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SUMMARY

The weekly number of dengue cases in Peru, South America, stratified by province for the

period 1994–2006 were analysed in conjunction with associated demographic, geographic and

climatological data. Estimates of the reproduction number, moderately correlated with

population size (Spearman r=0.28, P=0.03), had a median of 1.76 (IQR 0.83–4.46).

The distributions of dengue attack rates and epidemic durations follow power-law (Pareto)

distributions (coefficient of determination >85%, P<0.004). Spatial heterogeneity of attack

rates was highest in coastal areas followed by mountain and jungle areas. Our findings

suggest a hierarchy of transmission events during the large 2000–2001 epidemic from large

to small population areas when serotypes DEN-3 and DEN-4 were first identified

(Spearman r=x0.43, P=0.03). The need for spatial and temporal dengue epidemic data with

a high degree of resolution not only increases our understanding of the dynamics of dengue

but will also generate new hypotheses and provide a platform for testing innovative control

policies.

INTRODUCTION

Dengue fever is a mosquito-borne disease that affects

between 50 and 100 million people each year [1]. The

disease is transmitted primarily via mosquitoes of the

species Aedes aegypti and Aedes albopictus, carriers of

the virus serotypes (DEN-1, DEN-2, DEN-3, and

DEN-4), of the genus Flavivirus [1]. The severity

of the disease ranges from asymptomatic, clinically

non-specific with flu-like symptoms, dengue fever,

dengue haemorrhagic fever, and dengue shock syn-

drome [1]. Dengue attack rates are around 40–50%

but may be as high as 80–90% [2]. Efforts to eradicate

A. aegypti in the Americas began in the 1950s with

some success albeit sporadic outbreaks took place.

The cancellation of mosquito eradication pro-

grammes in the 1970s throughout the Americas

facilitated dengue re-emergence in various regions

of Central and South America with A. aegypti as

the primary vector [3]. The situation of dengue in

Latin American countries has evolved from non-

endemic (no virus present), to hypo-endemic (one
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virus serotype present) to hyper-endemic (multiple

virus serotypes co-circulating) [4]. The factors as-

sociated with these co-evolutionary outcomes include

climatological and environmental changes as well as

the increased migration and travel of humans [5].

In Peru, dengue serotype DEN-1 was first identified

in 1990 in the department of Iquitos in the Amazon

region [6]. The establishment of DEN-1 was followed

by the successful invasion of American genotype

DEN-2, the driver of the large dengue epidemic of

1995–1996 [6]. The dengue epidemic of 2000–2001 in

Peru was the first in which all four dengue serotypes

co-circulated (Asian DEN-2, DEN-3, and DEN-4

were identified for the first time) [7]. The new sero-

types probably travelled from Ecuador where they

had been isolated 6 months before the Peruvian out-

break [7]. In this paper, we carry out spatial–temporal

analyses based on Peru (1994–2006) weekly dengue

incidence data stratified by province that also includes

demographic, geographic and climate data. In this

article, we estimate transmissibility of dengue out-

breaks using the local reproduction numbers ; assess

the outbreak dependence on community size as a func-

tion of geographic region; characterize the underlying

distributions of dengue attack rates and epidemic

duration across Peru; quantify the spatial heterogen-

eity of dengue attack rates using the Lorenz curve and

corresponding Gini index; assess the correlation be-

tween dengue incidence and climatological variables

using regression analysis ; and evaluate the level of

association between local epidemic timing and demo-

graphics.

MATERIALS AND METHODS

Peru, a South American country, is located on the

Pacific coast between the latitudes: x3x S to x18x S.

Peru shares borders with Bolivia, Brazil, Chile,

Colombia, and Ecuador (Fig. 1). The total population

of Peru is about 29 million, and it is heterogeneously

distributed in a surface area of 1 285 220 km2. Peru’s

geographic composition includes a western coastal

plain, the Andes mountains in the centre, and the

eastern jungle of the Amazon (Fig. 1). Peru’s weather

varies from dry by its coast, tropical by the Amazon,

and temperate and frigid in the Andes mountain

range. Peru is divided into 25 administrative re-

gions composed of 195 provinces [8]. Spatial dengue

epidemic, demographic, geographic, and climate

data were gathered from multiple sources in our

analyses.

