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SUMMARY

We aimed to provide a quantitative description of decay in pertussis antibody levels to aid in

finding a serological estimate of the incidence of pertussis. The serum IgG response against

pertussis toxin was studied in a group of clinically diagnosed patients. Individual records

consisted of repeated serum IgG measurements at irregular intervals for up to 10 years post

diagnosis. These data were analysed with a nonlinear regression model taking into account

censoring at upper and lower threshold levels, measurement errors, and individual variation in

the shape and magnitude of the immune response. There was considerable variation between

individual responses, both in strength (amplitude) and duration (shape). The inverse model

relating IgG levels to time from infection (diagnosis) can be applied to cross-sectional IgG data

to generate distributions of times from infection, which may be used to calculate infection rates

and their variation, in populations sampled for cross-sectional IgG data.

INTRODUCTION

Pertussis (whooping cough) is an infection of the res-

piratory tract caused by the highly contagious bac-

terium Bordetella pertussis. Despite high vaccination

coverages, B. pertussis is still circulating in the Dutch

population. Notification data show that most symp-

tomatic cases occur among vaccinated children aged

4–9 years [1]. However, symptoms are most severe

among infants who are too young to be vaccinated. In

order to protect this group at risk it is important to

determine which people are most likely to transmit

infection to newborns. We aimed to identify those

age groups in the population in which most of the

circulation of B. pertussis takes place. The age profile

of notified cases may not reflect the age distribution of

infection with B. pertussis because the case/infection

ratio is probably higher in younger age groups [2]. It

was necessary to determine the infection rates in each

age category, rather than notification rates.

In response to an infection, IgG titres typically show

a rapid increase, followed by a steady, slow decline

over a long period (several years) [1, 3–9]. Also IgG-PT

induced after three or four doses of acellular or whole

cell pertussis vaccine in the first year of life declines

rapidly, mostly within one year, to low levels [10, 11].

Therefore, it is likely that in individuals in whom

the last vaccination with pertussis vaccine has been

administered more than one year ago, the finding of* Author for correspondence.
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moderate or high levels of IgG-PT indicates infection

withBordetella pertussis. Because themagnitude of the

IgG-PT level is inversely related to time elapsed since

infection, this suggests that in a patient with a given

response, time from infection can be estimated from

IgG levels.

If this approach to estimating times from infection

were feasible, cross-sectional studies of IgG-PT-levels

could be used to estimate the incidence of infection,

independent of case notification. This requires quan-

titative characterization of the IgG-PT-response to

pertussis, inclusive of its variation among individual

patients.

We used data from an ongoing long term follow-up

study in which blood samples were taken at irregular

intervals from patients with clinically and serologically

confirmed pertussis. At present, this study comprises

85patientswith follow-up times ranging from6months

to 11 years. Numbers of samples were unequally dis-

tributed among patients. In an earlier report on the

first 57 patients in this longitudinal study it was shown

that despite large variation in responses the general

pattern appeared to be a rapid increase in antibody

levels followed by a slow decrease.

We tested several mathematical functions for their

ability to fit these observed changes in IgG-PT levels

with time. Here we present results of this analysis,

taking into account censoring at upper and lower

threshold levels, measurement errors, as well as indi-

vidual variation in the shape and magnitude of the

IgG-PT immune response.

The selected model describes a functional relation-

ship between time since last infection and level of anti-

body titre. The model was applied to a cross-sectional

population based study of IgG-pertussis antibody

titres, permitting estimation of a distribution of in-

fection dates for individuals in this population. Such

model-based age-specific distributions of times since

infection assist in identifying those age groups inwhich

circulation of B. pertussis is most prevalent.

METHODS

Data used

During the period 1989–2000, a collection of follow-up

serum samples was obtained from 85 patients clinically

diagnosed with pertussis (paroxysmal cough lasting

more than 2 weeks) in whom the clinical diagnosis had

been confirmed by the finding of an IgG-PT level of

75 U/ml in the first or the second serum obtained in

the symptomatic stage. The specificity of IgG-PT of

75 U/ml as an indicator of recent infection with

B. pertussis has been estimated to be >97.5% while

the sensitivity was around 80% [1]. For participation

in this study a minimum follow-up period of 3 months

was required.

