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Signal transduction by the T-cell antigen receptor (TCR) is initiated by phosphorylation
of conserved motifs (ITAMs) contained within the cytoplasmic domains of the invariant
subunits. TCR complexes contain a total of 10 ITAMs and this unusual configuration
has prompted studies of the role of specific ITAMs, or of ITAM multiplicity, in regulating
TCR-directed developmental and effector responses. Here, we summarize data generated
during the past two decades and discuss how these findings have in some cases resolved,
and in others complicated, outstanding questions relating to the function of TCR ITAMs.

Signal transduction in the immune system
is regulated by a highly diverse set of cell

surface receptors that are coupled by signaling
intermediates to common downstream path-
ways. A large number of these receptors either
contain within their cytoplasmic domains,
or associate with subunits that contain, a con-
served sequence (the Immune-receptor-Tyro-
sine-based-Activation-Motif; ITAM) that is
critical for the initiation of signaling following
ligand engagement (reviewed in Underhill and
Goodridge 2007). ITAMs, which were identified
20 years ago on the basis of their sequence
homology (Reth 1989), consist of paired YxxL/
I motifs separated by a defined interval (YxxL/
I-X6-8-YXXL/I). In addition, most ITAMs con-
tain a negatively charged amino acid (D/E) in
the þ2 position relative to the first ITAM

tyrosine (Fig. 1). ITAM containing receptors
are widely expressed in hematopoietic cells
including T and B lymphocytes, natural
killer (NK) cells, macrophages, dendritic cells,
and platelets (Fig. 2). Since their discovery,
considerable progress has been made in deter-
mining how ITAMs initiate signaling cascades
and thereby couple their associated receptors
to distal effector responses. In this review,
we focus on the TCR as a paradigm for ITAM-
mediated signal initiation. In addition to
being one of the most well characterized recep-
tor complexes, the TCR exhibits several in-
triguing properties, such as the inclusion of an
especially large number of ITAM containing
subunits, which have fueled intensive study
into the role of ITAMs in the TCR signaling
response.
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ITAMS WITHIN THE TCR SUBUNITS

TCRs are multimeric complexes composed of
subunits whose function is exclusively limited
to either ligand recognition or signal trans-
duction. The predominant TCR isoform, the
abTCR, which is expressed on mature CD4þ

and CD8þ T cells, contains clonotypic TCRa
and TCRb chains that form a heterodimer con-
ferring peptide-major histocompatibility com-
plex (MHC) binding specificity to the TCR.
The TCRa/b heterodimer lacks inherent signal
transducing activity but associates noncova-
lently with multiple signal transducing sub-
units: the CD3g,-d and -1 chains, and, in most

cases, a z chain homodimer. The currently
accepted model of abTCR stoichiometry pro-
poses the following subunit composition:
TCRab, CD3g1, CD3d1, zz. A distinct lineage
of T cells (gd T cells) expresses a TCR complex
containing a different antigen recognition het-
erodimer composed of chains encoded by the
TCRg and TCRd genes. Although the invariant
subunit composition of the abTCR and the
gdTCR had long been assumed to be identical,
it was recently shown that the gdTCR lacks
CD3d (Hayes and Love 2002), and therefore
most likely has the following stoichiometry:
TCRgd, CD3g1, CD3g1, zz (Hayes and Love
2006a; Siegers et al. 2007). A third complex,
the pre-TCR, is expressed only during early thy-
mocyte development at a stage that precedes
rearrangement of the TCRa gene. In lieu of
TCRa, TCRb associates with an invariant
chain (pre-Ta) encoded by a gene that does
not undergo V-(D)-J rearrangement (Saint-Ruf
et al. 1994). Although the subunit composition
of the pre-TCR has not been unequivocally
established, the phenotype of knockout mice
lacking individual TCR subunits suggests that
it likely contains at least CD3g1 and zz dimers
in addition to the TCRb and pre-Ta chains
(Hayes et al. 2003).

