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SUMMARY

Contact tracing is a well-established disease control measure that seeks to uncover cases by

following chains of infection. This paper examines mathematical models of both single-step and

iterative contact tracing schemes and analyses the ability of these procedures to trace core groups

and the sensitivity of the intervention to the timescale of tracing. An iterative tracing process

is shown to be particularly effective at uncovering high-risk individuals, and thus it provides

a powerful public health tool. Further targeting of tracing effort is considered. When the

population exhibits like-with-like (assortative) mixing the required effort for eradication can be

significantly reduced by preferentially tracing the contacts of high-risk individuals ; in populations

where individuals have reliable information about their contacts, further gains in efficiency can be

realized. Contact tracing is, therefore, potentially an even more potent tool than its present usage

suggests.

INTRODUCTION

Contact tracing is a sophisticated control measure,

applicable to a wide range of infectious diseases. It

has been used to combat infections such as smallpox,

SARS, tuberculosis, and a large number of sexually

transmitted diseases (STDs) [1–9]. Unlike common

control tools such as vaccination or public health

campaigns, contact tracing is a multi-stage process

potentially requiring a large investment of health-care

provider time. The first stage of contact tracing

requires the diagnosis of an infected index case ; then

any likely contacts of this index case must be deter-

mined, notified, and treated; any contacts sub-

sequently found to be infected become new index

cases and the process is repeated [1, 4, 9]. Because of

the time and resources that contact tracing requires,

mathematical models can be useful in attempting to

understand and explain when and whether contact

tracing is a successful strategy.

Previous modelling work has investigated the use

of contact tracing in the context of a number of

infectious diseases, in particular smallpox [5, 10–13]

and STDs [6, 14–17]. In the latter instance contact

tracing has been applied for many years whereas in

the former it is under consideration as an emergency

measure to deal with a new outbreak of infection.

It has been suggested that, when symptoms can be

easily identified and when contact tracing can be

carried out iteratively and rapidly, it can be a highly

effective measure [15–17]. In the case of STDs, contact

tracing is particularly useful for uncovering asymp-

tomatic cases (which can, nevertheless, be identified

in the laboratory), thus providing a way of treating

individuals who would otherwise remain infectious

in the population [18].

The extent to which the idealized contact-tracing

procedure described above is possible varies with
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circumstances and with the characteristics of the

infection against which it is used. For instance, when

there is no curative treatment available identified

cases may need to be quarantined rather than treated

[13]. If there is no quick and reliable diagnostic test

it may be necessary to isolate all contacts, whether

infected or not, until the emergence, or otherwise, of

symptoms demonstrates their infection status [5, 10].

These time delays and the large numbers of patients

involved make it difficult to maintain chains of contact

tracing and to trace quickly in such circumstances.

In this paper we consider the factors that make

contact tracing successful and examine the robustness

of the intervention when these factors are removed.

We focus specifically on the iterative properties of

contact tracing and the speed at which contacts can

be notified. We consider the possibility of further

targeting tracing efforts. In certain circumstances, by

preferentially tracing particular contacts, the inter-

vention effort required to eradicate infection can be

reduced.

METHODS

Contact tracing is intrinsically linked to networks

of interactions within populations, such as sexual

partnership networks for STDs [7, 19–21]. Trans-

mission of infection takes place through inter-person

connections [6, 7, 19–22] and these established links

also allow the progress of infection to be traced. We

define a mixing network to be the set of all individuals

and all links between individuals that could allow

transmission of infection – a sexual mixing network

would contain information about sexual partnerships

(Fig. 1). Contact tracing cannot be attempted without

knowledge of the contacts of an individual, whether

social or sexual, and obtaining this information is a

vital step in the tracing process ; we therefore use

networkmodelling methods to study this intervention.

We use pair-wise models [23] as a robust method

of representing epidemics within a mixing network.

