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SUMMARY

The relationships between the inhaled dose of foot and mouth disease virus and the outcomes

of infection and disease were examined by fitting dose-response models to experimental data.

The parameters for both the exponential and beta-poisson models were estimated using

maximum likelihood and Bayesian methods. The median probability of infection given a single

inhaled TCID
&!

was estimated to be 0±031 with 95% Bayesian credibility intervals (CI) of

0±018–0±052 for cattle, and 0±045 (CI¯ 0±024–0±080) for sheep. These estimates were used to

construct dose-response curves and uncertainty distributions for use in quantitative risk

assessments.

INTRODUCTION

An understanding of the relationship between dose,

infection and disease is an essential component of

quantitative microbial risk assessments (MRAs).

Indeed, in the area of food safety MRA, there has

recently been an extensive amount of research which

focuses on how best to represent this relationship

mathematically. Such research has resulted in the

production of guidelines which outline key theoretical

features of dose response modelling (WHO}FAO

Guidelines on hazard characterization for pathogens

in food and water. Available at http:}}www.fao.org}
ES}esn}pagerisk}mra006.pdf). These features are ap-

plicable to any area of risk assessment where infection

or disease is the required end-point.

The relationship between virus dose and the

likelihood of infection has often been referred to in

publications on foot and mouth disease (FMD) [1–3].

* Author for correspondence.

In common with other viruses, the amount of FMD

virus in a sample is frequently measured in units of

ID
&!

(infectious dose 50). A single tissue culture ID
&!

(TCID
&!

) is the amount of virus that will infect 50%

of tissue cultures, whereas a single mouse ID
&!

(MID
&!

) will infect 50% of inoculated mice. Both are

assumed to be directly proportional to the number of

infectious virus particles in the sample. A frequently

used concept is that of the minimum infectious dose

(often given in ID
&!

s) often defined as the minimum

amount of virus required to cause disease. By

implication, exposure to doses below this quantity will

not result in disease, whereas doses above this will,

with increasing probability, result in infection and

disease [1, 4]. However, the experiments used to

determine the putative minimum infectious dose are

often carried out on small numbers of animals [5, 6].

The probability of at least one animal in a group

becoming infected is not only dependent on the virus

dose, but also on the sample size ; the larger the

sample size, the greater the probability that at least
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one animal will become infected. It is highly likely,

therefore, that the minimum infectious doses reported

in the literature, refer to doses with a low probability

of causing infection and}or disease and it is likely that

even smaller doses could result in infection in larger

populations.

The relationship between dose and response for

FMD was further developed by Sutmoller and Vose

[3] and Cannon and Garner [7] who proposed

deterministic models of the relationship between dose

and infection based on probabilistic arguments and

‘single hit theory’ models of dose-response. Their

models are deterministic in that they do not include a

description of the uncertainty associated with the

dose-response parameters. In reality, however, these

parameters are likely to be uncertain, as a result of, for

example, the small sample sizes used to obtain the

experimental data. In this paper we consider the

importance of uncertainty by extending the work of

these authors. In particular, we fit stochastic models

to data published in the literature with the aim of

parameterising a dose-response curve for FMD in

cattle and sheep exposed by inhalation. The recent

major epidemic of FMD in the UK underlined the

need for appropriately parameterised models to aid

decision making and guide policy; an understanding

of the relationship between exposure dose and the

probability of infection and disease is an important

contribution to model-based risk assessments.

METHODS

Raw data on the relationship between virus dose

(measured in TCID
&!

s) and infection and disease

were taken from the papers by Donaldson et al. [5]

and Gibson and Donaldson [6]. In the study by

Donaldson et al. [5], 33 calves in two separate

experiments were exposed to natural and artificial

aerosols of two strains of FMD virus (O
"

BFS 1860

and SAT 2 SAR 3}79) and the dose received by each

calf was estimated. In the study by Gibson and

Donaldson [6], 24 sheep were exposed to aerosols of

FMD virus strain O
"

BFS 1860. An animal was

defined as ‘ infected’ if it either sero-converted or virus

was recovered in oesophageal-pharyngeal fluid. We

have defined an animal as ‘diseased’ if it became

viraemic and}or developed lesions.

The dose–response relationship was explored by

fitting two models ; the exponential and beta-poisson

models [8, 9].

Exponential model:

P
inf/dis

(D ; r)¯ 1®e−rD (1)

Where 1®e−r is the probability of infection or disease,

P
inf/dis

, given a single unit (TCID
&!

) of infection and D

is the dose. This is the most commonly used ‘single-

hit ’ dose-response model which assumes that all

organisms are independent and have the same

probability of initiating infection}disease.

Beta poisson model:

P
inf/dis

(D ; α, β)¯ 1®
E

F

1
D

β

G

H

−α

(2)

Where α and β are parameters of the beta distribution

which describes the assumed heterogeneity in the

probability of any individual organism initiating

infection}disease in any host.