A striking feature of the TCR (and pre-TCR)
structures is the presence of multiple distinct
ITAM bearing subunits within the receptor
complex. The CD3 (2g, 2d, 21) chains each
contain a single ITAM whereas the z chain
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Figure 1. ITAM-containing proteins. Murine ITAM
sequences were obtained from GenBank. Amino
acids that align with the consensus ITAM sequence
are shown in blue.
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Figure 2. Comparison of the ITAM-containing T- and B-cell antigen receptors, Fc receptors and NK receptors.
Subunit composition of the T-cell antigen receptor (TCR), B-cell antigen receptor (BCR), Fc1R1 (an example of
an activating Fc receptor) and Ly49 (an example of an activating NK receptor). Blue rectangles represent ITAMs.
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contains three tandem ITAMs (Fig. 1 and
Fig. 2). Consequently, the predicted octameric
abTCR and gdTCR complexes contain a total
of 10 ITAMs. Moreover, although all TCR
ITAMs share the conserved YxxL/I-X6-8-YXXL/
I motif, the amino acid sequence of each
ITAM is distinctive (Fig. 1). The question that
naturally arises is whether the individual TCR
ITAMs have specific signaling responses during
T-cell development and T-cell activation or in-
stead perform equivalent but additive functions.

INITIATION OF TCR SIGNALING BY ITAMS

The essential role of ITAMs in the initiation of
TCR signaling was first established by experi-
ments demonstrating that the cytoplasmic
domains of the CD3 or z chains, or the individ-
ual ITAM sequences from these proteins, were
capable of activating T cells when fused to
the extracellular domain of unrelated mole-
cules (Irving and Weiss 1991; Letourneur and
Klausner 1992; Romeo et al. 1992; Straus and
Weiss 1993; Koyasu et al. 1994; Sturmhofel
et al. 1995). It had been shown previously that

tyrosine phosphorylation of TCR subunits,
which represents one of the earliest events
following TCR engagement, was mediated by
the Src family tyrosine kinases Lck and Fyn
(Samelson et al. 1986; June et al. 1990; Samelson
et al. 1990) and that Lck associates con-
stitutively with the CD4 and CD8 coreceptors
(Veillette et al. 1988; Barber et al. 1989). An
important breakthrough was the subsequent
identification of ZAP-70, a Syk family tyrosine
kinase that is rapidly recruited to phosphory-
lated ITAMs (Chan et al. 1992). Both ZAP-70
and Syk contain tandem SH2 domains that
direct their specific and selective interaction
with doubly phosphorylated ITAMs. The com-
binatorial action of Src kinases and ZAP-70 is
sufficient for the full activation of downstream
signaling pathways and for eliciting T-cell effec-
tor responses (Fig. 3).

