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SUMMARY

The ongoing worldwide spread of the H5N1 influenza virus in birds has increased concerns of

a new human influenza pandemic and a number of surveillance initiatives are planned, or are

in place, to monitor the impact of a pandemic in near real-time. Using epidemiological data

collected during the early stages of an outbreak, we show how the timing of the maximum

prevalence of the pandemic wave, along with its amplitude and duration, might be predicted by

fitting a mass-action epidemic model to the surveillance data by standard regression analysis.

This method is validated by applying the model to routine data collected in the United Kingdom

during the different waves of the previous three pandemics. The success of the method in

forecasting historical prevalence suggests that such outbreaks conform reasonably well to the

theoretical model, a factor which may be exploited in a future pandemic to update ongoing

planning and response.

INTRODUCTION

Three influenza pandemics have occurred during

the 20th century (1918, 1957 and 1968) and have been

reviewed in detail elsewhere [1–3]. Each of these

resulted in more than a million deaths over a relatively

short period of time, with the 1918 pandemic being by

far the worst, with at least 20 million deaths world-

wide. Morbidity associated with pandemic influenza

may be far more severe than seasonal influenza due

to the lack of prior immunity in the population. In the

event of a new pandemic influenza strain emerging,

it is likely that there will be few options available

for its control. Currently, a vaccine is unlikely to be

available in the first wave and the current levels

of antiviral stocks mean that their use is unlikely to

be widespread enough to control transmission. His-

torically, pandemics have lead to illness not only in

the age groups usually affected by seasonal influenza,

but across the entire population [1–5]. A US study

reported that if large proportions of the population

are off work the cost of a new pandemic strain could

be, potentially, in the order of billions of dollars [6].

Many contingency plans are based in part on the

data from previous pandemics. However, the epidemi-

ology of previous pandemics has varied considerably

[7], and therefore current contingency plans, which

have had to be flexible, will need to be re-evaluated

to some extent during the next pandemic. This will

be enhanced by the ability to forward predict the

case incidence rates and public health burdens

arising during a future pandemic.
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Currently a number of models exist to detect out-

breaks of seasonal influenza. Serfling used regression

analysis to derive epidemic thresholds from weekly

pneumonia and influenza deaths for 108 US cities [8].

This method has been adapted to look at reported

case loads in France during the late 1980s [9], and

fixed thresholds have been used to consider regional

increases as a predictor of national increases [10]. A

kriging method has also been applied to study spatial

effects in France [11] as has the method of analogues

[12]. Others have used time-series analysis based on

previous epidemic data to define epidemic thresholds

[13], or applied a semi-quantitative method based on

a predefined epidemic threshold [14]. A linear re-

gression model, applied to cumulative cases at the

steepest ascent of the epidemic curve has also been

used to predict weekly incidence [15]. Other methods

have relied upon historical data or were individual-

based and unsuitable to modelling large-scale current

epidemics [16–18]. Generally, all of these methods

are based on increases in background influenza-like

illness (ILI) reporting and the characteristics of

previous influenza epidemics to detect epidemics,

although some offer the ability to forecast future

incidence [12, 15, 16, 18]. However, they may not be

applicable to pandemic influenza as historical data

may not be reliable predictors of a new pandemic

strain. Mills et al. [19] recently considered the trans-

mission of the 1918 influenza pandemic and estimated

an effective reproduction number of 2–3 by linearizing

an SEIR model. Wallinga & Tuenis [20] developed a

real-time prediction tool for SARS which requires

detailed epidemiological information and does not

deplete the susceptible population.

During a pandemic a number of data sources

related to disease incidence will be available, such as

the weekly number of patient consultations through

general practitioners (GPs) and/or deaths. The model

developed and described below to forward predict

future incidence is flexible enough to use these differ-

ent datasets and thus can be adapted across different

spatial scales or countries with similar surveillance

systems.

METHODS

Any reported data related to influenza prevalence

during a pandemic will be a scaled form of either cases

or deaths over some period. We then assume that such

incidence varies, with normally distributed residuals,

about some theoretical epidemic curve arising from

a simple deterministic mass-action model [21]. For

further discussion of the form the data may take and

the details of the model please refer to the Appendix.

Pandemic influenza is transmitted through person-

to-person contact in a similar manner as seasonal

influenza. An individual case has a short latent period

between their infection and the development of

infectiousness, before becoming asymptomatic and

infectious then progressing to an infectious state

with a probability of becoming overtly symptomatic.

