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SUMMARY

In randomized trials, the treatment assignment mechanism is independent of the outcome of

interest and other covariates thought to be relevant in determining this outcome. It also allows,

on average, for a balanced distribution of these covariates in the vaccine and placebo groups.

Randomization, however, does not guarantee that the estimated effect is an unbiased estimate of

the biological effect of interest. We show how exposure to infection can be a confounder even in

randomized vaccine field trials. Based on a simple model of the biological efficacy of interest, we

extend the arguments on comparability and collapsibility to examine the limits of randomization

to control for unmeasured covariates. Estimates from randomized, placebo-controlled Phase III

vaccine field trials that differ in baseline transmission are not comparable unless explicit control

for baseline transmission is taken into account.

INTRODUCTION

‘The only general way rigorously to exclude the biasing

effects of other factors is to base allocation decisions

as to which intervention is applied to a particular in-

dividual or group on a random mechanism’ [1]. The

statement is motivated by the independence of the

treatment assignment mechanism and the outcome of

interest, as well as other covariates, in randomized

trials. Randomization also allows, on average, for a

balanced distribution of any covariates, observed or

not, in the vaccine and placebo groups. Thus, the

treatment groups are seen as comparable. Baseline

transmission, pre-existing immunity and individual

responsiveness are examples of possibly relevant fac-

tors. For these reasons, randomization, in addition

to double-masking, are usually proposed as good

research practices for valid clinical trials [2].

Randomization, however, does not guarantee that

the estimated effect is an unbiased estimate of the bio-

logical effect of interest. The ability of randomization

to control for confounding has been challenged from

at least two perspectives. Greenland & Robins [3] and

Greenland [4] state the problem from the perspective

of potential outcomes and show that effect measures

can be confounded even if the treatment assignment

mechanism is random. Gail and colleagues [5–8]

examine the effects of omitting a covariate that has

the same distribution among exposed and unexposed

subjects from regression analyses of cohort data.

They describe the conditions under which a balanced

covariate can be omitted without biasing the

estimates.

These results also hold in randomized Phase III

vaccine efficacy field trials. A new dimension is added

when the covariate being considered is the natural

challenge to infection, such as an infectious mosquito
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bite or a sexual contact, which is assigned by nature to

the study participants. Although the efficacy estimate

can be based on parameters such as the transmission

probability that are conditional on exposure to infec-

tion [9], a special case being the secondary attack rate

[10, 11], most vaccine studies do not collect infor-

mation on the number of infectious challenges. Thus,

most efficacy estimates are based on unconditional

parameters such as incidence density, hazard rates, or

incidence proportion [12].Measures of vaccine efficacy

expressed as functions of the incidence proportion

[13] or hazard rates [14] depend on the level of trans-

mission.

In this paper we focus on the role and limits of

randomization in studies based on unconditional es-

timators of vaccine efficacy that do not explicitly take

into account the number of exposures to infection

that each person has [9]. Based on a simple model of

the biological efficacy of interest, we extend the argu-

ments of Greenland and Gail on comparability and

collapsibility, respectively, to examine the limits of

randomization to control for unmeasured covariates

in vaccine field studies. We show that randomization

does not guarantee easily interpretable estimates of

vaccine efficacy within trials or across sites. A series

of examples illustrates the extent of the bias possible

under a number of plausible biological assumptions.

Estimates from randomized, placebo-controlled

Phase III field trials that differ in baseline transmission

are not comparable unless baseline transmission and

pre-existing immunity are taken into account.

STOCHASTIC RISK MODEL

Consider a double-blind vaccine trial of N subjects

from the study population with vaccine randomly as-

signed to N1 subjects and placebo to N0 subjects. For

simplicity, we consider estimating the effect of vaccine

compared to placebo on the binary outcome of either

becoming infected or not. To begin with, we set infec-

tion equal to disease. The pre-vaccination covariates

represent the values of variables describing the

individuals in the population, such as age, gender,

genetic composition, pre-existing immunity. The

values of any particular covariate may or may not be

measured and recorded, depending on the design of

the study. For example, we might not measure and

record the antibody titre for each person before we

begin the study.

For simplicity, consider a binary covariate, C,

where a portion of the population has C=c and the

rest has C=�cc. Let N1c and N0c be the number in the

vaccinated and unvaccinated groups with covariate

value C=c, and N1�cc and N0�cc be the number in the

vaccinated and unvaccinated groups with C=�cc, re-

spectively (Table 1).

Individual measures

Under a stochastic risk model, let the probability of

being infected per potentially infective contact for an

unvaccinated person be r0i and the probability of not

being infected after one contact be 1xr0i. This is

similar to the stochastic risk model of Greenland [4],

except here the risk is conditional on a potentially

infective contact. All individuals in whom the infec-

tion was not successful at the time of the infective

contact return to the pool of individuals at risk

to become infected. Analogously, let the probability

that a vaccinated individual becomes infected after

one exposure to infection be r1i and of not being in-

fected be 1xr1i. The unknown probabilities r0i and r1i
are called the individual transmission probabilities

per potentially infectious contact. An individual thus

has two different potential transmission probabilities,

one with and one without the vaccine. Which of these

potential transmission probabilities determines the

stochastic risk for an individual depends on whether

the individual is assigned to vaccine or placebo.