Pair-wise models treat connected pairs of individuals

as their basic variable and therefore lie between the

more usual random mixing approaches [24, 25] and

full stochastic simulations of complete networks

[12, 26]. By explicitly modelling the essential unit of

disease transmission – an interaction between an in-

fected and a susceptible individual – pair-wise models

are able to include the mixing behaviour observed in

networks and can capture, to a large extent, the spread

of infection on networks. Although they cannot

include much of the large-scale structure of net-

works, pair-wise models can capture the local network

structure, which is of primary importance in disease

transmission, and they have been demonstrated to be

accurate and adaptable tools [14]. Pair-wise models

can readily be parameterized once the distribution of

partnerships (whomixes withwhom) in the population

is known, and therefore do not require complex and

time-consuming evaluation of complete mixing net-

works. Pair-wise models retain the flexibility of more

conventional approaches, and have been adapted

to study heterogeneous populations, monogamous

interactions, and contact tracing [14, 15, 17, 27, 28].

In this paper we consider simple infections in which

individuals can be in one of two states : susceptible

or infectious [24, 25]. Individuals become infected at

a rate t per infected partner and recover at rate g,

following which they are once again susceptible.

This form of highly simplified susceptible–infected–

susceptible (SIS) model is appropriate for many

common STDs such as chlamydia and gonorrhoea

[24, 25], and provides a framework within which

further complexities can be introduced. Births and

deaths are ignored, and the mixing network is

assumed to remain fixed. We define the infection

parameter, r, via r=t/g. The notation used in this

paper is listed in the Table.

We denote by [S ] the number of susceptible indi-

viduals and by [I ] the number of infected individuals,

and consider how these numbers will change over

time. [I ] will decrease owing to recovery and will in-

crease when infection is transmitted. Within a mixing

network, infection can only spread between network

S I

I

Fig. 1. An example of a simple mixing network. Individuals
are represented by circles, partnerships by lines. The infec-
tion status of three individuals is included for illustration.

The two highlighted individuals contribute 1 towards [SI ],
the number of susceptible–infected partnerships ; along with
the individual top right they comprise a SII triple.
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neighbours. We denote by [SI ] the number of con-

nections within the network between a susceptible

and an infected individual ; it is only along these

connections that infection can be transmitted. We

can now form differential equations for the evolution

of the numbers of susceptible and infected individ-

uals [23] :

d

dt
[S ]=xt[SI ]+g[I ], (1)

d

dt
[I ]=t[SI ]xg[I ]: (2)

To be iterated, we must also calculate how [SI ], the

number of susceptible–infected pairs, changes over

time; [SI ] increases when infection is introduced into

a susceptible–susceptible pair (which can take place

if one of the susceptibles has an infected partner)

or if recovery occurs within an infected–infected pair ;

[SI ] decreases if the susceptible individual becomes

infected – either from within the pair or by an external

partner – or if the infected individual recovers.

We can now write a differential equation describing

the dynamics of [SI ] :

d

dt
[SI ]=t([SSI ]x[ISI ]x[SI ])+g([II ]x[SI ]): (3)

Here [SSI ] is the number of triples within the network

consisting of a central susceptible individual with a

susceptible and an infected partner, and [ISI ] simi-

larly. Within this equation they relate to infection

entering the pair of interest from outside. The three

pair terms in this equation relate to within-pair

processes (infection or recovery). See Figure 1 for an

illustration of these definitions.

As with the equations for d/dt[S ] and d/dt[I ], new

terms, the triples, have been introduced. We could

continue the process, modelling these in terms of

triples and quadruples, but this would rapidly

become unfeasible, requiring both a large number of

equations and a great deal of data to parameterize.

Instead, in order to close the system, triples are evalu-

ated in terms of pairs and singles using the moment

closure approximation

[ABC ] � (kx1)[AB][BC ]

k[B]
, (4)

where A, B, and C can represent either S or I. k is

the neighbourhood size (i.e. the number of contacts)

of the central type-B individual [23]. The approxi-

mation is derived as follows: an [ABC ] triple requires

an [AB] pair ; the B individual in any such pair has

(kx1) further contacts. Out of a total of k[B] contacts

of type-B individuals within the population, [BC ]

are with type-C individuals, thus any one contact

has a probability of [BC ]/k[B] of being with a type-C

individual. Combining these gives the approximation.

The system can easily be extended to consider

populations containing individuals with a range of

neighbourhood sizes [14] ; the complete set of equa-

tions is given in the Appendix.