The timescales involved in such a kinetic process may

vary from strain to strain and even wave to wave of

a pandemic. However, in general it has been suggested

that influenza cases are typically latent for 2 days,

infectious for 2.5 days [22], with viral shedding start-

ing 1 day before symptoms develop in symptomatic

cases [23]. For further discussion of how the assumed

disease durations are incorporated into the model

please refer to the Appendix. More precise estimates

of these disease characteristics should be obtained

from detailed epidemiological studies in the early

stages of any new pandemic. These estimates would

then simply be incorporated into models such as the

one here. In place of better estimates for the historical

pandemics here, the above quoted values have been

used in this study.

We have nine parameters in the model. Two (the

population size and frequency of reporting) are data

dependent and thus known ahead of time. As stated,

we have chosen to fix the disease kinetics [latent,

asymptomatic (and infectious) and symptomatic

(and infectious) periods: 2 days, 1 day and 1.5 days

respectively]. The initial number of infectious cases

is assumed to be 1 and we shift the model-derived

wave so that it is locked in phase with the observed

wave. Of the remaining two parameters the effective

reproduction number RE and the proportion of cases

that are featured in the data, denoted c (i.e. pro-

portion of infections reporting as cases, or reported as

deaths, assuming for a pandemic that background

immunity is 0), are unknown and derived as part of

the fitting process. These parameters are varied in the

model to generate epidemic curves, one of which will

be the maximum likelihood estimate (MLE) for the

anticipated underlying behaviour of the epidemic. This

MLE is then used to produce a family of epidemic

curves that within credible limits fit the data. The

range of values that c may attain is strictly bounded

between 0 and 1 (see Appendix for details) and the

MLE of the true epidemic curve arising from using

this range of values is hereby called the formal MLE.
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However, it is hoped that for a future pandemic

epidemiological studies undertaken during the early

stages of an outbreak will provide data to improve

this bound so that Xx<cfX+. Here, therefore,

we also attempt to bound c within more realistic

biological limits based on past experience of such

data.

The raw ILI consultation data from the Royal

College of General Practitioners (RCGP) show the

weekly cumulative number of GP consultations per

100 000 people [24] ; note this data does not represent

actual influenza incidence but the reporting of ILI

with no adjustment for ‘background’ ILI reporting.

The RCGP data is a valuable dataset because much

work has been performed analysing the time series

to derive epidemic thresholds [25], thus providing

early warning of abnormal reporting trends, and in

understanding the relationship between the data and

actual clinical community illness [26]. However, of

the available datasets for previous pandemics only

the 1968 Hong Kong pandemic was recorded by the

weekly returns service of the RCGP as the scheme was

not in place for the earlier ones. For the other two

pandemics, we have the reported case fatalities over

the whole population. In the analysis below the data

from 1918 include all deaths ascribed to influenza [4]

whilst the 1957 data only reflect fatalities where the

cause of death was given as influenza [5] (i.e. this

data does not include excess pneumonia or bronchitis

deaths). Unfortunately, we were unable to source

weekly UK data that reliably reflected influenza-

related mortality for the 1968–1969 pandemic (mor-

tality data from the Office of National Statistics is

only available by month prior to 1970). Unlike the

RCGP data, there are no clearly defined exceedance

thresholds for reported deaths.

RESULTS

We apply the model to the three pandemic outbreaks

of the 20th century below, beginning with the RCGP

records from the first and second waves of the 1968

pandemic and then consider reported deaths due to

the other two pandemics. The data is treated as if

it was arriving in real time without knowledge of

future prevalence rates. We begin the fitting pro-

cedure when the reporting rate has increased for three

consecutive weeks. In each case, week 0 is then given

in the fitting procedure as the first of these 3 weeks.

In the case of fitting to the 1968–1969 RCGP data,

this will also be when the reporting rate has risen

above the predefined epidemic baseline threshold of

200 cases/100 000 people in use at the time [25].

In the analysis below for each pandemic wave, the

estimates for RE and c that arise from the fitting

procedure converge to fixed values, denoted by r and

C respectively, which for the relevant waves are shown

in Table 1. In Figure 1 we show the convergence for

RE/r (which should tend to 1) with time (in weeks)

either side of the week of maximum prevalence, given

as 0 centred on the x-axis. For the 1957 and 1968–

1969 outbreaks, RE and c approach to within 10%

of r and C 2 weeks before the maximum influenza

incidence for each wave. The 1918 waves behave a

little differently. The first wave was very short and

was only able to be fitted just as peak prevalence was

occurring, which was also confounded due to data

being unavailable for weeks prior to those shown

(Fig. 4). Therefore, we report the final MLE pre-

diction in the absence of converging behaviour.