Assume that the vaccine has the effect of reducing

the transmission probability in an individual i by a

multiplicative factor bi from r0i to r1i=bir0i, where bi

Table 1. Example tables template

TPc

C=c ;
VEc=1xTPRc TP�cc

C=�cc;
VE�cc=1xTPR�cc VER IPD VEOR

Site A

Vac TP1c a1c b1c N1c TP1�cc a1�cc b1�cc N1�cc 1x
a1c+a1�cc
N1c+N1�cc
a0c+a0�cc
N0c+N0�cc

a0c+a0�cc
N0c+N0�cc

x
a1c+a1�cc
N1c+N1�cc

1x
(a1c+a1�cc)(b0c+b0�cc)

(a0c+a0�cc)(b1c+b1�cc)
Unv TP0c a0c b0c N0c TP0�cc a0�cc b0�cc N0�cc
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could be specific to each individual. The effect of

vaccination compared to no vaccination on infection

outcome given one specified exposure to infection

may be measured in terms of 1 minus the individual

transmission probability ratio or the individual

transmission probability difference :

VEbi=1x
r1i
r0i

=1xbi,

Di=r0ixr1i=r0i(1xbi):

The vaccine efficacy (VE) based on the ratio will be

undefined if the transmission probability with no

vaccine is zero. Under the multiplicative model, the

risk difference depends on r0i whereas VEbi does not.

Below, we also use the notation r0i =TP0i, r1i =TP1i,

and bi=TPRi, as equivalent for the transmission

probabilities in the unvaccinated and vaccinated in-

dividual i, and the individual transmission probability

ratio.

Special role of exposure to infection

The infection outcomes in an individual would gen-

erally depend on whether a person is exposed to in-

fection at all, the size of the inoculum, and how often

the person is challenged. The probability of not being

infected after the first contact, but then being infected

after the second contact is (1xr0i)r0i, and so forth for

any number of potentially infective contacts, so that

the probability of an individual becoming infected

during a study depends on the number of exposures

during the study. In this paper, we assume that all

exposures to infection are equivalent. We assume that

the susceptibility remains the same after being ex-

posed to infection post-randomization.

If infection or disease is an outcome of interest, the

individual must receive an infectious challenge to

contribute information to the study. In controlled

settings with a curable disease, following vaccine and

placebo allocation, individuals are sometimes chal-

lenged with a known amount of inoculum. In this

case, treatment consists of both the vaccine allocation

and the infectious challenge. In field trials, often in-

dividuals are not exposed to infection. These in-

dividuals are recipients of incomplete treatment and

are uninformative with respect to the effect of the

vaccine on infection and disease. That is, in evaluating

prophylactic vaccines, there are actually two levels of

treatment. The first is to give either the vaccine or

placebo, which we can assign randomly to people.

The second is the exposure to infection, which in field

trials is assigned by nature [9].

Population measures

The fundamental problem of causal inference [9, 15] is

that we cannot observe the individual i both with the

vaccine and the placebo, not to mention at a specified

exposure to infection, so we cannot observe the effect

of the vaccine compared to placebo in the individual.

What we can observe is the difference in the average

observable outcomes in those who actually received

placebo and the average observable outcomes in those

who actually received the vaccine. Since we cannot

estimate the bi for each person, we do a study in a

population to estimate the average effect of the

vaccine compared to the placebo. The parameter of

interest is the average multiplicative effect, b, or the

average difference in the transmission probabilities,

r0(1xb), of the vaccine in the population if the

people were vaccinated compared to if they were

unvaccinated.

Let a1 and a0 denote the expected number of cases

in the vaccinated and unvaccinated groups, respect-

ively, at the end of the study. The proportion expected

to develop the infection if each individual in the group

receives one exposure to infection is the average

transmission probability, TP1 and TP0, which is the

expected number of infections divided by the number

of exposures to infection:

TP1=
P

1 r1i
N1

=
a1
N1

, TP0=
P

0 r0i
N0

=
a0
N0

,

where
P

1 and
P

0 denote summation over the vacci-

nated and unvaccinated groups, respectively. The

proportion of the population expected to develop in-

fection by the end of the study is the attack rate, cumu-

lative incidence, or incidence proportion, denoted IP1

and IP0, respectively:

IP1=
a1
N1

, IP0=
a0
N0

:

The incidence proportions are interpreted as the

average unconditional risks in the vaccinated and

unvaccinated groups, respectively.

Vaccine efficacy (VE) estimated from the relative

average transmission probability is

VETP=1xTPR=1x
TP1

TP0
:

a1c and b1c denote the number of vaccinated people

with covariate value C=c at the end of the study who
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develop infection or do not, respectively, and a0c and

b0c denote the number of unvaccinated people with

covariate value C=c who develop infection or do not,

respectively. The analogous notation is used in the

stratum with C=�cc (Table 1). Let R=IP1/IP0. The

crude measurable VE estimated from the ratio of

the incidence proportions in the vaccinated group

compared to the unvaccinated group is (Table 1) :

VER=1xR=1x
IP1

IP0
=1x

a1=N1

a0=N0

=1x
a1c+a1�cc

N1

.a0c+a0�cc
N0

� �
:

The crude risk difference measured by the difference

in the incidence proportion in the vaccinated com-

pared to the unvaccinated group is (Table 1) :

IPD=
a0
N0

x
a1
N1

=
a0c+a0�cc

N0
x

a1c+a1�cc
N1

:

Greenwood & Yule [16] discuss the different inter-

pretation of the ratio and difference measures for

vaccines for the incidence proportion.

The far right columns in Table 1 give the vaccine

efficacy based on the crude incidence proportion ratio,

the crude incidence proportion difference, and the

crude odds ratios. The question of interest in this paper

is to what extent, even under randomization, does the

estimated efficacy measure the effect of interest? In

particular, if no information on actual exposure to

infection is gathered, to what extent does VER esti-

mate 1x�bb or IPD estimate r0(1xb)?

Randomization and comparability of treatment groups

Randomization is supposed to ensure that the vaccine

and placebo groups are comparable in that the experi-

ence of the group with the vaccine would have been

the same as the group that did not receive the vaccine

had the vaccinated group in fact received the placebo,

and vice versa. Randomization coupled with blinding

is also supposed to ensure that post-randomization

exposure to infection is balanced.