In one of the participating patients a second symp-

tomatic infection with B. pertussis occurred 7 years

after the first, confirmed by positive pertussis PCR and

a strong rise of IgG-PT. For analysis in this study we

considered this record to be two patients : the first one

connected to the first episode of pertussis and its fol-

low-up until the last sampling before the second epi-

sode, and one connected to the second episode and the

follow-up thereafter. Thus, in 85 patients, 86 episodes

of pertussis and the course of IgG-PT thereafter were

analysed. Recently, an additional three patients ap-

peared to be re-infected [12]. These were not included

in the present analysis.

The follow-up period ranged from 6 months to 11

years and the number of serial sera per patient ranged

from 2 to 11. The age distribution of the patients is

given in Figure 1. Most were children between 0.5 and

17 years of age (69/86). Eleven infants were less than 6

months old at the time they contracted pertussis. Also

includedwere six adultswith ages ranging from30 to 41

years. Vaccination status as reported by the physician

at the time of onset of pertussis was in 1 of 4 categories :

negative, incomplete (1 or 2 vaccinations), complete

(3 or 4 vaccinations) or unknown. Four infants whose

vaccination had not been completed at the time of

pertussis were vaccinated shortly thereafter. We there-

fore decided to use five categories of patients : infants

(0–0.5 years) vaccinated after infection (4) ; infants not

vaccinated after infection (7) ; vaccinated juveniles

(0.5–20 years) (62) ; unvaccinated juveniles (7) and

adults (6). These subgroups were analysed separately.
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Fig. 1. Age distribution of patients.
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Only changes in the highly specific anti-pertussis

IgG-titres were analysed. Titres were determined by

enzyme-linked immunosorbent assay (ELISA) [11, 13],

and expressed in arbitrary units (‘dutch units per

ml’). In Figure 2 all measurements from all included

patients are shown. Reproducibility of measure-

ments was checked according to Standard Operating

Procedure (SOP: coefficient of variation in log-

transformed readings from three control sera (low,

medium and high titre) less than 20%). For quantitat-

ive analysis, the scatter in these measurements there-

fore was considerable.

Below 5 U/ml the ELISA test is considered insen-

sitive, therefore 5 U/ml was interpreted as 5 U/ml or

less. Serial dilutions were used to an upper limit cor-

responding to a concentration of 500 U/ml: a value

of 500 U/ml was therefore interpreted as 500 U/ml or

higher.

Each patient record started with the time the first

symptoms occurred. Strictly speaking, we did not

estimate times from infection, but times from first

symptoms (or even first diagnosis). Since incubation

periodsmay showvariationamong individual patients,

individual responses could have been slightly offset

relative to each other.

Response model

During the decreasing phase, the change in IgG titre

with time appeared to be less steep than an exponential

decay function. In a log–log graph, an exponential

relation is a convex function with increasing negative

slope with log-time. Our data did not seem to indicate

such behaviour. Instead, in a log–log graph, decay

appeared to be more or less linear (Fig. 2). This called

for a power function as a model, which on a log–log

scale would be a straight line with arbitrary slope.

However, observations were taken at random points

in time, usually starting somewhere during the rising

phase of the response. Fitting a straight line to the log–

log transformed data, as reported by de Melker [14],

only accounted for the decaying phase of the response,

and required omission of these initial observations.

Since there was no clearly defined criterion by which

observations would be excluded, we chose to use a

response model that included the initial rising phase.

Let g t; hð Þ denote the IgG-response on a linear

scale, and f (j; h) its log10 as a function of log time j=
log10 tð Þ with parameter vector h

f j;hð Þ=d+c j+b 1x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1+

j2

a

s0
@

1
A

2
4

3
5 ð1Þ

is a skewed hyperbola with linear asymptotes with

arbitrary slopes for j ! x1 and j ! 1, respect-

ively, and parameter vector h=(a, b, c, d ). For j !
x1 and j ! 1 this function approaches the

asymptotes

lim
j!�1

d+bc+cj 1t
bffiffiffi
a

p
� �

xf j; hð Þ=0: ð2Þ

The parameter d can be interpreted as the amplitude of

the response, and the parameter a mainly determines

the long-term decrease of the response.