The second wave of the 1918 pandemic converged to

Table 1. Converged maximum likelihood estimators

for the key epidemiological parameters in each

pandemic wave

Year Wave r C X+ Xx

1918 1 1.83 0.0004 0.0006 0.0002
1918 2 1.73 0.0027 0.00405 0.00135

1918 3 1.54 0.0017 0.00255 0.00085
1957 1 1.50 0.0002 0.0003 0.0001
1968 1 1.28 0.08 0.12 0.04
1968 2 1.56 0.09 0.135 0.045
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Fig. 1. Figure showing RE/r from the model as more data is
incorporated. The x-axis shows the distance from the week
of maximum prevalence. Solid black line : 1968–1969 first
wave ; dashed black line : 1968–1969 second wave ; dotted

black line : main wave 1957; solid grey line : 1918–1919 first
wave ; dashed grey line : 1918–1919 second wave ; dotted
grey line : 1918–1919 third wave.
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a steady solution (¡10% of subsequent estimates)

3 weeks before the peak. Interestingly, incorporating

data for further weeks starts to break this conver-

gence; this is because of a shoulder in the reported

epidemic curve’s tail and so in Table 1 we report

the estimates based on fitting to the weeks up to and

including maximum prevalence. The third wave does

not converge as convincingly to an obvious steady

value (but still within¡10% of subsequent estimates)

and so we use the parameters arising from the fit to

10 weeks of data. The values reported in Table 1 are

consistent with those reported elsewhere [7].

Figures 2–7 show the predicted epidemic curves

for each pandemic wave where the known incidence

data used to derive the relevant fit is represented by

solid diamonds with the unknown future incidence

shown as empty diamonds for comparison of the de-

rived fit. The x-axis in each panel shows the number

of weeks elapsed since the first rate used in the

model was reported. Dotted lines appear in these

Figures and represent the results of the method with

the formal bound (0<cf1). The unreliability of

these curves in the early stages of an outbreak is

because the model-derived value of c is unrealistic

in these situations. In the event of a new pandemic,

sero- and other community-based epidemiological

surveys (e.g. reporting behaviour and ILI symptoms)

carried out rapidly at the earliest opportunity during

the outbreak, both at home and abroad, would pro-

vide the required estimates to more reliably bound c.

As a surrogate for such data we use the derived values

of C from Table 1. We amend our estimate of the

behaviour of the limiting values on c so that the

limits are X¡=(1¡0.5)C, as shown in Table 1, and

note that we have intentionally placed a large error

on c of 50% because we are assuming the value.

We would anticipate that the statistical analysis of

epidemiological investigations in a future outbreak
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Fig. 2. Figures showing the first wave of the 1968–1969 influenza pandemic with modelled week on week projections arising
from fitting procedure. Solid diamonds : known incidence ; open diamonds: future prevalence rates (currently unknown) ;
solid curve : the optimal bounded MLE fit; dashed lines : 95% credible intervals on epidemic curve trajectories ; dotted line :

best formal MLE fit (in panels where no dotted curve appears it is coincident with the solid curve). Week 0 corresponds to the
week ending 3 January 1969.
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would make the error around this parameter smaller

than this. The solid curve in each panel shows the

MLE arising from placing such constraints on c

whilst the dashed curves reflect the envelope of

potential epidemic trajectories that also fit the avail-

able data within a 95% credible interval given the

constraint X¡=(1¡0.5)C. In panels where no dotted

curve appears it is coincident with the solid curve.

Hong Kong influenza pandemic: 1968–1970

The pandemic that initially struck the United King-

dom in 1968 exhibited two waves. The ILI data show

that the first wave initially increased slowly produc-

ing only a weak signal and we delay fitting the model

until the observed weekly rate is above 200 cases/

100 000 population and has increased for three con-

secutive weeks.

Figure 2 shows the model fitted to the first wave

of this pandemic. The three left-most panels in the

top row of Figure 2, which correspond to fits to the

first 3, 4 and 5 weeks of data respectively, all contain

dotted curves showing the formal MLEs for the

epidemic curve. We see that for 4 and 5 weeks of data

the prevalence rates from the formal MLE eventually

exceed the maximum plotted rate in each panel and

thus considerably overestimate future prevalence.

The fit to just 3 weeks of data has a very small stan-

dard error (se*y7.8r10x3) associated with it and

considerably underestimates future incidence. In the

remaining panels the formal MLE (dotted curve)

coincides with the solid line for the bounded MLE

defined below.