Under randomization, it should not matter which of

the groups receives the vaccine or placebo. Following

Greenland & Robins [3], we say there is no confound-

ing due to lack of comparability if, in the absence of

vaccination, the average risk would have been the

same among the people who in fact were vaccinated

and those who were not vaccinated. Under the as-

sumption of comparability of the two groups, we can

replace the experience of the unvaccinated group with

the experience of the vaccinated group if it had not

been vaccinated, so that
P

0 r0i=N0=
P

1 r0i=N1. HereP
1 r0i denotes the experience that the vaccinated

group would have had if they had not been vaccinated

and exposed just once to infection. By balancing the

distribution of observed and unobserved covariates in

a study, randomization is supposed to ensure that the

vaccinated and unvaccinated groups are comparable.

The expected proportion of the unvaccinated and

vaccinated groups in either level of a binary covariate

should be the same in both groups,

N1c

N1
=

N0c

N0
,

N1�cc

N1
=

N0�cc

N0
:

The conditions for comparability rely on the as-

sumption that the outcome in each individual is

independent of the outcomes and treatment assign-

ments in the other individuals. The independence is

part of the stable unit treatment value assumption

(SUTVA) [17]. Halloran & Struchiner [9] consider

consequences of the violation of SUTVA in more de-

tail. If we imagine that a small proportion of the

population is vaccinated in the trial, then the viol-

ations would be minimal.

Limits of comparability with one homogeneous

exposure to infection

In this section, we assume that everyone is exposed

exactly once to infection during the study. If the trial

participants were each to receive a single infectious

challenge (infected mosquito bite), the expected inci-

dence proportion ratio equals the expected average

transmission probability ratio:

R=
a1=N1

a0=N0
=

P
1 r1i=N1P
0 r0i=N0

=TPR:

Following the arguments of Greenland [4], even

under the assumption of comparability, and exactly

one exposure to infection per person, the ratio of the

incidence proportions (average transmission prob-

abilities) is not equal to the average of the individual

ratios of the transmission probabilities, �bb. Formally,

assuming comparability, the expected incidence pro-

portion ratio (ratio of the average transmission

probabilities) is

R=
TP1

TP0
=

a1=N1

a0=N0
=

P
1 r1i=N1P
0 r0i=N0

=
P

1 bir0i=N1P
0 r0i=N0

=
P

1 bir0i=N1P
1 r0i=N1

=
P

1 bir0iP
1 r0i

l
P

1 r1i=r0i
N1

=
P

1 bi=N1=�bb:
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The inequality is true in general, unless the r1i/r0i=b

are the same for all i in the vaccinated group, a very

strong assumption. In other words, the previous ex-

pressions indicate that the population level measure of

efficacy based on either the transmission probability

or the incidence proportion cannot be interpreted as

the average, among the study population, of the in-

dividual effect of the vaccine, except in the unlikely

case that b=r1i/r0i for each individual i in the popu-

lation. In general, the expected value of R is biased for

the average effect of the vaccine in the vaccinated

group,
P

1 bi=N1, in randomized double-blind, Phase

III vaccine trials.

In contrast, under the assumption of compar-

ability, the difference IPD of the incidence pro-

portions (or average transmission probabilities) in

the unvaccinated and vaccinated groups is equal to

the average of the individual differences in the

transmission probabilities, even when individuals

have different vaccine responses bi :

IPD=
a0
N0

x
a1
N1

=
P

0 r0i
N0

x
P

1 r1i
N1

=
P

1 r0i
N1

x
P

1 bir0i
N1

=
P

1 r0i(1xbi)

N1
=r0(1xb):

Comparability-based confounding: homogeneous

effect; two or more exposures to infection

To illustrate confounding due to unmeasured post-

vaccination exposure to infection, we assume for

simplicity that the effect of the vaccine on suscepti-

bility is the same in everyone, that is bi=b for each

individual i, but that everyone receives two challenges

to infection (see also [13]). We assume that the first

contact with the infective agent does not leave an im-

mune memory. If everyone is challenged twice, then

the expected number of cases in the unvaccinated

group is the number of people expected to get infected

from the first challenge plus the number of people

expected to get infected from the second challenge,

a0=
P

0 [r0i(1xr0i)+r0i]. The number of cases in the

vaccinated group is a1=
P

1 [r1i(1xr1i)+r1i]. Under

the assumption of comparability of the vaccinated

and unvaccinated groups:

R=
a1=N1

a0=N0
=

P
1 [r1i(1xr1i)+r1i]=N1P
0 [r0i(1xr0i)+r0i]=N0

=
P

1 [br0i(1xbr0i)+br0i]=N1P
1 [r0i(1xr0i)+r0i]=N1

lb:

If we had information on the number of exposures to

infection and knew after which exposure each person

becomes infected, we could use the transmission

probability ratios to estimate the effect of the vaccine,

although even the ratio TP1=TP0l�bb unless bi=b.

If the investigator did not have access to information

on exposure to infection, as in field trials based on un-

conditional parameters such as incidence proportion,

he or she would report vaccine efficacy as 1x(a1/N1)/

(a0/N0)l1xb. Thus, exposure to infection can be a

confounder even in a double-blind, placebo-controlled

trial in which randomization ensures comparability,

and in particular, when the exposure to infection is not

only comparable in the two groups, but homogeneous

within groups. This result holds even if the trans-

mission probability is homogeneous for everyone.

As a corollary to this result, since the number of

challenges to infection, assigned by nature in field

trials, depends on the baseline transmission level,

two different randomized, double-blind, placebo-

controlled studies taking place in sites that differ by

the level of transmission would report different esti-

mates of vaccine efficacy even if the level of protection

conferred by the vaccine to a specified challenge to

infection is the same in both studies.