Figure 3 illustrates the shape of this function, in a

non-transformed (lin–lin) graph to show the very slow

decline with time.

Model-fitting procedure

The response model [equation (1)] can be used to cal-

culate expected values of the logarithm of the IgG titre.
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(a) log–log graph of IgG-PT follow up
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Fig. 2. Data set of log-transformed IgG-values against log
time (in days) from all patients diagnosed at time 0 with
symptomatic infection by Bordetella pertussis. Individual

responses are connected, and log-transformed responses of
vaccinated juvenile patients against log-time, after appli-
cation of a smoothing kernel (moving average, bandwidth as
in inset), showing linear increase and decrease.
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Assuming normally distributed measurement errors,

with standard deviation s, the log-likelihood function

can be written as

L1 h, sð Þ=
X
i

log w½Xi; f Ji; hð Þ; s�ð Þ

+
X
j

log W½Yj ; f Jj; h
� �

; s�
� �

+
X
k

log 1xW½Zk; f Jk; hð Þ; s�ð Þ ð3Þ

with w½Xi; f Ji; hð Þ, s� a normal probability density

function (expected value f Ji; hð Þ, standard deviation

s) for the contribution of a measured log-titre Xi

at log-time Ji. For a log-titre Yj equal to, or below the

lower measurement threshold, the contribution is

given by the cumulative normal distribution function

W½Yj ; f Jj; h
� �

, s�. For a measurement Zk equal to or

above the upper threshold, the appropriate contri-

bution is 1xW½Zk; f Jk; hð Þ, s�. In our case the lower

threshold in the ELISA test was 5 U/ml, and the upper

threshold was 500 U/ml. Parameter values of the re-

sponse model (a, b, c, d) and the error of the detection

method would be determined using this likelihood

function.

Initially, our responsemodel was fitted to the pooled

data, neglecting individual variation. In this 1-level

model measurement error was the only possible source

of uncertainty. In order to assess variation in responses

among individual subjects we would have fitted our

model to the measurements of each individual re-

sponse, thereby generating sets of parameters hi, sið Þ
for every individual i in the population. But since

individual responses often consisted of only a few

measurements, we decided to allow only one or two

parameters to vary among individual subjects. Leaving

aside the measurement error parameter s, fitting a

model equation with four parameters to a population

of n subjects thus generates n+3 parameter values (or

2n+2, where two parameters vary among individual

responses), when 3 (2) parameters are equal for all

subjects, and n (2n) estimates for the (third and) fourth

parameter to describe variation among subjects.

In our response model in equation (1), the par-

ameters d describing the vertical offset on a log-scale

(or the amplitude of the response), and a describing

the shape of the response could be employed to model

variation among individuals ; the parameters b and c

were shared by the whole population. The parameter s

(the measurement error) was assumed to be indepen-

dent of the individualwhose serumwas being analysed.

Therefore, our final model included individual

variation in both a and d, leaving us with a set

fða1, . . . , anÞ, b, c, ðd1, . . . , dnÞ, sg to be determined

by optimization of the likelihood function

L2½ a1, . . . , anð Þ, b, c, d1, . . . , dnð Þ, s�

=
Xn
i=1

L1 ai, b, c, di, sð Þ: ð4Þ

In order to avoid cumbersome likelihood optimiz-

ation procedures this two-level model was analysed

by a Markov chain Monte Carlo (MCMC) method,

using the Metropolis–Hastings algorithm [15]. Par-

ameters were log-transformed, initial values were set

at the values found for the one-level model (individual

values for log(ai) and log(di) all equal) and prior dis-

tributions for the log-transformed parameters were

uniform probability distributions with an interval of

(x3, +3) log-units about the initial value (wider in-

tervals were checked and did not produce different

results). For each iteration in the Markov chain the

likelihood value was tabulated. The model was then

allowed to run for about 10 000 iterations and a trend

test was used to confirm stationarity of the series of

likelihood values (equal means in successive bisections

of the series). The iteration with the highest likelihood

value was then chosen from this set of likelihood values

L̂2½ðâ1, . . . , ânÞ, b̂, ĉ, ðd̂ 1, . . . , d̂ nÞ, ŝ�
= max

j21, ... ,m
L2½ða1, j, . . . , an, jÞ, bj, cj ,

d1, j, . . . , dn, jÞ, sj�: ð5Þ
�

This was taken as an approximation of the true maxi-

mum likelihood parameter set. When the resulting

response functions were plotted against separate
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Fig. 3. Representative individual response curves generated
by the model in equation (1), fitted to data from vaccinated
juvenile patients. These curves illustrate characteristics of

the responses : rapidly rising titres, followed by very slow
decrease, and variation in both levels and steepness of the
curves.
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individual observed responses, this seemed to be a

reasonable assumption. The likelihood values also

appeared to fall well below the values found for the

one-level model and those of alternative two-level

models with either a or d varying among individuals.