Using data from Fleming et al. [26, and references

therein] we find that the average RCGP reporting

rate for ILI in seasonal influenza is y1/10 cases,

giving an independent estimate of c in the order of

0.1. From Table 1 we see that C=0.08, so whilst this

model-derived value is more contemporary to this

outbreak than the independent estimate from the

literature, they are nonetheless close.

Therefore, based on the MLE with the more

reasonably bounded c we observe, in all the panels

of Figure 2, that the envelopes around the weekly

updated predicted epidemic curves encompass all but

one future observation of the actual weekly preva-

lence right to the end of the pandemic wave. In ad-

dition, the one observation that falls below the

lower bound of the envelope (Fig. 2: panel three, top

row) does so only marginally. The predictions that

are constrained by the more biologically feasible

ranges for c therefore appear to provide reasonable

bounds within which to predict the future course

of the epidemic and the envelopes become tighter as

more weeks of data become available. This is despite

the fact that this is only a relatively minor pandemic

wave. The maximum prevalence is, for example, of

a similar magnitude to the previous year’s seasonal

influenza activity, with a maximum of only around

400 cases/100 000 population per week compared to

over 1200/100 000 in the second wave of the 1969

pandemic (cf. Fig. 3).

The second pandemic wave occurred in 1969 and

the results of the model for this wave are shown in

Figure 3. Again, we see the pattern of over- or under-

estimation during the early stages of the pandemic

when we rely upon the formal MLE (dotted curves

in panels reflecting results of fitting to 3 and 4 weeks

of data and coincident with the solid curves in all

other panels). Using the relevant values of X¡ shown

in Table 1 we derive our bounded MLE. Again the

derived value of c is in good agreement with the

combination of reporting rate of community ILI cases

and proportion of asymptomatic cases discussed

above [26]. With the assumption of the bounds on

c the predictions estimate observed future incidence

reasonably well, and much improve estimates of the

timing of the maximum prevalence rate, which are

correct to within 1 week. The reported value for week

11 in the last two panels in Figure 2 (based on 9 and

10 weeks of data) falls outside the MLE envelope.

However, this is again marginal and we are well past

the peak rate and at a level that would be considered

normal seasonal behaviour.

Spanish influenza pandemic: 1918–1919

The 1918 pandemic occurred in three waves. No prior

assumptions were made concerning case-fatality

rates (c) in this analysis. Further, we have no prior

reliable estimate of RE, particularly since some

cases will have been subclinical. As stated above we

require epidemiological studies to assist the bounding

of parameter space and we use the values of c

given in Table 1 in lieu of these studies. Given c the

envelope of feasible solutions (dashed curves) are

derived.

For the first pandemic wave (see Fig. 4), the formal

MLE happens to coincide with the constrained MLE

in each situation. The modelled epidemic curves all

predict the correct timing of maximum mortality

and offer reasonable predictions for forthcoming
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weeks with the exception of the fit to the first 3

weeks of data, where the standard error of the MLE

is very small and so the envelope of feasible fits is

indistinguishable from the solid line. The model

requires at least three data-points and it is unfortu-

nate for fitting the model that earlier data are missing

and after only 3 weeks we are at the peak for this

wave.

Figure 5 shows the second wave of influenza to

attack during 1918, which had much higher weekly

mortality than the earlier wave. First, if we look at

the formal MLE to 3, 4 and 5 weeks of data then we

see gross overestimates for the eventual magnitude

of the outbreak (dotted curves), despite short-term

predictions for the next week being sound in each

case. Even with the relevant bound on c the MLE

arising from 3 and 4 weeks of data (solid lines) does

not provide good estimation of subsequent weeks’

mortality; this is because the influenza signal in the

data is not strong enough at this time. However,

the upper dashed 95% credible envelope does still

capture most of the future weeks’ observed data and

captures the timing of the peak of the signal. Output

arising from fitting to 5–9 weeks of data converges to a

small region of parameter space, hence the proximity

of the envelope to the MLE.