In this paper we adapt this set of equations to

consider two distinct contact tracing approaches :

single-step and iterative tracing. In the former case a

proportion of the partners of index cases is treated

Table. List of notation

Notation Definition

g, t Recovery rate, transmission rate per infectious contact
r Infection parameter,=t/g
[S], [I ] Number of susceptible, infected individuals
[SI ] Number of susceptible–infected partnerships within the network

(numbers of other partnership types represented similarly)

k Neighbourhood size, i.e. number of partners in the mixing network
[SSI ] Number of susceptible–susceptible–infected triples

(numbers of other triple types represented similarly)
f, fc Fraction of contacts traced, critical fraction to eradicate infection

[T ] Number of individuals from which tracing is taking place
c, cm Rate of tracing, rate of tracing from individuals with m neighbours
ax1 Duration of the contact tracing process

R0 Basic reproductive ratio : number of secondary cases generated by
one index case in a wholly susceptible population

M Total number of partnerships from each risk group

E, h Available tracing effort, fraction of effort assigned to the
high-risk group
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concurrently with the index patient, thus resulting in

the recovery of pairs of individuals ; this is an ap-

propriate model for certain STD situations when

patients and their partners attend a clinic together,

but does not allow infected contacts to become new

index cases. The second model includes the iterative

behaviour of tracing, with the infected partners of

any diagnosed cases being sought for treatment

and further tracing; in the iterative model, contact

tracing behaves as a hyperparasite of infection,

spreading through the infected portion of the mixing

network.

CONTACT TRACING

Single-step contact tracing

In this model, briefly introduced elsewhere [14], some

fraction, f, of the contacts of an index case receive

treatment at the same time as the index patient. Thus,

a recovery ‘event’ may involve more than one indi-

vidual leaving the infected class. Similar single-step

approaches have been suggested by other authors

[5, 6, 10, 13], particularly in contexts where there is

no simple and rapid diagnostic test available and

where chains of tracing are, therefore, not seen. It

is most applicable in circumstances where formal

contact tracing procedures are not carried out but

when two individuals in a partnership seek treatment

together. The governing equations for single-step

tracing are :

d

dt
[S ]=xt[SI ]+g[I ]+fg[II ], (5)

d

dt
[I ]=t[SI ]xg[I ]xfg[II ], (6)

the extra recovery term resulting from those occasions

when two individuals are treated at once. As above,

the system is closed by modelling the dynamics of

pairs within the network and applying the moment

closure approximation (see Appendix for the com-

plete set of equations).

As shown in Figure 2, the additional recovery

through contact tracing results in a reduction in

equilibrium prevalence. It might be hoped that by

sufficiently increasing the tracing fraction single-step

tracing can eradicate infection altogether. However,

this is not necessarily the case. For example, in a homo-

geneous population, in which each individual has

k contacts, eradication is only possible rk(rk2xrkx
rx2k)<1. As Figure 3 shows, there is only a relatively

small region of parameter space in which single-step

tracing can drive infection from the system. When

contact tracing is restricted to a single step it can only

have a limited effect on the impact of a pathogen.

Iterative contact tracing

The more usual form of contact tacing, as carried out

by GUM clinics, is an iterative process : any infected
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Fig. 2. Equilibrium prevalence plotted against the infection
parameter, r, for a range of tracing fractions, f, in a single-

step tracing model, g=1 throughout, with r varied by al-
tering t. A heterogeneous network was used to parameterize
the model, with individuals of neighbourhood size ranging
from 1 to 13.
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Fig. 3. The region in parameter space for which single-step
tracing can eradicate infection in a homogeneous network
with uniform neighbourhood size k, shown in grey. Above

the shaded region infection persists whatever the tracing
fraction ; below the shaded region persistence is impossible
even when there is no tracing.
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contacts of an index case are treated as new index

cases, and their contacts are also sought. In this

way contact tracing spreads through the population,

following chains of infection. To represent iterative

contact tracing this model, introduced in ref. [15], in-

cludes an extra tracing class (denoted T): following

treatment individuals enter this tracing class and their

contacts are traced. Any successfully traced contacts

likewise enter the tracing class. We assume that

tracing takes place at rate c and that the tracing

process has a duration ax1, after which individuals

return to the susceptible class. The governing

equations for numbers in each class are:

d

dt
[S]=xt[SI ]+a[T ], (7)

d

dt
[I ]=t[SI ]xc[IT ]xg[I ], (8)

d

dt
[T ]=c[IT ]+g[I ]xa[T ]: (9)

The c[IT] terms represent contact tracing from

individuals in the tracing class, T, leading to the

removal of infected individuals into the tracing class.