The previous result is easily extended to the more

realistic situation that in field conditions, nature pro-

vides the infection challenge and, thus, some individ-

uals are not challenged at all, some are challenged just

once, and some are challenged twice or more. In the

general case, the inequality holds even if r0i=r0, and

r1i=r1. A similar argument could be constructed to

show that the difference of IP0xIP1 does not equal the

average difference in susceptibility in the vaccinated

compared to the unvaccinated groups, (1xb)(
P

1 r0i)=

N1. In summary, the population measure of R does

not estimate b, and there can be confounding even

when (1) the study is randomized, (2) the multiplicat-

ive effect of the vaccine is the same for all individuals,

i.e. there is no heterogeneity in vaccine efficacy, (3)

comparability is preserved, i.e. controls describe

what would have happened to the vaccinated group if

they had not been vaccinated, (4) the amount of in-

fectious challenge is the same among vaccinated and

unvaccinated, and (5) whether SUTVA is violated

or not.

Collapsibility with balance of unmeasured covariates

Because on average, randomization achieves balance

of pre-vaccination covariates, under certain con-

ditions [5–8], a covariate can be omitted from the

analysis without changing the value of the regression
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parameter of interest. In this case, the analysis is said to

be collapsible with respect to the covariates, and such

covariates are callednon-confounders. Thediscussions

related to collapsibility and omitting a balanced co-

variate from regression models are concerned with

statistical bias and are model-dependent [18].

Greenland [19] argues against the identification of

effects with regression model coefficients, since that

results in model dependence of causal concepts such

as ‘effect ’ and ‘confounder’ which is undesirable and

unnecessary. Randomized clinical trials analysed with

linear or multiplicative models yield unbiased esti-

mates of regression coefficients which, however, are

not necessarily appropriate estimates of the individual

biological effect of a vaccine [20].

Collapsibility-based confounding

Suppose that the stratum-specific incidence pro-

portion ratio for the jth stratum is Rj=IP0j/IP1j,

where the jth stratum is defined in terms of the num-

ber j of exposures to infection, j=0, …, J, where J is

the maximum number of exposures possible in the

study, and,

k=R1= � � �=Rj= � � �=RJ:

As seen earlier, this assumption cannot be true even if

there is a common multiplicative effect of the vaccine,

b=r1i/r0i for all i, because then the Rj would differ.

Thus, neither the crude measure of effect, nor the ad-

justed measure of effect once baseline transmission

level is controlled for, are easily interpretable.

Interpretation of a multiplicative measure of effi-

cacy, even in the absence of confounding defined in

terms of collapsibility [18], is problematic unless one

makes the very unlikely assumptions that the bio-

logical effect is the same for all individuals and that

study participants could be challenged at most once,

in which case all people in the study would share the

same value of the covariate defined by the number of

exposures to infection.

Heterogeneity of effect : effect modification

We now consider the special case that there are strata

within which the effect of the vaccine is homogeneous,

but that it varies among subgroups. This heterogen-

eity of effect is called effect modification in the epi-

demiological literature. Of actual interest would be

estimation of the different efficacies in each strata. If it

is not possible to stratify on the relevant variable, then

the efficacy measure will be a summary measure under

heterogeneity [21]. The estimated crude efficacy will

depend on the proportional composition of the popu-

lation of each subgroup in which the vaccine has a

different effect.

EXAMPLES

We present several examples of how unmeasured

covariates, and in particular, unmeasured pre-vacci-

nation or post-vaccination exposure to infection,

could alter the estimates of vaccine efficacy even if the

field trial were randomized. In every case considered,

the vaccine trial is a randomized, double-blind,

placebo-controlled trial. In developing these examples,

we had in mind an infection like malaria, although the

results are quite general. For those readers who know

the malaria literature, the transmission probability,

TP0, or r0, corresponds to the b in the usual malaria

models, the probability that a sporozoite-positive

mosquito bite results in successful infection.

In the examples, the covariate C can play several

different roles. If C is related to a pre-vaccination

covariate that affects susceptibility, then the risk of

infection per potentially infective contact in the un-

vaccinated group with C=c is TP0c and in the un-

vaccinated group with covariate value C=�cc is TP0�cc

(Table 1). If the vaccine effect is the same at both

covariate levels, then b=bc=TRPc=b�cc=TRP�cc.

If the vaccine effect is related to C, then TPRc=
bc=TP1c/TP0c. The effect of the vaccine in the stratum

with C=�cc is TPR�cc=b�cc=TP1�cc=TP0�cc. In this case,

there would be two measures of effect of interest that

would be measurable if it were possible to stratify on

the covariate C. The covariate C could also be related

only to the number of post-vaccination exposures to

infection with a homogeneous effect of vaccination, so

that TP0�cc=TP0c, and bc=b�cc. Table 1 is a template for

the examples.

C is post-vaccination challenge ; homogeneous VE;

infectious challenge as a confounder

Consider a vaccine candidate that is being evaluated

in different trials, possibly on different continents

(Table 2). Let the trial sites be designated by capital

letters, such as A, B, and F. In Table 2, we consider a

situation in which the response to the vaccine is

actually homogeneous within each trial site and

across each trial site, but that not everyone gets ex-

posed to infection. Thus, C=c denotes being exposed

to infection just once, while C=�cc denotes not being
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exposed to infection. The transmission probability

in the unvaccinated susceptibles, TP0=0.5, and the

effect of the vaccine in reducing the transmission

probability, TPR=TP1/TP0=0.5, are the same for all

study participants in all three sites. Thus, VEc=VE�cc.

In Table 2, the proportion receiving exactly one

exposure to infection (C=c) increases from 3% in site

A to 97% in site F. The estimated efficacy based on

VER is 0.5 regardless of the proportion exposed to

infection during the trial, so that under this multipli-

cative effect model, heterogeneous exposure to infec-

tion does not act as a confounder if the maximum

number of exposures to infection is 1. The IPD in-

creases from 0.002 at site A to 0.248 in site F, reflect-

ing that the vaccine is more important as a public

health tool when more people are exposed to infec-

tion.