However, the envelope from the fit to 9 weeks of

data does not capture incidence in week 10 quite

as well as previous fits. This is because a shoulder

appears on the downslope of the outbreak curve,

which may reflect a co-circulating epidemic variant of

influenza or perhaps some spatial or age heterogeneity

in the behaviour of the epidemic [4]. Simple mass-

action models, like the one presented here, are not

able to capture such behaviour in the epidemic curve,

unless these features are well understood and can be

parameterized ahead of time. We can fit, but not

predict in advance, this shoulder by filtering out the

main signal (if we assume the fit to 9 weeks of data

has captured this signal), and then we find RE=1.82

for this shoulder. Such a mathematical process is

possible but its biological relevance, and practicality,

during analysis of an outbreak is debatable because

of the extra parameterization and data required.
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Fig. 3. Figures showing the second wave of the 1968–1969 influenza pandemic with modelled projections (lines and symbols
as in Fig. 2). Week 0 corresponds to the week ending 21 November 1969.
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Figure 6 show the results from our analysis of the

third wave of the 1918–1919 pandemic. We observe

that the formal MLE (dotted curves) for the fit to 3,

4 and 5 weeks of data over-predicts actual mortality.

However, the bounded MLE in each panel provides

a useful estimate of future prevalence until the tail of

the pandemic curve is reached. Indeed the bounded

estimates based on limited data (3, 4 and 5 weeks)

only overestimate the timing of maximum prevalence

in each case by 1 week.
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Fig. 4. Figure showing the first wave of the 1918–1919 influenza pandemic with modelled projections (lines and symbols as
in Fig. 2). Week 0 corresponds to the week ending 25 June 1918.
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Asian influenza pandemic: 1957–1958

Figure 7 shows the recorded deaths in England and

Wales ascribed directly to influenza from the end

of August 1957, and captures the main wave of

the pandemic [5]. It takes 7 weeks of data before the

formal MLE equates to the bounded MLE. The

formal fit to 3 weeks of data results in a large over-

estimate of subsequent prevalence while interestingly

the fits to 4, 5 and 6 weeks all underestimate sub-

sequent prevalence. This is because the data behaves

in such a manner that the formal MLE has an un-

realistically low value for the optimal c. The bounded

MLE and the envelope around its 95% credible

solution space, however, provide considerably better

and more useful predictions for the future course

of the pandemic.

SUMMARY

All of our derived bounded MLEs and associated

potential solution envelopes are reasonable predictors

of future prevalence rates and are much better than

empirical judgements based purely on experience.

Table 2 supplements Figure 1 and shows some

summary measures of fit for each pandemic wave

based on predictions from 4 and 5 weeks of data. The

relative error in the amplitude of the peaks is simply

the ratio of eventual peak incidence in the data and

the predicted peak incidence from the model, which

should tend to unity as the fit improves. We see, in the

worst case, amplitude correctly predicted to within

50%, but more usually to within 20%. This is con-

siderably better than relying on past experience,

where, based on the pandemic waves illustrated here,

actual amplitudes have varied by almost 300% (the

two Hong Kong pandemic waves) and 550% (first

wave of 1918 compared with the second wave 1918

pandemic). Table 2 also shows that we may draw

conclusions regarding the timing of the peak of a

pandemic wave [within ¡1 week with RCGP data,

x2 to +1 weeks with mortality data (+3 on one

occasion)], again an improvement on using expec-

tations from historical pandemic data, where time
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Fig. 6. Figure showing the third wave of the 1918–1919 influenza pandemic with modelled projections (lines and symbols as
in Fig. 2). Week 0 corresponds to the week ending 25 January 1919.
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to peak from initial increase has varied from 3 to

9 weeks. Finally, predictions of epidemic duration are

reasonable, being within 2 weeks of actual duration

forRCGPreports (1968–1969)andx1 tox4weeks for

mortality data (1957, 1918). [Epidemic duration here

being defined as the number of weeks that the RCGP

ILI rates exceed 200/100 000 per week, or mortality

exceeds 500 deaths per week (1918–1919) or 200

deaths per week (1957)], the thresholds for mortality

data being arbitrarily chosen in these cases to facilitate

their consistent application to the data at both ends of

the pandemic. This compares well to simple expec-

tations from previous pandemics which, for the

thresholds given above, have varied from6 to 16weeks.
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Week 0 corresponds to the week ending 31 August 1957.

