
Effects of Folate Deficiency on Neurogenesis
and Apoptosis in Fetal Mouse Brain1–3

Corneliu N. Craciunescu,4 Amy R. Johnson,4 and Steven H. Zeisel4,5*

4Department of Nutrition, School of Public Health and School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill,

NC, 27599; and 5Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC 28081

Abstract

In mice, maternal dietary folate, a cofactor in 1-carbon metabolism, modulates neurogenesis and apoptosis in the fetal

brain. Similarly, maternal dietary choline, an important methyl-donor, also influences these processes. Choline and folate

are metabolically interrelated, and we determined whether choline supplementation could reverse the effects of folate

deficiency on brain development. Timed-pregnant mice were fed control (CT), folate-deficient (FD), or folate-deficient,

choline-supplemented (FDCS) AIN-76 diets from d 11 to 17 (E11–17) of pregnancy, and on E17, fetal brains were collected

for analysis. Compared with the CT group, the FD group had fewer neural progenitor cells undergoing mitosis in the

ventricular zones of the developing mouse brain septum (47%; P , 0.01), hippocampus (29%; P , 0.01), striatum (34%;

P , 0.01), and anterior and mid-posterior neocortex (33% in both areas; P , 0.01). In addition, compared with CT, the FD

diet almost doubled the rate of apoptosis in the fetal septum and hippocampus (P, 0.01). In the FDCS group, the mitosis

rates generally were intermediate between those of the CT and FD groups; mitosis rates in the septum and striatumwere

significantly greater compared with the FD group and were significantly lower than in the CT group only in the septum and

neocortex. In the FDCS group, the hippocampal apoptosis rate was significantly lower than in the FD group (P, 0.01) and

was the same as in the CT group. In the septum, the apotosis rate in the FDCS group was intermediate between the CT

and FD groups’ rates. These results suggest that neural progenitor cells in fetal forebrain are sensitive to maternal dietary

folate during late gestation and that choline supplementation can modify some, but not all, of these effects. J. Nutr. 140:

1162–1166, 2010.

Introduction

Normal development of fetal brain and spinal cord depends on
nutrients derived from the maternal diet. For example, in
rodents, maternal diets deficient in folate (1) or choline (2) result
in decreased neurogenesis and increased apoptosis in fetal brain.
In humans, maternal dietary supplementation with folic acid in
the periconceptional period significantly reduces the risk of
neural tube defects (3–5). Folate plays a central role in DNA
synthesis through de novo purine and thymidine biosynthesis
necessary for mitotic cell division, and folate is important in
the transfer of methyl groups (6). Choline is needed for the
biosynthesis of cell membranes as a methyl-group donor and
for cholinergic neurotransmission (7). Folate is interrelated
metabolically to choline; both methyltetrahydrofolate and

betaine (derived from choline) can methylate homocysteine to

produce methionine (7–11).
Dietary folate intake during pregnancy has been an area of

focus for nutrition research (3,6,12–14), and to reduce the

incidence of neural tube defects, the food supply in the US has

been fortified with folic acid. Pregnancy and lactation are times

when demand for choline is especially high, because transport of

choline from mother to fetus depletes maternal choline stores

(15,16). The National Academy of Sciences set an adequate

intake level for choline (17), but, in the US, ,15% of pregnant

women consume the recommended amount (18). In fact, women

in California vary enough in dietary choline intake (from ,300

to .500 mg/d) to influence the risk that they will have a baby

with a birth defect; at least 25% of women consume so little

choline that their pregnancies are at 4-fold increased risk

(19,20).
Previous studies examined the effects of folate or choline on

brain development separately and did not determine whether

choline could substitute for folate in the diet. In this study, we

tested the hypothesis that supplementation of maternal diets

with choline can mitigate the negative effects of folate deficiency

on neurogenesis in developing mouse brain.
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Methods

Mice and diets. Timed-pregnant C57Bl/6J mice were from Jackson

Laboratory and were housed individually in cages in a temperature-

controlled room at 248C and exposed to a 12-h-light and -dark cycle.
Mice were placed in cages that contained wire mesh flooring that

separated the mice from their feces to avoid coprophagy, a major source

of folic acid (21). The control diet group was housed on normal rodent

bedding. Mice consumed an AIN-76A pelleted diet (Dyets) (22) with the
standard 1.1-g choline chloride/kg diet, 2 mg folic acid/kg diet (22), and