Compared to a ‘ likelihood supremum’ obtained by

using the observed tires instead of the model function

(using the measurement error from the fitted model) a

significant improvement in goodness of fit was found

(likelihood ratio tested against x2 deviate). This can be

explained by the apparent lack of fit early in the re-

sponses (Fig. 5a). It should be noted that when indi-

vidual responses were fitted, each response curve was

based mostly on only a few (sometimes as few as three)

observations. Therefore, the x2 approximation of the

deviance function should be treated with caution.

For a sequence of log-times 5, 50 and 95% per-

centiles were determined for these maximum likeli-

hood fits. The median curve was used to describe the

time–titre relation, while the 5 and 95% percentiles

indicated the magnitude of the variation among mem-

bers of this population.

In addition to the maximum likelihood estimates,

the Monte Carlo method provided information on

parameter uncertainty, as the Markov chains for all

parameters could be regarded as a sample from their

joint posterior distribution.

Patients were categorized according to age (adults

older than 20 years, infants younger than 6 months,

and juveniles older than 6 months and younger than

20 years) and vaccination status (unvaccinated and

vaccinated). To test whether the two categories could

be merged, given a certain regression model, a likeli-

hood ratio test was used as follows: first, calculate

maximum likelihood values for each separate data

category (sayLaandLb). Then, pool the data andmaxi-

mize the likelihood for the merged data (yielding a

log-likelihood Lab). The difference x2(LabxLaxLb)

would now be tested against a x2 variate with degrees

of freedom equal to the number of parameters of the

regression model [16]. Various combinations of cat-

egories were tested using this method.

RESULTS

Table 1 summarizes the results of application of the

two-level model to the various patient categories (age,

vaccination status). In Table 2 results of the likelihood

ratio test for merging various combinations of cat-

egories are given. None of the response categories

Table 1. Maximum log-likelihoods for the two-level model applied to

separate patient categories

No.
patients

One-level Two-level

No. par* x2 log(L) No. par x2 log(L)

Juv, vacc 62 5 536.4 127 434.0
Juv, unvacc 7 5 48.9 17 33.6

Adults 6 5 25.0 15 6.6
Infants, vacc 4 5 10.5 11 0.5
Infants, unvacc 7 5 44.5 17 4.6

* No. par=number of parameters.

Table 2. Maximum log-likelihoods for joint categories, and differences D[x2 log(L)] with separately fitted

model. The last column shows the significance of the difference (likelihood ratio test, as explained in the text,

model fitting procedure) at the 0.95 level. Therefore, responses from all categories must be considered different,

given the proposed model

(log)likelihood (log)likelihood ratio

D.F. x2 log(L) DD.F. D[x2 log(L)] Significance

Juv, vacc+unvacc 141 486.0 3 18.4 +
Juv, vacc+unvacc, adults 153 524.0 6 49.7 ++
Infants, vacc+unvacc 25 17.8 3 12.7 +
All 175 588.2 12 113.1 ++
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could be merged; differences were significant for all

the tested combinations. Given the applied model, the

IgG-PT response to infection with B. pertussis was

seen to change with age and with vaccination status.

Figure 5 shows two-level model fits to individual

responses, illustrating large variations in shape and

amplitude of responses in individual patients.

Although statistically significant, the differences due

to vaccination status within the two youngest age cat-

egories, infants and juveniles,werenot large (Figs5a,b,

and 5c, d, respectively). A small group of adult patients

(Fig. 5e) appeared to have a response that differed

from the younger patients. The most prominent differ-

ence was the lack of early measurements: these adult

patients apparently visited their physician later than

the younger patients. This may have been associated

with milder symptoms in adults (for instance causing

a parent to infect a child who then developed severe

enough symptoms for the infection to be detected in

both the parent and the child). The decay of the re-

sponse in these adults did not differ greatly from that

of the vaccinated juveniles.