Two methods were used to fit the models and esti-

mate parameters : Maximum likelihood and Bayesian

methods (see Appendix for details). The latter pro-

vides posterior distributions of the parameters r, α and

β. The prior used for the parameter ‘r ’ in the expo-

nential model was an exponential (parameter¯ 1)

distribution.

RESULTS

Dose and infection in cattle

The parameter ‘r ’ in the exponential model was

estimated to be 0±030 using maximum likelihood

methods and the median of the Bayesian posterior

distribution was 0±032 with 95% credibility intervals

(CI) of 0±018 to 0±054 (Table 1). Thus the probability

of infection given a single TCID
&!

(1®e−r) was

estimated to be 0±031 (95% CI¯ 0±018–0±052). The

posterior distribution for the parameter is described

well by a shifted gamma distribution with a shape

parameter of 9±33, a scale parameter of 0±0030 and a

shift of 0±0053 (Fig. 1). The predicted dose-response

curve for model 1 with 95% credibility intervals is

given in Figure 2. The maximum likelihood estimates

of the parameters for the beta-poisson model were

α¯ 9±4 and β¯ 288 giving an estimated probability of

infection given a single TCID
&!

of 0±03. However, a

plot of the likelihood as a function of α and β reveals

a long ridge, the top of which is almost level. This

means that a wide range of (α, β) values, along the top

of this ridge, have likelihood values almost indentical

to that of the maximum likelihood estimates, and so
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Table 1. The maximum likelihood and Bayesian estimates of the

parameter ‘ r ’ in the exponential dose-response model for Foot and Mouth

Disease in cattle and sheep

Model

Maximum

likelihood

estimate

Bayesian

posterior

median

95% Bayesian

credibility

interval

Cattle : dose-infection 0±0301 0±0321 0±0183–0±0539

Cattle : dose-disease 0±00078 0±00082 0±00047–0±0013

Sheep: dose-infection}disease 0±0422 0±0465 0±0240–0±0839

Fitted gamma distribution

Posterior distribution
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Fig. 1. Posterior distributions for the parameter ‘r ’ (the probabilities of infection and disease given exposure to a single

TCID
&!

) for cattle and sheep.
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Fig. 2. The relationship between dose and response (infection and disease) in cattle and sheep for inhalation of FMD from

an exponential model. The plots show the Bayesian posterior estimate with 95% credibility intervals. The diamonds show

the raw data with the symbol size varying according to the number of animals exposed to each dose (range 1–5).

are almost as plausible as parameter estimates. Thus

there is a great deal of uncertainty associated with the

parameter estimates, and credibility intervals would

be very wide. In fact, when trying to fit this model to

the data by Markov chain Monte Carlo methods in

order to compute credibility intervals, the algorithm

failed to converge. On the other hand, the likelihood

ridge is aligned in the direction in which α}β is

constant, which means that although neither α nor β

can be estimated with any great precision, we can be

more confident of our estimate of the ratio α}β, the

maximum likelihood estimate being α}β¯ 0±03. As a

first order approximation, the probability of infection

given a single TCID
&!

for the beta-poisson model is

given by precisely this ratio.

Dose and disease in cattle

The parameter ‘r ’ in the exponential model was

estimated to be 7±8¬10−% using maximum likelihood

methods and the median of the Bayesian posterior

distribution was 8±2¬10−% with 95% CI of

4±7¬10−%–1±3¬10−$ (Table 1). The posterior dis-

tribution was well described by a shifted gamma

distribution with a shape parameter of 14±8, a scale

parameter of 5±6¬10−& and a shift of 7±3¬10−' (Fig.
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1). Given the low value of ‘r ’ this is equivalent to the

probability of disease given exposure to a single

TCID
&!

(i.e. rC 1®e−r). The estimated dose-response

curve is shown in Figure 2. On inspection the model

seemed to provide a poor fit to the data; the relatively

high probability of disease for low doses was not well

described by the exponential model. The maximum

likelihood estimates of the parameters for the beta-

poisson model were α¯ 0±097 and β¯ 0±02 giving an

estimated probability of infection given a single

TCID
&!

of 0±32. However, as in the case of the dose-

infection data, the likelihood surface consists of a long

ridge of almost equally plausible (α, β) values, and in

this case the ridge is not aligned in the direction in

which α}β remains constant. Thus not only are the

estimates of α and β separately likely to be unreliable,

but so is the estimate of their ratio, and hence of the

probability of infection given a single TCID
&!

. The

estimate of this probability also seems biologically

inconsistent because it is 10 times greater than the

probability of infection given a single dose.