A series of experiments performed over the
past few years have served to clarify and refine
the proximal events that take place following
TCR engagement. A fundamental question has
been how ligand binding promotes ITAM phos-
phorylation and thereby leads to the initiation
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Figure 3. Proximal signaling events in the TCR-coupled signaling pathway. Interactions between the TCR and
peptide-MHC results in the activation of Lck, a member of the Src family of tyrosine kinases. Lck then
phosphorylates the two-tyrosine residues within the ITAMs of the CD3 and z chains. A second tyrosine
kinase, ZAP-70, is specifically recruited to biphosphorylated ITAMs. Phosphorylation of ZAP-70 by Lck
results in its activation. ZAP-70 and Lck phosphorylate and activate several downstream target proteins
eventually leading to Ras activation, calcium mobilization, and actin cytoskeleton rearrangements, and
ultimately to the activation of transcription factors.
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of TCR signaling. One explanation, relevant to
cells expressing the abTCR, is that cobinding
of the peptide-MHC complex by the TCR and
by CD4 or CD8 results in the juxtaposition of
Lck and the cytoplasmic tails of the invariant
TCR subunits resulting in the phosphorylation
of ITAMs by Lck (Chu and Littman 1994).
However, this mechanism cannot explain how
ITAMs within the pre-TCR and gdTCR are
phosphorylated as these receptors are expressed
on cells that do not express either CD4 or CD8.
This paradox has led to the proposal of several
new models [reviewed in (Smith-Garvin et al.
2009)] that invoke mechanisms including
ligand-induced conformational changes in the
TCR, receptor re-distribution on the cell sur-
face, or subunit movement relative to the plasma
membrane to explain how TCR engagement
could render ITAMs more accessible to phos-
phorylation. One especially attractive model
stems from the observation that the cytoplasmic
tails of CD31 and z interact with acidic phos-
pholipids that are enriched in the inner leaflet
of the plasma membrane (Aivazian and Stern
2000; Sigalov et al. 2006; Xu et al. 2008). Such
interactions, which would be predicted to result
in the insertion of ITAM tyrosines into the
hydrophobic core of the lipid bilayer, could
explain the inaccessibility of ITAMs as targets
for phosphorylation in resting T cells. Accord-
ing to this model, ligand induced deformation
of the TCR leads to dissociation of the CD3
and zz dimers from the plasma membrane ren-
dering them accessible to phosphorylation by
Lck and/or Fyn.

The binding of ZAP-70 to phosphorylated
ITAMs and its subsequent activation has been
clarified by experiments that systematically
evaluated the importance of key domains and
amino-acid residues within ZAP-70 (reviewed
in Au-Yeung et al. 2009). Specifically, these
studies have shown that ITAM binding by
ZAP-70 relieves an auto-inhibitory conforma-
tion of the kinase and that phosphorylation
of specific tyrosine residues within the inter-
domain separating the C-terminal SH2 domain
and the kinase domain (interdomain B) by Lck/
Fyn are important for regulating the activity of
ZAP-70 (Au-Yeung et al. 2009).

FUNCTION OF INDIVIDUAL TCR CHAINS
AND ITAMS

The discovery that the TCR complex contains
several different ITAM-bearing subunits imme-
diately prompted a series of studies aimed at
determining whether individual ITAMs were
important for particular signaling or effector
responses. Experiments performed in T-cell
lines indicated that the cytoplasmic domains
of the CD31 and z subunits were independently
capable of providing activating signals similar
to that of the intact TCR complex (Irving and
Weiss 1991; Letourneur and Klausner 1992;
Wegener et al. 1992) and suggested that TCR
ITAMs are functionally redundant but additive
with respect to signaling responses (Irving
et al. 1993). In other studies, the binding of
potential effector proteins including ZAP-70,
Shc, PI3K(p85), Grb2, Fyn, and Ras-GAP to
the TCR ITAMs was analyzed using synthetic
phosphorylated peptides containing individual
ITAM sequences (Isakov et al. 1995; Osman
et al. 1996; Zenner et al. 1996). Only one of
the three studies compared binding to all 6
TCR ITAM sequences (z1, z2, z3, CD32g,
2d, and 21) (Osman et al. 1996). Data from
these experiments provided evidence for pref-
erential binding of effector molecules to indi-
vidual TCR ITAMs, and in some cases (Shc,
p85, Grb2, and Fyn) selective binding to a sub-
set of TCR ITAMs (Table 1); however, additional
experiments to follow up on these initial obser-
vations have not be performed. It also remains
unclear if any exclusive ITAM-effector associa-
tions can be inferred from these studies because
in vitro analysis of binding to isolated ITAMs
may not reflect binding in the context of the
intact TCR where cooperative interactions or
ordered binding of effectors may take place.