Table 3 and Figure 4 show estimated parameter

values for the largest category, vaccinated juvenile

patients (comprising 62 patients, 72% of all patients).

Maximum likelihood parameter values (with median;

5%, 95% percentiles) are shown in Table 3. For

parameters ai (variation in shape of the response) and

di (variation in amplitude of the response), fitted par-

ameter values for all patients in this category are shown

in Figure 4. The uncertainty in these parameters is

illustrated in Figure 4b, c, which show median values

with (MCMC-based) 95% intervals.

Measurement error

In the one-level model, all variation is interpreted as

measurement error. Therefore, the value of the par-

ameter s is larger than in the two-level model, where

part of the variation is attributed to heterogeneity in

patient responses. Despite the considerable individual

variation, the estimated measurement error is very

large. In the vaccinated juvenile patients, the logar-

ithm of this error factor decreased from 0.62 in the

one-level model to 0.46 in the two-level model. This

would mean that a 95% confidence interval for the

IgG-levels would extend over approximately a factor

five up or down, for the two-level model.

Time since infection as a function of titre

In order to describe the time elapsed since infection

(numbers of days since the appearance of symptoms)

as a function of titre, we determined the inverse func-

tion of (1).
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Fig. 4. (a) Maximum likelihood values of individual shape parameters (âi) and amplitude parameters (d̂ i) for the two-

level model fitted to vaccinated juvenile patients. (b) Variation in shape (parameter ai) among patients (rank number i,
random order) expressed by plotting MCMC-based median values and 0.05 and 0.95 quantiles. (c) Variation in amplitude
(parameter di) among patients expressed by plotting MCMC-based median values and 0.05 and 0.95 quantiles.
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Given the short duration of the rising part of the

response, we considered only the decreasing part of

the response. Each response curve had a maximum

titre, dependent on the parameter values for an indi-

vidual patient. Any titres higher than this maximum

therefore had no corresponding time since infec-

tion. On a log scale (y=log10(IgG titre)), the inverse

relation was

h y;a,b, c,dð Þ

=
b

ffiffiffi
a

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ac2+ dxyð Þ 2bc+dxyð Þ

p
xa bc+dxyð Þ

c b2xað Þ ,

with y<d+bcxc
ffiffiffiffiffiffiffiffiffiffiffiffi
b2xa

p
:

Table 3. Parameter estimates for the one-level (1-l ) and the two-level (2-l ) model, applied to responses from

patients in all categories

â b̂ ĉ d̂ ŝ

1-l 2-l 1-l 2-l 1-l 2-l 1-l 2-l 1-l 2-l

Juv, vacc 22.8 Fig. 4 14.0 15.7 2.68 1.90 1.00 Fig. 4 0.65 0.56
Juv, unvacc 2.15 — 2.00 2.66 6.85 3.09 2.86 — 0.61 0.46

Adults 0.12 — 1.87 4.23 0.25 0.11 x2.81 — 0.45 0.32
Infants, vacc 1.51 — 1.46 1.58 22.3 19.5 13.5 — 0.34 0.22
Infants, unvacc 2.59 — 2.08 2.29 17.2 18.9 11.4 — 0.54 0.31
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Fig. 5. (a) Log–log graph of individual responses of the two-level model, fitted to data from vaccinated juvenile patients. Also
shown data and (heavy line) median response. (b) Log–log graph of individual responses of the two-level model, fitted to data
from unvaccinated juvenile patients. Also shown (c) infants, vaccinated after infection, (d ) infants, not vaccinated after

infection, and (e) adults.
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This inverse function described (log-)time since last

infection as a function of (log-)titre. Figure 6 shows

that this inverse function was also subject to consider-

able individual variation. Given a certain measured

IgG-level we now estimated the (variation in) time

elapsed since infection.

When doing this, we took into account the fact that

not every individual response reached the same maxi-

mum IgG titre. Therefore, with IgG titres rising above

a certain level, the inverse function did not exist for

an increasing number of patients. This is shown in

Figure 7a, where the fraction of the individual re-

sponses (of vaccinated juvenile patients) that reached a

given log-titre Y, is shown as a function of Y.