In Table 3, those people who are exposed to infec-

tion (C=c) are exposed twice, compared to only once

in Table 2. Otherwise the situations in Tables 2 and 3

are the same. This situation illustrates exposure to

infection as a confounder, since the expected VER

decreases from 0.5 in site A in Table 2 to 0.333 at site

A in Table 3. At site F, the VER decreases from 0.5 in

Table 2 to 0.417 in Table 3. In Table 3, the change

in IPD from site A to site F is greater than in the

situation of lower transmission in Table 2.

C is related to heterogeneous VE; effect modification

In Table 4, we assume that in all sites, an immuno-

logically naive susceptible person has a probability

of r0i=r0=TP0=1.0 of becoming infected after one

exposure to infection. The vaccine effect is hetero-

geneous. The heterogeneous response could be due

to a covariate unrelated to history of exposure to

infection, such as genetic composition or gender. One

half of the population has C=c and the vaccine re-

duces the transmission probability by 0.5, so that

TPRc=0.5, and VEc=0.5. One half of the population

has C=�cc and the vaccine has no effect in this group,

so that VE�cc=0. The average efficacy of the vaccine on

Table 2. Homogeneous pre-vaccination susceptibility among sites, homogeneity of vaccine effect within sites, no

boosting, and increasing Nc; infectious challenge as a confounder, one exposure to infection in stratum C=c and 0

otherwise (VEc=VE�cc=0�5;TPc0=TP�cc0;NclN�cc)

TPc C = c ; VEc=0.5 TP�cc C=�cc; VE�cc=0�5 VER IPD VEOR

Site A
Vac 1/4 1 3 4 1/4 0 496 496

0.5 0.002 0.501
Unv 1/2 2 2 4 1/2 0 496 496

Site B
Vac 1/4 62 186 248 1/4 0 252 252

0.5 0.124 0.571
Unv 1/2 124 124 248 1/2 0 252 252

Site F
Vac 1/4 124 372 496 1/4 0 4 4

0.5 0.248 0.665
Unv 1/2 248 248 496 1/2 0 4 4

Table 3. Homogeneous pre-vaccination susceptibility among sites, homogeneity of vaccine effect within sites, no

boosting, and increasing Nc; infectious challenge as a confounder, two exposures to infection in stratum C=c and 0

otherwise (VEc=VE�cc=0�5;TPc0=TP�cc0;NclN�cc)

TP C= c ; VE=0.5 TP C= �cc ; VE=0.5 VER IPD VEOR

Site A

Vac 1/4 2 2 4 1/4 0 496 496
0.333 0.002 0.335

Unv 1/2 3 1 4 1/2 0 496 496

Site B
Vac 1/4 109 139 248 1/4 0 252 252

0.414 0.154 0.529
Unv 1/2 186 62 248 1/2 0 252 252

Site F
Vac 1/4 217 279 496 1/4 0 4 4

0.417 0.310 0.736
Unv 1/2 372 124 496 1/2 0 4 4
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the transmission probability is 0.25. The average

transmission probability difference is also 0.25.

In Table 4, the number of exposures to infection per

person increases from top to bottom, with equal

probability of being exposed in the vaccinated and

unvaccinated groups and at the different levels of C.

That is, exposure to infection is independent of both

vaccine status and C. In site A, only 1 in 125 are ex-

posed to infection once, the others not at all. In site B,

one-half are exposed once, and one-half not at all. In

site F, everyone is exposed once. In sites G to M, the

number of exposures to infection per person increases

from two to eight. When the number of exposures

to infection is f1 (sites A, B, F), vaccine efficacy

measured by VER does not change for different

proportions of the population exposed to infection

and equals the average of the effect of the vaccine in

the two strata. Efficacy measured by the IPD increases

until both measures based on ratio and difference are

equal when the whole population is exposed just once

(site F). Under these conditions, the expected crude

incidence proportion ratio equals the average effect in

the population, and the same for the differences of the

two. Efficacy measured as 1xOR decreases as the

level of exposure to an infective contact increases, and,

as expected, it approaches the measure based on the

incidence proportion ratio when the disease is rare.

Proceeding down Table 4, after all individuals

were exposed to an infective contact once, we mimic a

second round of contacts assuming that the first

round leaves no immune memory. This is represented

at site G in Table 4, in which from the 125 subjects

Table 4. Heterogeneous pre-vaccination susceptibility among sites; heterogeneity of vaccine effect within sites and

confounding from exposure to infection; no boosting; increasing proportion exposed to infection in trial (A: 1/125,

once; B: 1/2, once; F: 1/1, once; G: 2; H: 3; I: 4; J: 5; K: 6; L: 7; M: 8) (VEc=0�5; VE�cc=0;TPc0=TP�cc0=1;

Nc=N�cc=500)

TPc C= c ; VEc=0.5 TP�cc C= �cc; VE�cc=0 VER IPD VEOR

Site A

Vac 1/2 1 249 250 1 2 248 250
0.250 0.002 0.25

Unv 1 2 248 250 1 2 248 250

Site B
Vac 1/2 62 188 250 1 124 126 250

0.250 0.124 0.40
Unv 1 124 126 250 1 124 126 250

Site F
Vac 1/2 125 125 250 1 250 0 250

0.250 0.250 1.00
Unv 1 250 0 250 1 250 0 250

Site G

Vac 1/2 188 62 250 1 250 0 250
0.124 0.124 1.00

Unv 1 250 0 250 1 250 0 250

Site H
Vac 1/2 219 31 250 1 250 0 250

0.062 0.062 1.00
Unv 1 250 0 250 1 250 0 250

Site I
Vac 1/2 235 15 250 1 250 0 250

0.030 0.030 1.00
Unv 1 250 0 250 1 250 0 250

Site J
Vac 1/2 243 7 250 1 250 0 250

0.014 0.014 1.00
Unv 1 250 0 250 1 250 0 250

Site K
Vac 1/2 247 3 250 1 250 0 250

0.006 0.006 1.00
Unv 1 250 0 250 1 250 0 250

Site L

Vac 1/2 249 1 250 1 250 0 250
0.002 0.002 1.00

Unv 1 250 0 250 1 250 0 250

Site M
Vac 1/2 250 0 250 1 250 0 250

0.000 0.000 —
Unv 1 250 0 250 1 250 0 250
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that had not yet shown the outcome of interest, half of

them (to the nearest integer) succumb to the infection.