The notion that the extent of TCR ITAM
phosphorylation, or the order in which the
individual TCR ITAMs are phosphorylated after
ligand engagement, may play a role in regulat-
ing the TCR signaling response also formed
the basis of intensive research over the past de-
cade. Early experiments revealed that two pro-
minent tyrosine phosphorylated forms of
z-chain, p21-z, and p23-z, are detected in T cells
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(reviewed in Pitcher et al. 2003b). It was sub-
sequently shown that p21-z, which is de-
tected in unstimulated ex vivo thymocytes and
T cells or in cells activated with partial agonist/
antagonist ligands, contains partially phos-
phorylated ITAMs that are either not associated
with ZAP-70 or that bind inactivated ZAP-70,
whereas p23-z, which is generated only after
TCR cross-linking or stimulation with agonist
peptides, contains fully phosphorylated ITAMs
that bind activated ZAP-70 (Sloan-Lancaster
et al. 1994; van Oers et al. 1994; Madrenas
et al. 1995). These findings led to the suggestion
that partial phosphorylation of z-chain may be
important for the induction of T-cell anergy
and may in fact be inhibitory (Kersh et al.
1999). One mechanism proposed to explain
ITAM-mediated inhibition is that partial phos-
phorylation of individual ITAMs could result
in the generation of an “ITIM-like” sequence
(YXXL/I/V) which then leads to the recruitment
of tyrosine phosphatases including SHP-1 and
SHIP to the TCR (Barrow and Trowsdale
2006; Pinheiro da Silva et al. 2008). However,
other studies implied that p21-z may instead
represent a “primed” state that facilitates rapid
T-cell activation and that formation of p21-z

through self-MHC interactions may be impor-
tant for T-cell survival (Witherden et al. 2000).
To address these questions, van Oers and col-
leagues engineered transgenic mouse lines that
are capable of generating p21-z but not p23-z,
or that are incapable of generating either p21-z
or p23-z (Pitcher et al. 2003a). Analysis of these
mice demonstrated that the ability to generate
p21-z was not essential for T-cell antagonism.
In addition, they found that the ability to gener-
ate p23-z was not required for agonist-induced
T-cell proliferation (Pitcher et al. 2003a). Simi-
lar results were obtained by other investigators
using an identical but independently con-
structed experimental system (Ardouin et al.
1999). Whether these results indicate that parti-
ally phosphorylated TCR ITAMs (or partial
phosphorylation of individual TCR ITAMs)
have no inhibitory function remains unclear as
the potential for redundancy with other ITAM
containing subunits still exists in this model
system.

To evaluate the importance of TCR signal-
ing for T-cell development, in vivo studies were
performed with gene targeted mice in which
specific ITAM containing subunits were mu-
tated. In an initial series of experiments, mice

Table 1. Differences in the binding affinities of major signaling molecules in the TCR-coupled signaling pathway
for the ITAMs within the invariant TCR subunits

Signaling Molecule ITAM Binding Hierarchy References

ZAP-70 z1 � z2 . 1 � z3 Isakov et al. 1995a

z1 ¼ g ¼ d . z3 . z2 ¼ 1 Osman et al. 1996b

z1 . z3 . z2 Zenner et al. 1996c

Shc g ¼ d . z3 ¼ z1 Osman et al. 1996

z1. z3 Zenner et al. 1996

p85 regulatory subunit of PI3K z3 ¼ g ¼ d.z1 ¼ z2 Osman et al. 1996

z1 � z2 . z3 Zenner et al. 1996

Grb2 z1 ¼ g ¼ d Osman et al. 1996

z2 Zenner et al. 1996

Fyn z2 ¼ g ¼ d . z1 Osman et al. 1996

Ras-GTPase activating protein (GAP) z2 � z1 . z3 Zenner et al. 1996

aAll 3 TCRz ITAMs and the CD31 ITAM were tested in this study.
bAll 6 ITAMs (z1, z2, z3, 1, d, and g) were tested in this study. Only the specific ITAMs that physically interacted with the