Table 2. Summary information regarding fits to data

Measure of fit

Weeks
used in

estimate

1918
wave 1
(peak in

week 3)

1918
wave 2
(peak in

week 9)

1918
wave 3
(peak in

week 6)

1957
(peak in

week 8)

1968
wave 1
(peak in

week 5)

1968
wave 2
(peak in

week 7)

Relative error in amplitude of
predicted and observed epidemic peaks

4 1.04 0.54 1.29 0.87 0.98 1.51
5 1.02 1.19 1.41 0.86 1.06 0.80

Difference in timing of observed

and predicted epidemic peak (weeks)

4 0 3 1 x2 1 0

5 0 0 1 x2 1 x1

Difference in epidemic ‘duration’ 4 x1 x1 x1 x4 2 0
5 x1 x4 x1 x4 2 x2
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DISCUSSION

The purpose of a model such as the one described here

is to assist public health officials reassess ongoing

disease burdens and related resource allocations and

realign contingency plans whilst a pandemic is in

progress. Its purpose is not to replace existing con-

tingency plans, which should be sufficiently robust

and flexible to accommodate a range of likely

scenarios and be in place ahead of time.

The model makes several assumptions in the way

it is applied. It is assumed for example that the data

recording influenza prevalence will be regularly and

consistently reported, although we observe that the

burden on GPs and other public health professionals

to provide data at the same time as providing the

necessary care for their patients may be great and

data collection schemes could break down or become

less reliable as a result. It is also presumed that case

definitions remain the same throughout the outbreak

and any lags between cases appearing in the com-

munity and those cases being assimilated into the

data streams remain broadly constant. Such assump-

tions would apply to any similar statistical fitting

procedure, unless the changes in reporting behaviour

can be quantified and accommodated by the model.

We also assume prior knowledge of the disease

parameters (i.e. the duration of the latent and

infectious periods) from independent epidemiological

studies. The model here also fundamentally depends

on the epidemic signal arising from the data con-

forming to a curve arising from a homogeneous

mixing mass-action framework. Should heterogeneity

in the mixing become a dominant feature, be it spatial,

demographic or strain dependent the model will

become less reliable. That is, unless the model is

adjusted by the incorporation of further parameters

(such as age-structured mixing) and that these par-

ameters can be reliably and independently assessed or

fitted by statistical procedures.

Furthermore, forecasts would be weakened if

public health interventions were initiated (or re-

moved) midway through a pandemic since the method

assumes a constant basic reproduction number.

However, in this situation the method could be used

in some instances to measure the effectiveness of

said interventions. If interventions were put in place

before a clear signal appeared in the reported data,

and remained equally effective throughout, their effect

would be implicitly incorporated into the model-

derived reproduction number and the estimates of

future incidence would remain valid. If the timing

of new or escalated interventions was known they

would be expected to coincide with deviations from

the ‘ ideal ’ behaviour and should also become obvious

from the fitting procedure.

Nonetheless, we have shown that statistical fitting

of a simple mass-action compartmental-type model

did predict future measures of pandemic influenza

incidence reasonably well, but only if sensible

bounds were placed on key input variables, particu-

larly at the beginning of pandemic waves. In the ex-

amples shown here, the formal MLE prediction

(dotted curves in each figure) did require less epidemi-

ological data ahead of time than the constrained

MLE approach but also needed more (4–6) weeks of

data before it matched the trajectory of the sub-

sequently observed data fairly well. It is clearly im-

portant, therefore, that in-depth epidemiological

studies are performed early in the pandemic to

attempt to independently estimate the parameters

needed to bound the fitting process, as the formal

unbounded MLE will be unreliable for producing

early predictions. The relatively infrequent individual

weekly reports that lay outside the envelope of our

fits were consistently in the tail of the epidemic. The

fact that the tails of each wave were not well captured

by the model may be due to a range of factors,

including heterogeneous mixing in the population.

However, for the purposes of the problems being

addressed here the fitting of these tails is of much less

consequence than in other types of epidemic model-

ling applications.

As stated previously, more complex models in-

corporating demographic heterogeneities could be

developed if they could be adequately parameter-

ized. Further, if available, multiple surveillance data

streams should be analysed to provide consistency

checks and more robust estimates from the output

derived. We would hope, for example, that for the

next pandemic in the United Kingdom, NHS direct

data, RCGP reports and ONS mortality records

would all be available and able to be used con-

currently [27]. More frequent observations than

weekly reports might also be expected to improve

the results particularly in the early few weeks of a

pandemic (i.e. 3 or 4 weeks), but only if observational

errors are not amplified in the data in tandem with

the more frequent reporting. Indeed, some of the

reporting schemes identified above may well be

enhanced to provide daily or twice weekly reports for

a future pandemic.
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APPENDIX. Data analysis and modelling

Data

Let us assume that the observable symptomatic case-

incidence data is constructed in the following manner

IW=gIAW+IMW+rW,

where, at a reporting point w we find IAW is the true

infected (and assumed infectious) case incidence

rate, rW is a normally distributed random variable

with mean zero and constant variance sA, whilst g

reflects the relationship between the data source

and the population. For example, the RCGP

provides weekly reporting rates and so g in this situ-

ation would be the probability that an infected case

reports to their GP. If the data showed the hospitali-

zation rate during an outbreak then g would be

the probability that an infected case is admitted to

hospital.