Successive rounds of contacts follow until after eight

exposures to infection (M), all study participants

present the outcome of interest. All three measures of

efficacy progress towards the null when transmission

increases. The decrease in estimated efficacy would

also occur if the vaccine effect were homogeneous.

If we conducted a study of the vaccine in three dif-

ferent sites, say in sites A, G and L, and estimated

vaccine efficacy from VER, we would expect three

different estimates of the efficacy of the vaccine,

namely 0.25, 0.124, and 0.002, even though the vac-

cine had exactly the same effect in each population,

and the study is randomized and balanced. The dif-

ference among sites would be due to differences in

post-vaccination exposure to infection in the three

sites and not differences in the immune protection

conferred by the vaccine.

C related to infection history: pre-vaccination

heterogeneity, heterogeneity of effect, boosting

In the example in Table 5, the covariate C is related

both to pre-vaccination susceptibility and to the het-

erogeneous response of the vaccine. We let c and �cc

denote previous exposure to infection and no previous

exposure to infection, respectively, wherebywe assume

that half of each population has the covariate value

C=c and half hasC=�cc. Suppose that in the three trial

sites A, B, and F, the susceptibility of immuno-

logically naive unvaccinated susceptibles is the same,

with TP0�cc=0�5. That is, if we took the naive suscep-

tibles from A, B, and F and challenged them with

infection, then the transmission probability for each

of the three groups would be the same, namely 0.5.

In the people with previous exposure to infection,

however, the transmission probability ranges from 0.5

(no change over naive) in site A, to 0.25 at site B to

1/125 at site F. Now assume that the vaccine has an

effect only in people who were previously exposed

to infection. That is, perhaps the vaccine boosts pre-

existing immunity, but has no effect on naive suscep-

tibles. The effect of the vaccine in the previously

exposed groups is assumed to be the same in each of

the three trial sites, while it has no effect in the naive

susceptibles. That is, the biological efficacy of the

vaccine in the three trial sites is identical, with TPR�cc=
r1i=r0i=1 and TPRc=r1i/r0i=0.5 at each site, and the

proportion with each covariate is exactly half at each

site. At site B, the multiplicative protection conferred

by previous exposure to infection is the same as the

protection conferred by vaccine in those people in

whom it has an effect. In Table 5, we further assume

that each person is exposed exactly once to infection

The number of cases among the unvaccinated individ-

uals in the C=c stratum, that is, those with decreased

susceptibility before being vaccinated, decreases from

site A to site F. Despite the effect of the vaccine ac-

tually being the same in sites A, B, and F of Table 5,

the exposure to infection being exactly the same, and

the distribution of C being exactly the same, the esti-

mated efficacy of the vaccine decreases from 0.249 at

site A to 0.008 at site F, depending on how susceptible

those with pre-vaccination immunity are.

C related to infection history: pre-vaccination

heterogeneity, heterogeneity of effect, no boosting

In Table 6, we find exactly the same pre-vaccination

baseline situations in sites A and B, and half in F as

described in Table 5. Assume, however, that the

Table 5. Heterogeneous pre-vaccination susceptibility among sites, heterogeneity of vaccine effect within sites, and

boosting, all modulated by infection history; everyone exposed once to infection (VEc=0�5; VE�cc= 0;TPc0lTP�cc0;

Nc=N�cc=500)

TPc C = c ; VEc=0.5 TP�cc C= �cc; VE�cc=0 VER IPD VEOR

Site A
Vac 1/4 62 188 250 1/2 125 125 250

0.249 0.124 0.40
Unv 1/2 124 126 250 1/2 125 125 250

Site B
Vac 1/8 31 219 250 1/2 125 125 250

0.166 0.062 0.24
Unv 1/4 62 188 250 1/2 125 125 250

Site F
Vac 1/250 1 249 250 1/2 125 125 250

0.008 0.002 0.01
Unv 1/125 2 248 250 1/2 125 125 250
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vaccine provides no additional protection to people

who were previously exposed, C=c, but that it has

an effect in naive susceptible people. In Table 6, the

effect of pre-existing exposure to infection on VER is

opposite to that in Table 5, and VER increases from

0.249 at site A to 0.496 at site F. Once again the bio-

logical effect of the vaccine is the same in the different

sites, but if we do not stratify on pre-existing im-

munity, we get very different efficacy estimates. How

the efficacy estimates vary depends on whether the

vaccine has greater or lesser effect in the people who

had previous exposure. Vaccine efficacy measured as

the risk difference, IPD, however, is constant as long

as exposure to infection is the same at all sites.

Varying the proportion with covariate C, boosting or

no boosting

Tables 7 and 8 represent a comparison analogous to

that between Tables 5 and 6, respectively. However,

in Tables 7 and 8, the relative pre-vaccination

susceptibilities are the same in all three sites, but the

fraction of the populationwith the lowpre-vaccination

susceptibility varies among the different trial sites A,

B, and F. Again, we can imagine that the low pre-

vaccination susceptibility in the group with C=c

comes from immunity acquired due to exposure to

infection prior to the vaccine trial. For simplicity, we

assume that protection conferred by naturally ac-

quired immunity is the same as that conferred by the

vaccine in groups where the vaccine has an effect, so

TP0c=0�5 TP0�cc prior to vaccination. The proportion

of the population with pre-vaccination immunity

(C=c) varies from 1% to 2% in trial site A to 50% in

trial site B to 97–98% in trial site F.