signaling molecule are listed.
cAll 3 TCRz ITAMs were tested in this study. Only the specific z ITAMs that physically interacted with the signaling molecule

are listed.
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lacking expression of the CD3g, 2d, or 21

chains (Malissen et al. 1995; Dave et al. 1997;
DeJarnette et al. 1998; Haks et al. 1998) or the
z chain (Liu et al. 1993; Love et al. 1993; Malis-
sen et al. 1993; Ohno et al. 1993) were generated.
Analysis of T-cell development in these mice
revealed an important function for CD3g,
CD31, and z in regulating the transition of thy-
mocytes from the CD42CD82 (Double Nega-
tive, DN) to the CD4þCD8þ (Double Positive,
DP) stage, an event known to be controlled by
pre-TCR signaling (von Boehmer 2005). More-
over, each of the invariant TCR subunits was
found to be required for efficient transition
from the DP to the mature CD4þCD82 or
CD42CD8þ (Single Positive, SP) stage, which
is dependent upon abTCR signaling (Sebzda
et al. 1999; Starr et al. 2003). Importantly,
abTCR surface expression was found to be ad-
versely affected in each of the knockout mouse
lines, results that were in agreement with in vitro
studies showing that all of the TCR subunits
are required for proper assembly and surface
expression of the TCR (Klausner et al. 1990).
Although these studies clearly demonstrated
a critical role for CD3g, 2d, 21, and z in
T-cell development, the effects of the gene dele-
tions on TCR surface expression meant that
knockout mice could not be used to directly
evaluate the importance of ITAMs and ITAM-
mediated signaling.

To specifically address the role of TCR
ITAMs in thymocyte development, three groups
reconstituted TCRz knockout mice with trans-
genes encoding wild-type or mutant forms of
z chain lacking one or more ITAMs, either by
deleting individual ITAMs (Shores et al. 1994)
or by mutation of ITAM tyrosines to phenylala-
nine (Ardouin et al. 1999; Pitcher et al. 2005b)
(Table 2). Significantly, all three studies found
that none of the TCRz ITAMs was specifically
required for thymocyte maturation. However,
each study noted that the efficiency of thymocyte
development was decreased in the absence of
one or more z ITAMs, and the severity of the
developmental block correlated with the number
of inactivated ITAMs but not with the loss of any
specific ITAM. A non-essential requirement was
also demonstrated for the CD3g ITAM (Haks

et al. 2002) and CD31 ITAM (Sommers et al.
2000) (Table 2). Together, these results strongly
suggested that TCR ITAMs function collectively
to amplify TCR signals (Love and Shores 2000).

POTENTIAL FUNCTIONS FOR
ITAM-MEDIATED SIGNAL AMPLIFICATION
DURING T-CELL DEVELOPMENT

Recent data indicate that ITAM-mediated signal
amplification may have an important role in
regulating ab/gd T lineage choice during thy-
mocyte development. These experiments were
based on two observations: 1) that ab and gd

T cells originate from a common DN thymocyte
progenitor prior to rearrangement of the TCRa
locus (Petrie et al. 1992), and 2) that direct com-
parison of the signaling responses of the gdTCR
and the abTCR revealed that under equivalent
stimulation conditions, the gdTCR delivers a
stronger signal than the abTCR (Hayes and
Love 2002). Since the pre-TCR is expressed at
much lower levels than the gdTCR on DN thy-
mocytes (Hayes and Love 2006b), this raised
the possibility that the relatively strong signals
transmitted by the gdTCR promote commit-
ment to the gd lineage whereas relatively weak
pre-TCR signals promote ab lineage commit-
ment. This differed from a model proposing
that ab/gd lineage choice is determined before
expression of the gdTCR or the pre-TCR (Kang
and Raulet 1997). The importance of TCR sig-
nal strength in ab/gd lineage choice was tested
in two studies that used an experimental system
where all immature DN thymocytes express a
single transgenic gdTCR (Haks et al. 2005;
Hayes et al. 2005). Attenuation of gdTCR sig-
naling potential by reducing the number of z
ITAMs (Hayes et al. 2005) or by changing the
affinity of the gdTCR-MHC interaction (Haks
et al. 2005) resulted in a diversion from the gd