Further noise is allowed in the data through the

mean seasonal number of mistaken records IMW. Away

from a pandemic wave, we assume IAW ! 0 whilst the

mistaken records IMW are assumed constant (although

not necessarily the same value either side of the epi-

demic window, nor the same value from year to year;

whilst GP consultations appear to have decreased

over a long timescale the precise behaviour of IMW
is beyond the scope of this study). During a sizable

influenza outbreak we assume misdiagnosis is negli-

gible (IAW4IMW) and so for simplicity we allow IMW ! 0,

although we intend to explore the validity of this as-

sumption in future work). The period between each

report is tR days.

We assume deaths from influenza occur some time

(which is fitted, see later) after a loss of infectiousness

and so a case that results in death will be reported

after they were recorded as a case. Such observed

deaths D, are assumed to take the form

Dw=dIDw+dw,

where dIDw represents the expected reported deaths

with d, the proportion of infected cases that die and

subsequently get recorded in the data and dw is the

weekly error between the actual and expected epi-

demic curves. In the analysis, some datasets will

reflect only deaths directly attributed to influenza

whilst others will include probable influenza deaths

due to pneumonia and other complications also.

Mistaken identification of cause of death is assumed

proportional to the number of reported deaths and

thus implicit in the definition of d.

Model

Given the two basic forms of potential data (some

scaling of cases or a scaling of recovered cases) we

build a model with the flexibility to accommodate

either example. Therefore, we formulate a determi-

nistic mass-action model [21] incorporating latency,

E, asymptomatic contagiousness, A, and then symp-

tomatic contagiousness, I, into three separate classes

along with susceptible, S, and recovered, R, popu-

lations. A case is typically assumed latent for tE
days, asymptomatic for tA days and symptomatic

for tI days before recovery. We assume a constant

population (outbreak timescale is less than lifespan

of humans) with some fraction of the population

attacked by the disease and so our equation of state

becomes S+E+A+I+R=wN where w is a measure

of the background immunity of the population

prior to onset of the disease transmission through the

population at large.

We have initial conditions S(0)=SfwN, E(0)=
EfwN, A(0)=AfwN, I(0)=IfwN and R(0)=0, where

Xf denotes the fraction of the population in each

subset. To simplify our future analysis of parameter

space we consider an epidemic arising from a fixed

proportion of the susceptible population becoming

instantaneously infected, so Ef=(wN)x1 while A(0)=
I(0)=R(0)=0 and Sf=1xEf.

We may normalize the populations about the

number susceptible at onset SfwN and we set the

natural timescale of the model to match the reporting

period tR then the system is governed by the following

set of equations (reusing notation where appropriate) :

dS

dt
=x

tRRE

tI+tA
(I+A)S,

dE

dt
=

tRRE

tI+tA
(I+A)SxtRt

x1
E E,

dA

dt
=tRt

x1
E ExtRt

x1
A A,

dI

dt
=tRt

x1
A AxtRt

x1
I I,

dR

dt
=tRt

x1
I E:

The parameter RE is the effective reproduction num-

ber; the average number of secondary cases expected

from an index cases given the potential susceptibility

level Sfw. The basic reproduction number through a

virgin population is given by R0=RE/(Sfw). We as-

sume that individuals are equally infectious during

asymptomatic and symptomatic infectious periods.
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If we consider the possible scaling of ILI-reporting

data then we assume the earliest of the data records

to be fitted occurs tS days from the contrived initial

situation. We also assume that all the people that

report to a doctor do so upon developing symptoms,

then in the SEAIR framework, IA is given by the

integral of tRt
x1
A A between reporting periods. If

we set

IRw=SfN I t+
tS
tR

� �
+R t+

tS
tR

� �� �w+1

w

,

where wsN0 then we have IAw=w IRw . The assumption

that misdiagnosis is negligible during the major part

of a pandemic wave means we may define

D=
XMx1

w=0

r2w=
XMx1

w=0

IwxcIRw tS,REð Þ
� �2

,

with M, the number of weeks of observations under

consideration and c =gws(0,1).