Once again, the dynamics of pairs are modelled

explicitly, making use of the moment closure ap-

proximation (see Appendix for the complete set of

equations). In this model tracing occurs iteratively,

with each index case being-capable of generating fur-

ther index cases [16, 17, 28] ; the tracing class behaves

as a hyperparasite within the system, passing between

infected individuals.

We see from Figure 4 that iterative tracing is an

effective control measure leading to a large reduction

in infection prevalence. Comparing Figures 2 and 4

shows that iterative tracing has a much more dra-

matic impact than single-step tracing. As has been

shown previously [15, 16], when the tracing process

is rapid compared with the dynamics of infection

(c and a are much larger than t and g) the critical

tracing fraction – the fraction of contacts, fc, that

must be traced to eradicate infection – is given by

fc=1x1/R0, where R0 is the basic reproductive

ratio – the average number of new cases generated by

an infected individual in an otherwise susceptible

population. This relationship holds in a wide range

of scenarios, including heterogeneous populations

and asymptomatic infections [15], and has a relatively

simple explanation: for eradication, each infection

must generate no more than one untraced case, i.e.

(1xfc)R0<1� fc>(1x1/R0). Immediately a differ-

ence between single-step and iterative tracing emer-

ges: in the latter case it is always possible to eradicate

infection.

Part of the power of contact tracing comes from

its ability to target interventions towards the most

high-risk parts of the network; contact tracing

involves surveying the partners of infected cases and

thus it tends to focus on high-risk individuals. Such

individuals, especially when they mix with each other

to form high-risk core groups, tend to dominate the

dynamics of infection; disease is concentrated in core

groups, particularly when population prevalence is

low [25, 29–32]. Contact tracing alters the distri-

bution of infection within the population because

individuals at highest risk of infection are also the

most likely to be traced. We use the mean number of

contacts of infected individuals in a heterogeneous

network as a measure of the influence of core

groups – the higher this number, the more infection is

restricted to high-risk individuals – plotted in Figure 5

against equilibrium prevalence to examine how con-

tact tracing affects the distribution of infection.

In all cases, as anticipated, the greater the preva-

lence, the less it is concentrated in the core groups.

When tracing is considered, the results differ greatly

between the two forms of contact tracing. Single-step

tracing has little effect on the distribution of infection

through the population, whereas iterative tracing

greatly reduces the dominance of core groups. By

repeatedly following links from infected cases, iterat-

ive tracing results in intervention efforts naturally

focusing on areas of the network where prevalence
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Fig. 4. Equilibrium prevalence plotted against the infection
parameter, r, for a range of tracing fractions in an iterative

tracing model, g=1 throughout, with r varied by altering t.
The tracing fraction is given by c/(c+a). The same network
was used as in Figure 2.
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is highest, allowing the most dominant individuals

to be contacted and treated. Because iterative tracing

effectively targets high-risk parts of the mixing

network, the ability of core groups to sustain infection

is reduced, greatly aiding the eradication of infection.

By contrast, in single-step tracing the core groups

retain much of their dominance and eradication is

consequently much more difficult.

Another issue affecting the success of contact

tracing is the speed at which tracing is carried out; for

instance, it is of little benefit to trace all partners of

an index case if tracing does not occur until infection

has already spread many further steps through the

population [13]. The expression above for the critical

tracing fraction depends on tracing being carried

out before secondary cases have had a chance to trans-

mit infection; if tracing is slower we would expect to

have to trace more individuals to eradicate infection.

Figure 6 demonstrates the larger tracing fraction

required to eradicate infection as the speeds of trans-

mission and tracing become similar. Although eradi-

cation remains possible, the critical tracing fraction

becomes so large that it will seldom be attainable

in practice. Thus, contact tracing requires both rapid

diagnostic tests and capable and well-resourced health

services.

Targeted contact tracing

We have noted that contact tracing directs inter-

vention efforts towards at-risk parts of the mixing

network, the neighbourhood of infected individuals.

We now examine the possibility of further targeting

interventions, thus avoiding expending effort on sub-

sections of the population where infection is rare.