1% succinyl sulfathiazole (kills intestinal bacteria able to synthesize

folate) (23). Pregnant mice were permitted ad libitum access to diet and

water until the end of d 11 of gestation when they were randomly
assigned to 1 of 3 treatment groups: folate deficient (FD;6 AIN-76A diet

with 0.0 mg folic acid/kg diet, 1.1 g choline chloride/kg diet, and 1%

succinyl sulfathiazole), control (CT), or folate deficient, choline
supplemented (FDCS; AIN-76A diet with 0.0 mg folic acid/kg diet,

4.95 g choline chloride/kg diet and 1% succinyl sulfathiazole). These

diets were ingested until the dams (9–11/group) were killed on

gestational d 17 (E17). All mouse procedures were approved by the
University of North Carolina Institutional Animal Care and Use

Committee.

Tissue collection. Fetal brains were collected using the modified
technique of Park et al. (24). Pregnant dams from the 3 treatment groups

were anesthetized with an intraperitoneal injection of ketamine (200

mg/kg body weight) and xylazine (20 mg/kg body weight; Henry Schein).
The terminal surgery and tissue collection was performed as described

elsewhere (1). Two male fetal brains from each dam were embedded in

paraffin and 5-mm coronal serial sections containing the brain regions of

interest such as the septum, hippocampus, and cortex were cut and
applied to glass slides for histological and immunohistochemical assays.

Because there is a posterior to anterior gradient of neurogenesis in fetal

mouse brain, the sections were reviewed at the time of immunostaining

to ensure that they included anatomically reproducible areas of the
septum and hippocampus as defined by a standard atlas of the

developing brain (25).

Assessment of mitosis. Coronal brain sections were probed with a
rabbit anti-phospho-histone H3 (Ser10), Mitosis Marker polyclonal

antibody (catalog no. 06–570, Millipore) that recognizes phosphory-

lated histone H3, the core protein of the nucleosome, which becomes
phosphorylated at the end of prophase, an event that is essential for the

maintenance of mitosis-associated chromosome condensation (26).

Slides were prepared for autofluorescence reduction and antigen retrieval

(27) and histone H3 phosphorylation was assessed as previously
described (2) (Supplemental Methods). Sections were mounted using

80%Tris-buffered glycerol, pH 7.0 (28) and a no. 1 thickness coverglass.

The incidence of phospho-histone H3-labeled cells was measured at

the ventricular surface of the ventricular zone (vz) beginning at the
junction (septal fork, nucleus accumbens) of the septum (spt) and

caudate putamen striatum (str) and extending toward both the

cingulated cortex and the frontal (anterior) neocortical ventricular zones
(ncx), within the fetal mouse telencephalic portion of the septum, and at

the vz surface beginning at the junction of the hippocampus and choroid

plexus [hippocampal wedge (29)], and extending toward and over the

mid-posterior cortical vz (Supplemental Fig. 1). Cells were counted
hemilaterally in 3–6 consecutive serial sections and the values were

averaged to obtain a single value/section (region)/fetus. The length of the

ventricular zone was nearly identical across diet groups for a given

region of brain.

Assessment of apoptosis. Active caspase-3 immunoreactivity was

used to detect apoptotic cells in fetal septum and hippocampus. The

pretreatment of slides for deparaffinization, antigen retrieval, and
blocking was identical to the one for mitosis assessment and was

followed by overnight incubation with a primary antibody to cleaved

(active) caspase-3 (Asp175) (catalog no. 9664, Cell Signaling Technol-

ogy) 1 ng/L in blocking buffer. Then, goat Cy3-anti-rabbit IgG (catalog
no. AP132C, Millipore) at 1:500 dilution was applied for 2 h at room

temperature to display the active caspase-3. 49,6-Diamidino-2-phenyl-

indole, nuclear DNA staining (0.1 ng/L) for 20 min was used to

counterstain nuclear DNA. The active caspase-3 positive cells were
identified and scored by a trained observer who did not know the

animals’ grouping, based upon the presence of yellow fluorescent

staining for activated caspase-3. Stained nuclei were usually, but not
always, condensed and intense blue fluorescent chromatin was often

visible inside, consistent with fragmented DNA. The apoptotic indices

for the fetal mouse brain hippocampus of the different groups are

presented as the number of apoptotic cells/septal or hippocampal
section. Apoptosis was assessed hemilaterally at a final magnification of