For a number of observations, M, we minimize D

by adjusting the parameters in the problem and in

doing so derive the MLE for the pandemic prevalence

rates. However, some of the parameters can be mea-

sured or estimated prior to an outbreak and so may be

treated as constants in the problem. For example, tR
and N are definitely known ahead of time and are

dependent on the data stream under consideration,

whilst the initial import 1xSf is fixed. The disease

kinetics tE, tA, tIwill be drawn from the literature and

opinion discussed above, whilst in the event of a re-

sponse to a new pandemic these parameters would be

re-evaluated based on the tests carried out in coun-

tries that have already experienced the disease. Of the

remaining parameters, c limits eventual prevalence

rates that are measured in the community and is

formally a number between 0 and 1, with its biological

significance dictated by the data under consideration.

The phase shift tS is only of academic interest, due

to the contrivance in the initial conditions, we

constrain this such that, 0ftS<tSmax (otherwise the

epidemic would be allowed to start after the first

few cases were observed in this country or before

they were noted abroad). The critical unknown in

the problem is thus RE the reproduction number

through the population at the start of the pandemic

wave. This may be estimated from other countries

and data but it is likely to vary across social scales,

as it is dependent on contact rates. We should note

that the reproduction number and disease kinetics can

be written as a function of the invariant exponential

growth rates at the start and end of an outbreak

allowing some simple sensitivity analysis about the

disease timescale. Therefore we find the minimum

of D subject to RE, tS and c and treat all other par-

ameters as predetermined constants.

We will thus have a set of parameters RE=r,

tS=tSmin, c=X that correspond to the global mini-

mum of D, and this set provides us with the MLE

for the true epidemic parameters. Observe that c is

conditionally linear in D, thus given arbitrary values

of RE and tS we find the value for c that minimizes

D will be

cmin(M,RE, tS)=
P

IwI
R
wP

IRw
� �2 ,

and hence the global minimum value is given by

X=cmin(M, r, tSmin). However, c is a probability

and so formally may not exceed unity; we shall

further constrain the value of c based on available

epidemiological studies carried out during the early

stages of a new pandemic to find the reporting rate,

etc., and so 0fXx<cfX+f1.

We define the minimum standard error of the

system se*=Dmin/(M – 2) where Dmin=D(M, r, tSmin),

the global minimum of D. The standard error is

an estimate of the standard deviation of the systems

residuals rw, and so we set st=t(0.05,Mx2)se* [where

t(0.05,Mx2) is taken from an inverse t-distribution].

A crude measure of parameter deviation is provided

by allowing any set of parameters with standard

error such that se<st to be a potential solution (i.e.

within 95% of the optimal solution). We thus de-

fine ŝe=se/st and so for a given number of weeks

of observations M we admit epidemic curves to be

potential solutions if ŝe(RE, tS)<1. Furthermore,

having found the global minimum Dmin, for an arbi-

trary choice of RE and tS we may find the closed form

for feasible values of c. Should such values exist their

range will be bounded by,

ct=
Xx when cmintclimfXx

X+ when cmintclimfX+

cmintclim

8<
: ,

otherwise, where

clim=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2
minx

P
I 2wxt20:05,Mx2DminP

IR2
w

s
:

Of course if climsC for RE and tS then the

chosen coupling results in a standard error outside of
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potential solution space. Therefore, given values for

the phase shift and reproduction number we may

solve for c completely and it is separated from the

problem.

Provided with estimates of the infected case-

fatality rate and the delay between infection and

reporting of influenza-related death, we may also

predict the number of deaths likely to occur in each

future week. Death will obviously occur some point

after infection and for simplicity in this analysis

we assume that deaths will occur to cases in our

population R, and so new deaths over a given week

will be given by

dwDw=dwSfN

�
R w+1+

tS+tD
tR

� �

+R w+
tS+tD
tR

� ��
,

where D is a parameter incorporating the case-

fatality rate for the particular strain of influenza and

allowance for underreporting, whilst tD is the delay

between loss of infectiousness and the recording of

death, both of which may be available from studies

in countries that have already experienced the virus

and from such studies carried out very early in the

influenza-affected country in question.

If we are attempting to fit the model to a scaling of

reported recovered cases then, IDw=wDw. However,

rather than estimate d and tD we may allow D to take

the form

D(t̂tS, RE)=
XMx1

w=0

IDwxĉcDw t̂tS,REð Þ
� �2

,

where ĉc=dg and t̂tS=tS+tD, although for brevity

in the main body of the text the hat notation will be

dropped. The same process to that discussed above

for minimizing D for GP ILI-reporting data may then

be followed.
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