To investigate the value of targeted contact tracing

we consider a simplified population structure, con-

sisting of two groups with different mixing properties,

one high-risk (with 10 contacts) and one low-risk

(with four contacts). The numbers of individuals

in each group are selected so that each group has

the same total number of contacts, M. We include

variation in population mixing patterns by adjust-

ing the assortativity of the population [19, 33].

Assortativity is a measure of the extent to which
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Fig. 5. Mean neighbourhood size of infected individuals plotted against equilibrium prevalence for a range of tracing
fractions, using the simulation results shown in Figures 2 and 4. (a) Single-step tracing ; (b) iterative tracing. Also shown
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similar individuals interact ; the more assortative the

population, the more the mixing is ‘ like with like’.

In this two-group model mixing can range from

completely assortative, when all links are within

group, to completely disassortative, when all links are

between individuals in different groups. We note

that high assortativity leads to high R0 whereas

prevalence is maximized at some intermediate assor-

tativity [24, 30, 33]. The first result arises because of

the dominance of the high-risk group during the early

stages of an epidemic: the more coherent this group,

the higher R0. In contrast, prevalence is maximized

when there is both a sufficiently distinct core group

to sustain high levels of infection within itself and

enough contact between the core and non-core for

disease to be widespread in the general population.

The more assortative the population the greater the

segregation of the groups and thus the greater the

unevenness of the distribution of infection.

Tracing effort can be apportioned in various ways

from entirely directed towards one group to entirely

directed towards the other. Use of a simplified popu-

lation allows all possible choices of intervention

targeting to be tested simply by allowing the fraction

of effort applied to the high-risk group to vary be-

tween zero and one. We look here at two means of

targeting tracing: targeting according to the charac-

teristics of the index case, and targeting according

to the characteristics of the contact.

First we consider interventions that alter the rate

at which tracing is carried out from index cases. We

write cm as the rate at which individuals are traced

from an index case with m partners, and allow this

parameter to differ between the two groups, depend-

ing on how tracing-effort is apportioned. Specifically,

if the available effort, E, has a fraction h assigned to

the high-mixing group, chigh is increased by hE/M

(the denominator is in place since the effort is split

between all links that might be traced from this

group). When h=1 all effort is spent tracing the

contacts of the high-risk group.

Figure 7 shows the effort required to eradicate in-

fection when contact tracing is targeted compared to

the effort required when tracing is uniformly applied.

We see that in some cases there is very little difference

between the two approaches. However, targeted con-

tact tracing is worthwhile when the population is

assortative, and the lower the pre-intervention level

of infection the greater the improvement. It is optimal

to direct tracing efforts preferentially towards the

contacts of core group individuals. This can be

explained as follows: for tracing from one group to

be more beneficial than tracing from another, the

groups must have partners with different levels of

infection. The prevalence in the neighbourhood of

an index case will depend partly on the index case

itself, but will also depend on the properties of the

individuals in the neighbourhood – if the neighbour-

hood consists of high-risk individuals, for instance,

then they are likely to have been infected via other

sources. Thus, targeting is likely to be useful when

the population is non-randomly mixed, i.e. either

assortative or disassortative. Moreover, for it to be

worthwhile to contact particular groups the preva-

lence of infection must differ between groups.

Therefore, although disassortative mixing allows for

particular types of individual to be contacted, the

relatively even distribution of infection means that

targeting is of little worth. Assortatively mixed

populations, however, display unevenly distributed

infection, so core group individuals should be sought,

and this can be achieved through tracing from other

core group members. The fact that targeting becomes

more beneficial at lower levels of pre-intervention

prevalence supports this argument – when prevalence

is low the distribution of infection is more uneven.

We can conclude that there are occasions when

contact tracing should be targeted. We have also

seen instances when targeting is not worthwhile and,
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indeed, the effort involved in attempting to target

interventions may be such as to negate any positive

effect. Targeting is only noticeably beneficial in as-

sortative populations and it is unclear whether

human mixing networks, whether social or sexual, are

sufficiently assortative for targeted tracing to be

recommended [1, 29, 34, 35]. An adequate answer

depends on a far more thorough understanding of

the patterns of population mixing and the limitations

and constraints inherent in human interactions.