Figure 7b shows histograms of the times from in-

fection for a range of IgG-titres, constructed from

the inverse responses in Figure 6. Returned estimates

were based on decreasing numbers of responses : only

those that reached the level of interest were used. Some

technical details are given in the Appendix.

DISCUSSION

The serum IgG-response in patients diagnosed with

pertussis can be described by a simple parametric

model, but variation among subjects is a prominent

phenomenon that must be included in the analysis.

IgG titres rise steeply after infection to reach a maxi-

mum within a few weeks, and then decline slowly over

several years. Although this is probably true in any

infected subject in a population, incidental measure-

ment of a single IgG titre gives little information about

the time since infection. In particular, maximum IgG

titres appear to show considerable heterogeneity; a

modestly enhanced IgG titre of 20 IU/ml may corre-

spond to very recent infection, or may equally corre-

spond to infection several months earlier, depending

on the particular response of the patient. Current prac-

tice of characterizing population immune responses

with their geometric mean titres neglects the import-

ance of heterogeneity [8, 9, 17].

If the group of patients in the study used here is

representative of the general population, at least

with respect to their IgG response to pertussis toxin,

our results may be employed to estimate times from

infection from cross-sectional samples of IgG-PT

titres. Any given (measured) IgG-PT titre may thus be

assumed to correspond with a time from infection

(first diagnosis). Our results also indicate the existence

of considerable variation among individual responses.

With increasing IgG-PT levels, there also seems to be

an increasing fraction of subjects who do not reach

4
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Fig. 6. Expected log-time since infection (j) as a function of

anti-pertussis log-IgG titre (y). Inverse function of the two-
level regression model, using maximum likelihood values for
all parameters. Also shown (heavy lines) median and 95%

range, and (hatched) arithmetic mean response. Each light
grey curve represents an individual response, with its own
maximum level. Titres higher than this individual maximum

cannot be reached and the inverse response jumps to zero.
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that level at any time during their post-infection

response. High IgG-PT levels therefore indicate recent

infection, but only in a small part of the population.

Data set

To apply the results of this analysis to the estimation

of incidences of pertussis in the general population,

the observed responses should be representative of the

responses that would be found in a random sample of

this general population. The age distribution in our

test population differed substantially from that of the

population at large, with juveniles aged less than

20 years strongly overrepresented. Older subjects were

hardly present. The heterogeneity among all patient

categories in this study complicates the use of these

results for back-calculation of infection from a cross-

sectional sample of a completely different population.

Estimation of times from infection only involved the

decaying phase of the response, where differences may

have been least marked. This would easily be tested

in a practical application, which we intend to report

shortly.

Newborns may be important for illness burden, and

they should possibly be treated separately when back-

calculating times from infection. Unfortunately, we

had responses from only a few of these patients, but

since infection cannot have occurred before birth, time

from infection was limited in these infants.

Recorded responses started at the first date of symp-

toms, as reported by the patients (or their parents).

In very young children, this may have been earlier

than in older patients, because of the severity of symp-

toms. On the other hand, in newborns symptoms may

be non-specific, making diagnosis difficult or delaying

diagnosis. An alterative model employing a variable

shift in onset (at the expense of yet another parameter

per patient) only produced minor offsets, indicating

that the data offered little support for such differences.

Nevertheless, the difference in response shapesbetween

infants and adults (Fig. 5c–e) is striking and seems to

support an effect of late onset of symptoms.

The patients included in this study all presented

symptoms of respiratory illness. Asymptomatic or

mild infection is probably more frequent in adults,

and could be associated with a different IgG response:

a smaller amplitude, or different time course. No in-

formation was available to test this hypothesis. Most

of the juvenile patients also suffered from chronic

respiratory symptoms (asthma); it remains unclear

whether this condition increases the susceptibility to

infection or could lead to a different immune response

to pertussis. Are younger subjects more susceptible to

infection, or is there a higher probability that infection

is symptomatic [18, 19]? Recently, an animal model

with infection and clinical symptoms similar to those

in humans has been described [20]. It is conceivable

that such a model could be utilized to study details of

the differences in susceptibility between adults and

infants.