In Table 7, we assume that the vaccine has no effect

in the naive susceptibles, while reducing susceptibility

by 50% in those with previous immunity. In Table 8,

the vaccine has no additional effect in those with

previous immunity, but reduces susceptibility by 50%

in the naive susceptibles. Since the distribution of the

covariate C in the populations A, B, and F varies,

Table 6. Heterogeneous pre-vaccination susceptibility among sites, heterogeneity of vaccine effect within sites, all

modulated by infection history, and no boosting; everyone exposed once to infection (VEc=0�5; VE�cc= 0;

TPc0lTP�cc0;Nc=N�cc=500)

TPc C= c ; VEc=0 TP�cc C= �cc; VE�cc=0�5 VER IPD VEOR

Site A
Vac 1/2 125 125 250 1/4 62 188 250

0.249 0.124 0.398
Unv 1/2 125 125 250 1/2 124 126 250

Site B
Vac 1/4 62 188 250 1/4 62 188 250

0.333 0.124 0.443
Unv 1/4 62 188 250 1/2 124 126 250

Site F
Vac 1/250 1 249 250 1/4 62 188 250

0.496 0.124 0.568
Unv 1/250 1 249 250 1/2 124 126 250

Table 7. Homogeneous pre-vaccination susceptibility among sites, heterogeneity of vaccine effect within sites,

boosting, and increasing Nc, all modulated by infection history; everyone exposed once to infection (VEc=0�5;
VE�cc= 0;TPc0lTP�cc0;NclN�cc)

TPc C= c ; VEc=0.5 TP�cc C= �cc; VE�cc=0 VER IPD VEOR

Site A

Vac 1/8 1 7 8 1/2 246 246 492
0.004 0.002 0.008

Unv 1/4 2 6 8 1/2 246 246 492

Site B
Vac 1/8 31 217 248 1/2 126 126 252

0.165 0.062 0.240
Unv 1/4 62 186 248 1/2 126 126 252

Site F
Vac 1/8 62 434 496 1/2 2 2 4

0.492 0.124 0.564
Unv 1/4 124 372 496 1/2 2 2 4
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then the population average biological effect varies. In

Table 7, it varies from about 0.01 at site A to 0.48 at

site F, and vice versa in Table 8. This is reflected in the

crude VER when each person is exposed once to in-

fection. Thus, how the estimate of the vaccine efficacy

varies will depend on the proportion with pre-existing

immunity and how the vaccine interacts with this.

Effect in naive susceptibles and boosting

In Table 9, we consider a different biologically plaus-

ible situation. Suppose that the vaccine has an effect

both in naive susceptibles and in people with previous

exposure to infection, but due to immune boosting,

the efficacy in those with previous immunity is great-

er. Assume that the vaccine reduces susceptibility by

TPR�cc=0�5 in the immunologically naive, and TPRc=
0.75 in those people with previous immunity. We as-

sume that previous exposure reduces susceptibility by

0.5, so TP0c=0�5TP0�cc. The proportion in each of the

three trial sites with previous immunity (C=c) varies

from about 3% in site A to 50% in site B to 97% in

site F. With exactly one infectious exposure to infec-

tion, the estimated vaccine effect based on VER varies

correspondingly from 0.504, close to the biological

efficacy in the immunologically naive group, to 0.736,

close to the biological efficacy in the previously ex-

posed group. Once again, at the individual level, the

efficacy is the same in all three trial sites given the

previous immune status of the individual. If no one

had had previous exposure to infection, the biological

efficacy would have been exactly the same for every-

one. The previous exposure acts as an effect modifier

of the vaccine, and the final estimate of efficacy de-

pends on the proportion of previously exposed people

in the population.

Varying susceptibility, vaccine response and exposure

to infection

As a final example we consider the situation described

in Table 6 for the three vaccine trial sites, but now let

Table 8. Homogeneous pre-vaccination susceptibility among sites, heterogeneity of vaccine effect within sites,

and increasing Nc, all modulated by infection history, and no boosting; everyone exposed once to infection

(VEc=0; VE�cc= 0�5;TPc0lTP�cc0;NclN�cc)

TPc C= c ; VEc=0 TP�cc C= �cc; VE�cc=0�5 VER IPD VEOR

Site A
Vac 1/4 1 3 4 1/4 124 372 496

0.498 0.248 0.664
Unv 1/4 1 3 4 1/2 248 248 496

Site B
Vac 1/4 62 186 248 1/4 63 189 252

0.335 0.126 0.447
Unv 1/4 62 186 248 1/2 126 126 252

Site F
Vac 1/4 124 372 496 1/4 1 3 4

0.008 0.002 0.011
Unv 1/4 124 372 496 1/2 2 2 4

Table 9. Homogeneous pre-vaccination susceptibility among sites, heterogeneity of vaccine effect within sites,

boosting, and increasing Nc, all modulated by infection history; everyone exposed once to infection (VEc=0�75;
VE�cc= 0�5;TPc0lTP�cc0;NclN�cc)

TPc C= c ; VEc=0.75 TP�cc C= �cc; VE�cc=0�5 VER IPD VEOR

Site A

Vac 1/16 1 15 16 1/4 121 363 484
0.504 0.248 0.667

Unv 1/4 4 12 16 1/2 242 242 484

Site B
Vac 1/16 16 244 260 1/4 60 180 240

0.589 0.218 0.695
Unv 1/4 65 195 260 1/2 120 120 240

Site F
Vac 1/16 30 454 484 1/4 4 12 16

0.736 0.190 0.790
Unv 1/4 121 363 484 1/2 8 8 16
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the number of exposures per person vary from 1 up to