In principle, adjusting the tracing rate according

to the characteristics of the index case should be

achievable ; index cases are seen by the health services

and can be interviewed to determine their relevant

properties. Alternatively, we can consider targeting

tracing depending on the characteristics not of the

index but of the contact : for example by attempting

preferentially to trace core group individuals. This

requires that index cases can be questioned not only

about the identities and numbers of their contacts,

but also about their contacts’ attributes. To work

effectively, this approach requires that individuals

have good knowledge about their partners and that

they are prepared to divulge this information.

To examine this option requires only the smallest

of adjustments to the model : cm becomes the rate with

which individuals with m partners are traced. We see

from Figure 8 that, once again, there are situations

when this form of targeting is highly beneficial. As

before, the less even the spread of infection the greater

the benefit of targeting contact tracing, but here we

do not require such highly assortative populations to

make targeting worthwhile. Previously, only in such

cases was it possible to be know which individuals

were being traced, but if tracing is carried out accord-

ing to the properties of contacts, then it is always

possible to specifically target core groups. If it is

possible to trace based on the properties of contacts

then the range of circumstances in which significant

savings can be made is noticeably extended.

DISCUSSION

Contact tracing is potentially a potent disease control

measure. To operate at its fullest efficiency it requires

sophisticated and highly trained operatives, capable

of gathering the necessary information, coordinating

efforts, and contacting individuals. Contact tracing

relies on networks of interactions for its success and

therefore requires network-based modelling tech-

niques to capture the tracing process. Here we have

used pair-wise models of epidemics on networks

to examine single-step and iterative contact-tracing

schemes.

Through the construction of models of con-

tact tracing we have seen that to be successful contact

tracing must be carried out rapidly and must act

iteratively. When these conditions are met the impact

on infection prevalence is great ; the natural targeting

of tracing efforts towards the at-risk neighbourhood

of infected index cases allows core group individuals

to be uncovered and treated. The automatic targeting

of contact tracing is a property of the intervention

that emerges over a series of tracing steps. A single-

step tracing scheme is therefore unable to access core

groups as effectively: the failure to trace the partners

of all uncovered cases means that infection can be

rapidly reintroduced. Indeed, it is only for a very

limited range of infection parameters that single-step

tracing can eradicate infection, whereas iterative

contact tracing is much more broadly effective.

Despite the targeting inherent in contact tracing,

there are circumstances in which further focusing

of the intervention significantly reduces the tracing

effort required to eradicate infection. In assortative

networks, where mixing tends to be between indi-

viduals with similar characteristics, great savings are

possible. In such networks the distribution of infec-

tion is highly skewed towards the core group – a lack

of interaction between the groups means that preva-

lence in the general population is lower – and since

the contacts of core individuals tend also to be in the

core, preferential tracing from the core group allows

tracing to target the areas of the network where
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Fig. 8. The effect of assortativity on the required effort to
eradicate infection. As in Figure 7, but here effort is targeted

according to the properties of the contact.
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infection is most likely to be found. In randomly

mixed networks, where the neighbourhoods of all

individuals have broadly similar properties, there is

little to be gained from tracing preferentially from

particular individuals. In disassortative networks

prevalence is reasonably constant across the popu-

lation so there are no obvious desirable targets for

tracing.

When tracing can be adjusted according to the

characteristics of the target individual rather than

the index case, there is a greater range of populations

in which eradication effort is reduced. In this case,

core individuals can be specifically targeted and so

long as there is an uneven distribution of infection this

proves beneficial. In particular, this form of tracing

confers an advantage in randomly mixed populations,

not seen when tracing rates depend on the properties

of the index case alone. Although tracing according

to the properties of the target is an attractive prop-

osition, it is unclear to what extent it is practical.

Studies have suggested that, in sexual mixing net-

works, individuals are not well-informed about their

partners’ behaviour [36, 37], but, dependent on the

biases present in individuals’ perceptions, there may

be sufficient information for targeted tracing to be

feasible. Furthermore, there are cases where risk

is highly correlated with characteristics such as

occupation, ethnicity, or place of residence [20, 30,

32, 38], in which case relevant information about

contacts may be more readily available. Further net-

work studies are needed to clarify these issues, but it

certainly appears that with good network knowledge

and considered use of available resources traditional

methods of disease control can be improved.