Dose response (infection and disease) in sheep

In this study 24 sheep were exposed to varying doses

of virus, of which all infected animals became

diseased. It was therefore not possible to distinguish

between infection and disease in this species. The

parameter ‘r ’ in the exponential model was estimated

to be 0±042 using maximum likelihood methods and

the median of the Bayesian posterior distribution was

0±047 with 95% credibility intervals (CI) of 0±024 to

0±084 (Table 1). The equivalent estimate for the

probability of infection and disease given a single

TCID
&!

was therefore 0±045 (95% CI¯ 0±024–0±080).

The posterior distribution was well described by a

shifted gamma distribution with a shape parameter of

6±86, a scale parameter of 0±0058 and a shift of 0±0081

(Fig. 1). The estimated dose-response curve is shown

in Figure 2. As with the cattle data, fitting the beta-

poisson model to these data results in a likelihood

surface with a wide range of almost equally plausible

(α, β) values, so that maximum likelihood estimates

cannot be relied upon and any estimate of the

probability of infection given a single TCID
&!

will

have a great deal of uncertainty associated with it.

DISCUSSION

The relationship between the dose of FMD virus and

the response, in terms of infection and disease, is an

important component of many model-based risk

assessments of the spread of this disease in animal

populations [1, 7, 10, 11]. Frequently, single estimates

of the ‘minimum infectious dose’ are used to

determine cut-off points for infection and disease,

with the implication that infection will not occur at a

lower dose. This approach was challenged by Sut-

moller and Vose [3] who used a more probabilistic

argument to determine the relationship between oral

dose of FMDV and infection in pigs. Likewise

Cannon and Garner [7] used a similar method to

estimate the response to inhaled FMDV in cattle and

sheep. In these studies ‘single hit ’ models were used to

calculate the probability that a single infectious unit

would initiate an infection. From these estimates the

authors calculated the probability that at least one

animal in a group would be infected by a given dose.

This requires the fundamental assumption that each

infectious unit has a non-zero probability of initiating

an infection. Although these methods are based on

probabilistic arguments, they do not provide any

estimate of the variation around the single deter-

ministic values and are therefore of limited value in

stochastic risk assessments. The present study has

developed the arguments further by fitting stochastic

microbial dose-response models to the same exper-

imental data used by Cannon and Garner [7]. This

allows us to estimate the relationship between inhaled

dose and the probability of infection and disease with

an estimate of the uncertainty surrounding these

values.

Two models were fitted to experimental data; the

exponential and beta-poisson model. Both are widely

used in microbial quantitative risk assessments [8, 9]

to model the relationship between the dose of a

pathogen and the probability of infection using

experimental and observational data. The former is an

extension of the basic ‘hit theory’ model in which the

pathogen is assumed to follow a poisson distribution

in the inoculum and the latter allows for heterogeneity

in response between individuals. The methods used

here have a number of advantages over simple

deterministic calculations ; they allow uncertainty in

parameter estimates to be represented by probability

distributions and extrapolation to estimate the risk

from low-dose exposures. However, as with all model-

based approaches, the model assumptions need to be

considered. Arguably the most important is the

fundamental assumption that a single TCID
&!

, and by

implication a single virus particle, has a non-zero

probability of initiating infection. Furthermore, we
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also make the assumption that all virus particles have

the same independent probability of initiating in-

fection and this probability does not change with

dose. To date we do not have the experimental data to

test these assumptions although, arguably, they are

more plausible than assuming a simple cut-off mini-

mum infectious dose.

Using the exponential model, the maximum like-

lihood estimate of the probability of infection in cattle

and sheep (defined as sero-conversion and}or recovery

of virus from oesophageal}pharyngeal fluid) with

a single inhaled TCID
&!

, was between 3% and

5% – similar to those reported by Cannon and

Garner [7]. Although there is considerable overlap of

the uncertainty distributions for dose-infection in

cattle and sheep, there appears to be a marked

difference in the probability of becoming viraemic and

developing lesions; cattle have a much lower prob-

ability of developing disease (and presumably trans-

mitting infection to other animals) than sheep.

Simply using the minimum infectious doses reported

in the literature in disease spread and risk assessment

models fails to recognise the important difference

between cattle and sheep and could result in an

underestimate of the risk of infection and disease from

low-dose exposure [4].