16 (Fig.). The situation in which everyone is exposed

once corresponds to that in Table 6. As the number of

exposures per person increases, all the estimates of

VER go towards 0. Suppose that site F with a low pre-

vaccination susceptibility (pre-existing immunity) also

has the higher transmission with a higher number of

exposures, say five, during the trial compared with

just one in sites A and B. The estimated efficacy will be

only 0.25 in site F, while it will be 0.25 in site A and

0.35 in site B. Thus, the difference in transmission level

will make the crude efficacy in the three sites seem

more similar than it would have been if everyone had

had just one exposure to infection. If, on the other

hand, transmission is higher in sites A and B than at

site F, say five in A and B and one at F, then the

difference in transmission will accentuate the differ-

ences between the sites. The estimates of VER at sites

A and B will both be <0.20, while at site F it is

y0.50. Of course, none of the expected efficacy esti-

mates takes into account the underlying heterogeneity

and do not give an estimate of the actual biological

efficacy of the vaccine in the two strata at each site,

which is exactly the same for all three sites. This could

be part of the explanation for the difference between

the South American SPf66 [22, 23] vaccine trials and

the trials in The Gambia [24].

DISCUSSION

The results on the role and limits of randomization

for both testing of null hypotheses and for estimates

of effect in clinical trials in non-infectious disease are

generally applicable to vaccine field trials. Randomiz-

ation generally ensures that the treatment assignment

mechanism is independent of the outcome of interest

andof covariates relevant in determining this outcome.

It is a good way to prevent additional problems of

interpretation being introduced by the researcher and

thus adding to the credibility of the study. We have

shown, however, that randomization in vaccine field

trials does not guarantee that the estimated par-

ameters are biologically meaningful. Nor does ran-

domization guarantee that the estimates are unbiased,

unconfounded, or insensitive to baseline trans-

mission. The special role of exposure to infection and

the availability of the additional conditional par-

ameters such as the transmission probability in infec-

tious diseases adds another layer of complexity to

choice and interpretation of efficacy estimates.

We have not considered the role of randomization

under Bayesian inference in this paper. Lindley &

Novick [25] argue that randomization is not necess-

ary, because inference is conditional on the observed

data. From a subjective Bayesian standpoint, how-

ever, they add that randomization is good so that the

treatment assignment should appear to be unconnec-

ted with any relevant factor and that other people will

believe the results. Rubin [15, 26] argues that random-

ization is good because it simplifies the analysis for

Bayesian inference by making the ignorability of the

treatment assignment mechanism explicit. However,

even under Bayesian inference, randomization does

not guarantee that an estimate has a biologically

meaningful interpretation.

For purposes of presentation, we have assumed a

very simple multiplicative model of protective effects

and not differentiated between infection and disease.

The relation between the possibly unobservable bio-

logical efficacy of the vaccine and the efficacy as

measured by the observable outcome may be much

more complex and can depend on many factors [14,

27]. A simple extension of the model is to assume that

the vaccine does not influence the probability of be-

coming infected, but that it reduces the probability of

developing disease, thus the probability of being as-

certained as a case, once successfully infected. More

complex models of within-host interactions of the in-

fectious agent with the immune system and their

consequences for design of vaccine efficacy trials and

their interpretation would be worthwhile exploring.

We have focussed on the incidence proportion, that

is, the attack rates, in the development here. Most of

the same points will hold for vaccine efficacy measures

based on incidence rates, that is, Poisson regression,

or hazard rates. Some of the particular results and sen-

sitivity to assumptions of multiplicative vs. additive or

heterogeneous effects of the vaccine will vary. Some
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methods are available for estimating the vaccine effi-

cacy parameters from time-to-event data in the pres-

ence of heterogeneity [28–30]. Heterogeneity must

also be differentiated from waning efficacy [31, 32]

Additional methods to estimate vaccine efficacy from

prevalence data are presented in [33–36].

Meaningful interpretation of vaccine efficacy esti-

mates, even in randomized, double-blind, placebo-

controlled field trials, remains a challenge. As Savage

[37] wrote: ‘whether one is a Bayesian or not, there is

still a good deal to clarify about randomization’.

ACKNOWLEDGEMENTS

The research was partially supported by the Brazilian

Research Council (CNPq), FAPERJ, and NIH

NIAID R01-AI32042.

DECLARATION OF INTEREST

None.

REFERENCES

1. Smith PG, Morrow RH, eds. Methods for Field Trials
of Interventions Against Tropical Diseases: A Toolbox.

Oxford: Oxford University Press, 1991.
2. Efron B. Forcing a sequential experiment to be

balanced. Biometrika 1971; 58 : 403–417.

3. Greenland S, Robins JM. Identifiability, exchange-
ability, and epidemiologic confounding. International
Journal of Epidemiology 1986; 15 : 412–418.

4. Greenland S. Interpretation and choice of effect

measures in epidemiologic analyses. American Journal
of Epidemiology 1987; 125 : 761–768.

5. Gail MH. Adjusting for covariates that have the same

distribution in exposed and unexposed cohorts. In
Moolgavkar SH, Prentice RL, eds. Modern Statistical
Methods, New York: Wiley, 1986, pp. 3–18.

6. Gail MH. The effect of poofing across strata in perfectly
balanced studies. Biometrics 1988; 44 : 151–162.

7. Gail MH, Tan WY, Piantadosi S. The effect of omitting

covariates on tests for no treatment effect in random-
ized clinical trials. Biometrika 1988; 75 : 57–64.

8. Gail MH, Wieand S, Piantadosi S. Biased estimates of
treatment effect in randomized experiments with non-

linear regressions and omitted covariates. Biometrika
1984; 71 : 431–444.

9. Halloran ME, Struchiner CJ. Causal inference for

infectious diseases. Epidemiology 1995; 6 : 142–151.
10. Fine PEM, Clarkson JA, Miller E. The efficacy of per-

tussis vaccines under conditions of household exposure :

Further analysis of the 1978–80 PHLS-ERL study in 21
area health authorities in England. International Journal
of Epidemiology 1998; 17 : 635–642.
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