to the ab lineage supporting the signal strength
model of ab/gd lineage commitment. Con-
sistent with these results, single cell lineage
tracing experiments also demonstrated that
ab/gd lineage choice does not take place prior
to pre-TCR/gdTCR expression (Kreslavsky
et al. 2008).
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A large body of work derived from several
independent laboratories supports the idea
that ITAM-mediated signal amplification plays
a critical role in selection of the mature T-cell
repertoire. In DP thymocytes, productive rear-
rangement of the TCRa locus results in surface
expression of clonally distinct abTCR com-
plexes. To ensure that only those cells that ex-
press TCRs with the appropriate specificities

are allowed to mature, DP thymocytes are sub-
jected to a selection process on the basis of their
TCR specificity for peptideþMHC that pro-
motes the survival and differentiation of func-
tionally competent cells (positive selection)
and triggers the deletion of overtly autoreactive
cells (negative selection) (Sebzda et al. 1999;
Starr et al. 2003). Positive selection is thought
to be mediated by relatively weak non-agonist

Table 2. Roles of ITAMs within the CD31, CD3g, CD3d, and TCRz chains in T-cell development and function

Subunit Experimental approach Effects on development/function References

CD31 Reconstitution of CD312/2 mice
with a transgene encoding a
mutant form of CD31
containing a Y!F substitution
in the distal tyrosine residue of
the CD31 ITAM

.Restores T-cell development to
CD312/2 mice

Sommers et al. 2000

.Impaired proliferative responses
and cytokine responses when
low doses of stimulating
antibody are used

.Defects in survival of T cells
expressing TCRs with low
affinity to self-ligands

CD3g Knock-in lacking the CD3g ITAM .Impaired efficiency of positive
but not negative selection

Haks et al. 2001;
Haks et al. 2002

.Defects in proximal TCR
signaling events

.Proliferative responses and
cytokine responses are
equivalent to those of
wild-type mice

TCRz Reconstitution of TCRz2/2 mice
with transgene encoding
truncated form of TCRz
containing no ITAMs

.Restores T-cell development to
TCRz2/2 mice

Shores et al. 1994;
Love et al 2000;
Ardouin et al.
1999; Pitcher
et al. 2003;
Pitcher et al. 2005

.Defects in selection of
thymocytes expressing TCRs
with low affinity to self-ligands

.Impaired proliferative responses
and cytokine responses when
low concentrations of peptide
are used

Reconstitution of TCRz2/2 mice
with transgene encoding
mutated form of TCRz
containing Y!F substitutions
in all ITAMs.

.Restores T-cell development to
TCRz2/2 mice

.Defects in selection of
thymocytes expressing TCRs
with low affinity to self-ligands

All RAG12/2 mice reconstituted
with CD3- and TCRz-deficient
bone marrow transduced with
retroviral vectors encoding
ITAM-mutant CD3 and TCRz
chains