APPENDIX

SIS governing equations

For completeness, the full set of pair-wise equations for an SIS type infection in a heterogeneous net-

work is given below. In such a population, where the neighbourhood size varies, individuals are labelled

acccording to both their infection status and their neighbourhood size. Thus, [Sm] is the number of susceptible

individuals with m contacts and [SmIn] is the number of pairs consisting of a susceptible with m contacts and an

infected with n contacts. Other terms are defined analogously. All triples in the system are evaluated in terms

of pairs and singles using the moment closure approximation:

[AmBnCp] � [AmBn][BnCp](nx1)

n[Bn]
, (10)

where A, B, and C can be either S or I. This approximation is derived from the same reasoning as outlined in the

main text.

d

dt
[Sm]= g[Im]xt

P
n
[SmIn],

d

dt
[Im]=xg[Im]xt

P
n
[SmIn],

d

dt
[SmSn]=xt

P
q
([SmSnIq]+[IqSmSn])+g([SmIn]+[ImSn]),

d

dt
[SmIn]= t

P
q
([SmSnIq]x[IqSmIn])xt[SmIn]xg[SmIn]+g[ImIn],

d

dt
[ImIn]= t

P
q
([ImSnIq]+[IqSmIn])+t([SmIn]+[ImSn])x2g[ImIn]:

9>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>;

(11)

In order to parameterize the system it is necessary to know the number of partnerships within the network

between individuals of all neighbourhood sizes ; that is to say, we need to know [mn], the number of pairs within

the network consisting of one individual with m contacts and one with n contacts (ignoring infection status),

for all values of m and n. This information can be obtained by counting pairs within a specific mixing network

or can be determined to represent a population of interest. For example, in the targeted tracing section we

consider a population consisting of two groups, one with 10 contacts and one with 4; by setting [4 10]
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(the number of between-group contacts) appropriately we can obtain a population with a required level of

between-group mixing.

Governing equations for single-step contact tracing

As described in the main text, the equations governing the dynamics of the numbers of susceptible and infected

individuals in the presence of single step contact tracing are

d

dt
[S]=xt[SI ]+g[I ]+fg[II ], (12)

d

dt
[I ]=t[SI ]xg[I ]xfg[II ], (13)

where f is the fraction of contacts that are traced. As in the tracing-free SIS case, we must form similar equations

for the behaviour of the various pair types ; reasoning as before gives

d

dt
[SS]=x2t[SSI ]+2g[SI ]+2fg[II ]+2fg[SII ], (14)

d

dt
[SI ]=t([SSI ]x[ISI ])xt[SI ]xg[SI ]+g(1xf)[II ]+fg([III ]x[SII ]), (15)

d

dt
[II ]=2t[SI ]+2t[ISI ]x2g[II ]x2fg[III ]: (16)

Exactly the same moment closure approximation as used previously closes the system and allow it to be

iterated.

Governing equations for iterative tracing

As described in the main text, the equations governing the dynamics of the numbers of susceptible, infected, and

tracing individuals in the presence of iterative contact tracing are

d

dt
[S]=xt[SI ]+a[T ], (17)

d

dt
[I ]=t[SI ]xc[IT ]xg[I ], (18)

d

dt
[T ]=c[IT ]+g[I ]xa[T ], (19)

where c is the tracing rate and ax1 the tracing duration. Again, we form equations for the behaviour of pairs.

d

dt
[SS]=x2t[SSI ]+2a[ST ], (20)

d

dt
[SI ]=t([SSI ]x[ISI ])xt[SI ]xg[SI ]+a[IT ]xc[SIT ], (21)

d

dt
[ST ]=xt[IST ]+g[SI ]+a([TT ]x[ST ])+c[SIT ], (22)

d

dt
[II ]=2t[ISI ]+2t[SI ]x2g[II ]x2c[IIT ], (23)

d

dt
[IT ]=t[IST ]+g([II ]x[IT ])xa[IT ]+c([IIT ]x[TIT ])xc[IT ], (24)

d

dt
[TT ]=2g[IT ]x2a[TT ]+2c[IT ]+2c[TIT ]: (25)

Exactly the samemoment closure approximation as used previously closes the system and allow it to be iterated.
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