2003 (2,30) in 6–12 septal and hippocampal hemispheres from 3–6

coronal serial sections that were averaged to obtain a single value/

hippocampal section/fetus. The area of the regions of interest was nearly
identical across diet groups for a given region of brain.

Statistical analysis. Data are presented as means6 SEM. All data were
analyzed by ANOVAwith the diet as the main effect tested. For all tests,

3–6 consecutive sections/brain were used to calculate a single brain’s

mean and 8–11 mice were used to calculate the group means; each fetus

was generated from a different dam. Once it was established that data
variances were equal among all groups (using Tests that the Variances are

Equal from JMP version 2, SAS), post hoc analysis was done using the

Tukey-Kramer Honest Significant Difference test. Means without a

common letter differ, P, 0.01, as indicated in the figures (JMP version 2,
SAS).

Results

Mitosis. Compared with the CT group, maternal folate
deficiency decreased the number of neural progenitor cells
undergoing cell replication in the ventricular zones of the
developing mouse brain septum (47%; P , 0.01), striatum
(34%; P, 0.01), anterior neocortex (33%; P, 0.01) (Fig. 1A),
hippocampus (29%; P , 0.01), and mid-posterior neocortex
(33%; P , 0.01) (Fig. 1B). Choline supplementation (FDCS
group) restored the mitosis rate to the control rate in striatum
but not in the anterior neocortex. In all other brain regions, the
rates of mitosis in the FDCS groupwere intermediate and did not
differ from the CT or FD groups.

Apoptosis. On E17, we observed apoptotic cells in the
developing septum and hippocampus (as assessed using active
caspase 3 immunoreactivity) (Supplemental Fig. 2). The number
of apoptotic cells was 96% greater in FD fetal septum (Fig. 2A)
(P , 0.01) and 114% greater in FD fetal hippocampus (P ,
0.01) (Fig. 2B) compared with the CT. Choline supplementation
(FDCS group) restored apoptosis rates to the control level in the
hippocampus (Fig. 2B), but in the septum, the rate was
intermediate to the FD and CT groups and did not significantly
differ from either (Fig. 2A).

Discussion

Much of the interest in folic acid is based on known effects of
this vitamin on neural tube closure. We found that maternal
dietary folate intake has effects much later in brain development
when the hippocampus, septum, and cortex are forming and

6 Abbreviations used: CDKI, cyclin-dependent kinase inhibitors, p15Ink4B and

p27Kip1; CT, control diet; E#, embryonic (gestation) day #; FD, folate-deficient

diet; FDCS, folate-deficient, choline-supplemented diet; ncx, ventricular zone

corresponding to anterior (in septum sections), mid-posterior (in hippocampus

sections) neocortex; spt, ventricular zone of the developing septum; str,

ventricular zone corresponding to caudate putamen-striatum; vz, ventricular

zone.
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when neurogenesis occurs within 2 relatively thin layers of tissue
lining the primitive ventricular cavities, referred to as the
ventricular zone (vz) and the subventricular zone (31). Maternal
folate deficiency was associated with a marked decline in
proliferation of neural progenitor cells (Fig. 1) and with a
marked increase of apoptotic cell death in these regions (Fig. 2).
This is consistent with our previously published results for
septum (1). These effects of maternal folate deficiency on fetal
brain development are similar to those described when dams are
fed a choline-deficient diet during the same embryonic period in
rats (30,32) or mice (2).

Mitosis in brain progenitor cells is regulated by cyclin-
dependent kinase inhibitors (CDKI) (33). In previous studies, we
showed that feeding pregnant dams a choline-deficient diet
increased, whereas a choline-supplemented diet decreased, the
expression of CDKI in fetal brain, correlating with reciprocal
changes in mitotic cell division by progenitor cells in the vz (34).
These changes were mediated in part by epigenetic regulation of
the expression of CDKI genes (35,36).