Regression procedure

Heterogeneity in immune responses has been studied

for various pathogens. In order to assess immunity,

Gay used mixture models to describe the variation in

age stratified IgG levels against parvovirus B19 [21].

Hierarchical Bayesian models have been used to de-

scribe the decline in immunity and its variation in

hepatitis B [15] and Haemophilus influenzae [22, 23].

These models assumed linear decline of IgG titres (on

a log scale). The immune response against hepatitis A

vaccine has been studied by van Herck and colleagues

[17, 24]. They studied the decline in geometric mean

antibody titre of their subjects with time, but also re-

ported on individual responses, presenting evidence of

considerable variation among subjects [17].

Since our data included not only the decline but in

many cases also the rising slope of the immune re-

sponse, we needed a model that accommodated both

parts of the response, necessarily a non-linear model.

Our data also contained strong evidence of censoring;

in accounting for this, the fitted responses were steeper

than they would have been without correction for

censoring.

Part of the variation in the measurements appeared

to be explained by individual variation, in amplitude

and/or in shape (descending slope) of the response,

rather than by somemeasurement error. In addition to

this, other parameters, like incubation period, could

also have contributed to the heterogeneity of the re-

sponses. We investigated this by incorporating indi-

vidual variation in shift along the time axis (not

shown here). However, this did not result in signifi-

cant improvement in goodness of fit ( judged by log-

likelihood); estimated delay times were also very small

and appeared to vary little among individual patients.

Biological interpretation of the hyperbola model

The extremely slow decline in IgG antibody titres with

time following infection, probably associated with
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long-term protection, precludes use of a first order

model of antibody decay. Such amodel would lead to a

convex curve, with an increasing downward slope on

a log time–log titre scale. For our data, such a slope

is much too steep, with poor fit to the measured re-

sponses. This may not be always a problem. Tiru et al.

[25] reported successful use of a simple exponential

model to describe the immune response to diphtheria

toxin. The model we used had asymptotically linear

decline on a log–log scale at long times from infection.

Although at first sight perhaps biologically un-

attractive, such a hyperbolic response function may

result from an intrinsically first order system, when

there is heterogeneity. Suppose IgG production and

removal are distributed among several locations, all

with different properties (different time constants and

amplitudes). Sufficient heterogeneity among these sites

could then result in a varying contribution of any given

subsystem with time, with fast systems providing the

bulk of the IgG in the initial phase of the response,

and ‘recruiting’ a smaller fraction of slower systems

in the tail of the response.

Our analysis indicates that the IgG-PT response to

an infection with Bordetella pertussis shows a typical

pattern, with a rapid transient increase over a few

days to weeks, followed by slow decay extending over

several years. This response can be described with a

mathematical model ; there appears to be considerable

variation among responses from individual patients.

The remarkably large variation in responses cannot be

neglectedwhen these are employed to estimate the time

since infection from a given IgG-titre in a randomly

chosen subject.

APPENDIX

Calculation of times since infection

From the above analysis of the longitudinal study we

have a function describing the IgG-PT level against

time from infection (first diagnosis)

y=f (x;H)

in which the parameter vector h is stochastic, describ-

ing the variation in responses among patients. Suppose

we are able to invert this function, i.e. given H and y

(IgG-PT level) we can find a corresponding time since

infection

x=fx1( y;H)=h( y;H):

We are only interested in the decreasing part of this

function, leaving amonotonically descending function

of titre with time from infection.

If times to infection j are distributed as g(j ; l) the

response of patient with response function parameter

vector H would lead to a titre density

c( y;H, l)=
0 if y > ymax(H)

xg(h( y;H); l)h0( y;H) otherwise

�

ymax(H) is the maximum IgG-PT level reached by this

patient (having parameter vector H). This is different

for each individual patient.

If, further, any patient’s response is equally likely,

the probability density of titres is

c( y; l)=
Z

c( y;H, l) dH:

Integration is done over all possible parameter com-

binations, and may be based on the posterior Markov

chain.

If we now have a cross-sectional sample of IgG-PT

titres:

fY1, . . . , YMg

the likelihood

‘(l)=
YM
i=1

c(Yi; l)

allows estimation of the parameter vector l of the

distribution of times to infection g(j ; l).
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