.Restoration of T-cell
development requires the
expression of at least 7 ITAMs

Holst et al. 2008

.Impaired proliferative responses

.Autoimmunity is observed when
two to six ITAMs are expressed
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peptides (Hogquist et al. 1994; Santori et al.
2002) indicating that amplification of TCR sig-
nals generated from such interactions may be
especially important for positive selection.
Consistent with this notion, positive selection
was found to be markedly impaired in z-
deficient mice reconstituted with transgenes
encoding ITAM mutant z chains (Shores et al.
1994; Ardouin et al. 1999; Pitcher et al. 2005b).
Moreover, in each of these model systems, the
extent to which positive selection was compro-
mised was directly related to the number of z
ITAMs that had been deleted or inactivated.
Interestingly, analysis of positive selection using
different abTCR transgenes demonstrated the
number of TCR ITAMs that were required for
positive selection was dependent upon the pre-
sumed affinity of the TCR for its selecting self
ligand. DP thymocytes expressing TCRs that
are thought to bind to self peptideþMHC
with relatively high affinity could be positively
selected even if several z ITAMs were deleted,
whereas positive selection of thymocytes ex-
pressing relatively low affinity TCRs required
all 10 TCR ITAMs (Love et al. 2000). Thus, the
requirement for ITAM-mediated signal ampli-
fication was most clearly evident under con-
ditions where positive selection was induced
by weak TCR-ligand interactions.

ITAM-MEDIATED SIGNAL AMPLIFICATION
AND CENTRAL TOLERANCE

The discovery that TCR ITAM multiplicity
was important for positive selection raised the
question of whether negative selection is also
compromised when the number of TCR ITAMs
is reduced. The effect on negative selection
of mutating or removing one or more of the z

ITAMs was examined in two of the three exp-
erimental models described above. In both
cases, negative selection was found to be com-
promised when the number of z ITAMs was
reduced (Shores et al. 1997; Love et al. 2000;
Pitcher et al. 2005a). Similar to the effects on
positive selection, the impact on negative
selection was directly related to the number
of ITAMs that were eliminated. Importantly,
although potentially auto-reactive T cells were

generated in these mice, no overt signs of
autoimmune disease were observed. The
absence of autoimmune disease in z ITAM
mutant mice is consistent with the hypothesis
that the reactivity of T cells is “tuned” during
thymocyte selection through the regulated
expression of compensatory molecules such as
CD5 which function to modulate the integrated
TCR signaling response (Grossman and Singer
1996; Azzam et al. 2001; Wong et al. 2001;
Saibil et al. 2003). However, a recent report
has challenged this concept of thymocyte selec-
tion (Holst et al. 2008). In this study, retrovirus
encoded wild-type or ITAM mutant CD3g,
2d, 21, and z chains (termed retrogenics)
were used to reconstitute bone marrow cells
from CD312/2, z2/2, or CD312/2 x z2/2

mice. In these experiments, mice in which
T-cell development was reconstituted with con-
structs that yielded fewer than seven functional
ITAMs per TCR developed a lethal, multi-organ
autoimmune disease that was attributed to fail-
ure of central tolerance (Table 2). The reason for
the striking discrepancy between these results
and those of prior studies are presently unclear
but may relate to the different experimental
systems employed. A potential drawback of
all three studies is that transgenic or retrogenic
reconstitution does not replicate endogenous
gene expression. Notwithstanding, these new
results, which imply that genetic or environ-
mental changes that attenuate TCR signaling
in preselection thymocytes can result in failure
of central tolerance, call for additional studies
to resolve this important issue.

CONCLUDING REMARKS

Research over the past two decades since the
discovery and initial characterization of ITAMs
has served to substantially advance our under-
standing of the mechanisms by which ITAMs
function to initiate signaling by the TCR. Cur-
rently, the preponderance of data support the
idea that the multiple TCR ITAMs function
mainly to amplify TCR signals and suggest
that this capacity for signal amplification is
especially critical for selection of the T-cell rep-
ertoire. Data generated from experiments in
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which the number of ITAMs per TCR are
reduced have yielded conflicting results regard-
ing the effects of these alterations on central tol-
erance and the risk for autoimmune disease.
Because these findings impact our basic under-
standing of thymocyte selection, it will be
both important and worthwhile to establish
more physiologically appropriate models, such
as “knockin” mutations to resolve this issue.
Experiments revisiting the question of whether
individual TCR ITAMs selectively bind to pote-
ntial downsteam effectors are also overdue and
are especially promising as they may yield new
insights into the “raison d’être” for the multiple
ITAM configuration of the TCR complex.
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