In this study it was not possible to provide

appropriate estimates of the parameters in the beta-

poisson model. The difficulty in fitting this model to

the data arises because none of the three likelihood

surfaces has a single isolated peak, but rather a long

ride of (α, β) values which are all almost equally

plausible as parameter estimates. This suggests that

the beta-poisson model is not an appropriate model of

the relationship between dose and response for

FMDV and}or there are insufficient data to estimate

the parameters. Considering the small number of

animals exposed to each dose, the experimental model

appeared to describe the dose-infection relationship

APPENDIX

Exponential model : P(D ; r)¯ 1®e−rD

Obtaining the maximum likelihood (MLE ) estimate of ‘r ’

Suppose we have observations at j different doses. For i¯ 1, 2, … , j, denote by N
i
the number of individuals

exposed to dose D
i
, and by Y

i
the number to become infected}diseased. Then given r, the distribution of Y

i
is

Binomial with parameters N
i
, 1®e−rDi. Hence the likelihood is

L(r ;Y
"
, Y

#
, … , Y

j
)¯ 0

j

i="

1

2
3

4

E

F

N
i

Y
i

G

H

(1®e−rDi)Yie−rDi(Ni−Yi)

5

6
7

8

,

for cattle and sheep reasonably well. However, the

fitted dose-disease curve for cattle appeared to

underestimate the probability of infection for low

doses and was not, on visual inspection, a good

description of the data. This could result from a more

complex relationship between the conditional prob-

ability of disease given infection for different exposure

doses and requires further investigation.

The data were produced by controlled experiments

in which animals were subjected to varying doses of

virus over a short period of time (5–15 min). The

dose-response relationship for longer periods of

exposure has not been determined and the cumulative

effects of multiple exposures has not been considered

in this study. The uncertainty distributions presented

in this paper represent the uncertainty around the

parameters r, α and β and reflect both the variation in

response to estimated doses of FMDV and the sample

size. A more complete assessment of the uncertainty

would need to consider error in the estimation of

exposure dose (e.g. variation in tidal volumes, air flow

rates and aerosol sampling) and response (e.g. the

sensitivity and specificity of diagnostic tests) [5, 6].

By fitting stochastic models to experimental data we

have provided more informative estimates of the

relationship between virus dose and FMDV infection

in cattle and sheep. Given available data this approach

can be extended to include other species and other

routes of infection. Provided the assumptions are

carefully considered, the outputs can be of con-

siderable value in assessing the risk of infection and

disease under different scenarios.

ACKNOWLEDGEMENTS

The authors would like to thank DEFRA for funding

this work.



331Dose response for foot and mouth disease

and the log-likelihood is

l(r ;Y
"
, Y

#
, … , Y

j
)¯ 3

j

i="

1

2
3

4

ln

E

F

N
i

Y
i

G

H

Y
i
ln(1®e−rDi)®rD

i
(N

i
®Y

i
)

5

6
7

8

.

To find the maximum likelihood estimate of r we therefore need to maximize numerically the function

l
"
(r)¯ 3

j

i="

Y
i
ln(1®e−rDi)®r 3

j

i="

D
i
(N

i
®Y

i
).

Estimating the posterior distribution of ‘ r ’

We took the prior distribution for r to be exponential with mean 1, so that the prior density for r is f(r)¯ e−r

for r" 0. Bayes’ Theorem then yields that the posterior density of r satisfies

f(r rY
"
, Y

#
, … , Y

j
)£ e−rL(r ;Y

"
, Y

#
, … , Y

j
)£ e−r 0

j

i="

²(1®e−rDi)Yie−rDi(Ni−Yi)´.

In order to compute the posterior distribution, we need to know the constant of proportionality in the above

relationship, which we can determine using the condition

&
¢

!

f(r rY
"
, Y

#
, … , Y

j
) dr¯ 1. (A1)

In practice, intermediate calculations are carried out using the log of the posterior distribution,

ln( f(r rY
"
, Y

#
, … , Y

j
))¯K®r 3

j

i="

Y
"
ln(1®e−rDi)®r 3

j

i="

D
i
(N

i
®Y

i
),

where the constant K is to be determined. Note also that although the condition (A1) requires a numerical

integration to be carried out for r values over the range [0, ¢], in reality the value of the posterior density drops

to zero rapidly as r increases. For instance, in the case of dose-infection for cattle, we can see from Figure 1 that

it is quite sufficient to evaluate the integral over the range [0, 0.1].

Beta poisson model : P(D ; α, β)¯ 1® E

F
1D

β

G

H
−α

Obtaining the maximum likelihood (MLE) estimates of ‘α ’ and ‘β ’

The likelihood in this case is

L(α, β ;Y
"
, Y

#
, … , Y

j
)¯ 0

j

i="

1

2
3

4

E

F

N
i

Y
i

G

H

E

F

1®
E

F

1
D

i

β

G

H

−α G

H

Yi
E

F

1
D

i

β

G

H

−α(Ni−Yi)
5

6
7

8

.

Taking logs, we find that maximizing the likelihood is equivalent to maximizing the function

l
"
(α, β ; Y

"
, Y

#
, … , Y

j
)¯ 3

j

i="

Yi ln

E

F

1®
E

F

1
D

i

β

G

H

−α G

H

®α 3
j

i="

(N
i
®Y

i
) ln

E

F

1
D

i

β

G

H

,

and hence we can compute numerically maximum likelihood estimates of α and β.
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