Apoptosis is a regulated form of cell suicide (37) that is
important in normal brain development (38–41) and in neurons
is modulated by survival factors such as neurotrophins, sex
hormones, and neuronal activity (42,43) and is induced by
choline deficiency (44–47). We have extensively characterized
the choline-regulated intermediate signals that mediate apopto-
sis (44,47–50) and others have demonstrated that folate
deficiency shares these apoptosis pathways (1,51–53). It is
reasonable to suggest that choline deficiency and folate defi-

ciency share some common underlying mechanisms that explain
the effects on neurogenesis and apoptosis in fetal brain.
However, there are folate-specific mechanisms that are not
shared with choline; during the S-phase of the cell cycle, folate-
activated 1-carbon groups are required for the de novo synthesis
of purines (requires 10-formyl-THF for the C2 and C8 carbons
of the purine ring) and thymidylate (requires methylene-THF for
the reductive methylation of dUMP to form dTMP) (54).

As noted earlier, the metabolism of choline, homocysteine,
and methyl-folate are closely interrelated. Perturbing metabo-
lism of one of the methyl-donors results in compensatory
changes in the other methyl-donors due to the intermingling of
these metabolic pathways (8–10). We found that supplementing
folate-deficient mouse dams with choline partially mitigated the
effects of folate deficiency on fetal brain neural progenitor cell
mitosis and apoptosis (Figs. 1 and 2), but the extent of this
mitigation varied in different regions of brain. In some areas (e.g.
striatum), mitotic rates were the same as in the CT, whereas in
other areas, mitotic rates in the supplemented group were
intermediate between the CT and FD groups. In the fetal
hippocampus, apoptosis rates were restored to control levels in
the choline-supplemented group, whereas in the septum, rates
were between those of the CT and FD groups. These differences
may occur because the timing of regional development in brain
proceeds from posterior to anterior and neurogenesis peaks at
different times in each region.

There are a number of potential mechanisms whereby choline
supplements might mitigate the effects of folate deficiency.
Because the pathways of folate and choline metabolism inter-
sect, folate deficiency also depletes concentrations of choline or
choline metabolites in tissues (9). If these metabolites influence

FIGURE 1 Mitotic cells in the forebrain of fetal mice on E17 from

timed-pregnant dams fed a CT, FDCS, or FD diet beginning on E11.

The vz regions included the septum, striatum-caudate putamen,

anterior neocortex (A), hippocampus, mid-posterior neocortex, and the

periventricular region surrounding the lateral ventricle (B). Values are

the mean number of phospho-histone H3 positive cells6 SE, n = 8–11

(means of 3–6 consecutive sections/fetal brain, each from a different

dam). For each brain region, means without a common letter differ,

P , 0.01.

FIGURE 2 Apoptotic neural cells in the septum (A) and hippocam-

pus (B) of fetal mice on E17 from timed-pregnant dams fed a CT,

FDCS, or FD diet beginning on E11. Values are the mean number of

active caspase 3 positive cells per section 6 SE, n = 8–11 (means of

3–6 consecutive sections/fetal brain, each from a different dam). For

each brain region, means without a common letter differ, P , 0.01.
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neurogenesis and apoptosis, correcting the concentrations of
these metabolites might normalize brain development. Choline
and folate are both important for methyl-metabolism and
dietary manipulation of both can alter methylation reactions,
including methylation of DNA and histones important for the
epigenetic control of gene expression (36,55–57). It is possible
that the effects of both nutrients on brain development are
mediated by epigenetic events (58).

To date, the majority of scientific investigations about dietary
folate requirements during pregnancy focused on folate’s role in
preventing neural tube defects. This has led to recommendations
that pregnant women take supplemental folic acid before and
during the first weeks of pregnancy (59). The data presented here
suggest that folate availability affects brain development long
after neural tube closure and indicates that it may be very
important that women have adequate intakes of folic acid
throughout pregnancy. Dietary choline status also is important
for brain development and we have now found that choline can
moderate some of the effects of folate deficiency. This important
interaction should be considered as new dietary recommenda-
tions for both nutrients during pregnancy are developed.
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