Dengue epidemic data

The Department of Epidemiology of Peru’s Health

Ministry is in charge of epidemiological surveillance,

which is carried out from a network of over 6000

geographically distributed notifying units. Peru’s epi-

demiological surveillance system has collected weekly

disease data reports since 1994 [9]. The case defini-

tions for probable and confirmed dengue cases in

use are those from the World Health Organization

(WHO) guidelines [10]. The weekly number of prob-

able and confirmed cases at symptoms onset, as

recorded by the Health Ministry’s General Office of

Epidemiology, are stratified by province, and we use

these data from 1994 to 2006. A dengue case is

classified as probable whenever fever or chills were

present in addition to at least two symptoms among

myalgia, arthralgia, retro-orbtial pain, headache, rash,

or some haemorrhagic manifestation (e.g. petechiae,

haematuria, haematemesis, melena). Seventy-three

provinces reported dengue cases some time during the
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Fig. 1. Map of Peru highlighting boundaries of 195 pro-

vinces and 25 regions. The geography of Peru covers a range
of features, from a western coastal plain (yellow), the Andes
Mountains in the centre (brown), and the eastern jungle of

the Amazon (green). The total population of Peru is about
29 million heterogeneously distributed in an area of
1 285 220 km2.
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period of interest (1994–2006). Eighteen percent of

the probable dengue cases were confirmed via virus

isolation or anti-dengue IgM antibody tests by the

regional laboratories under the supervision of Peru’s

Health Ministry. For the purpose of our analyses,

we define a dengue outbreak as the occurrence of five

or more recorded dengue cases within three or more

consecutive weeks. Furthermore, cases considered

had to be recorded in a window of time bounded

above and below by the absence of dengue cases for

at least two consecutive weeks. These definitions and

assumptions were put into place to limit the confusion

that results from imported cases (e.g. cases generated

by humans visiting other provinces). We identified

315 dengue outbreaks in 1994–2006 as defined by this

conservative definition. Furthermore, the total num-

ber of outbreaks identified turned out to be insensitive

to the size of the threshold outbreak size. In other

words, our results hardly varied when either five, six,

or seven reported cases were used as the definition of

outbreak. For each dengue outbreak we computed the

final epidemic size, the total number of dengue cases

occurring during the outbreak, the dengue attack rate

as the ratio of the final epidemic size to the population

size of the province where the outbreak took place,

and the epidemic duration (as the number of weeks of

the outbreak).

Population, geographic, and climate data

The population size of the Peruvian provinces during

the years 1994–2006 was obtained from the National

Institute of Statistics and Informatics of Peru [11]

(Fig. S1, available in the online version of the paper).

The population density of each province (people/km2)

is estimated by dividing the province population size

by the surface area (km2) [12]. These averages ranged

from a mean of 22.3 people/km2 in the mountain

range, 12.38 in the jungle areas, and 172 in the coastal

areas (Fig. S2, online).

Each province is classified as a coastal area,

mountain range, or jungle area (Fig. 1). The provinces

are also differentiated by their latitude, longitude, and

elevation (in metres) [13]. The mean elevation of the

provinces ranged from 207.38 m in the coastal areas,

to 454.96 m in the jungle areas, to 3112.5 m in the

mountain range (Fig. S3, online) [13].

Weekly climate data are available for most of

the departments comprising Peru. We obtained the

weekly mean, minimum, and maximum tempera-

ture (Fahrenheit) and precipitation (inches) from

meteorological stations located in 15 out of the 18

departments in Peru that reported a dengue outbreak,

some time during the period 1994–2006 [14]. Climato-

logical records from Peru suffer from underreporting

problems. Hence, we were able to analyse the po-

tential correlation between an outbreak and clima-

tological variables only when sufficient data was

available.

Estimation of transmissibility

The basic reproduction number (R0) gives the average

number of secondary cases generated by a primary

infectious case through the vectors in an entirely sus-

ceptible host population [15]. Recurrent infectious

diseases alter the susceptibility structure of a popu-

lation (herd immunity [16]) by letting p denote the

fraction of the population that is effectively protected

from infection due to prior exposures to the infectious

agent. Hence, the reproduction number (R) is a func-

tion of R0 and p. The reproduction number is mod-

elled as R=(1 – p)R0, a reasonable model when the

population is well mixed and in situations where herd

immunity data are not available.

We estimate the transmissibility (R) of the dengue

outbreaks at the level of provinces in Peru during the

period 1994–2006 using a previously published ap-

proach [16]. As in our earlier work, we use the mean

and variance of the distributions for the incubation

period in the human host (mean=1/kh, variance=
s2
kh
) and vector (1=kv, s

2
kv
) and the mean and variance

of the host’s infectious period (1=ch,s
2
ch
). The dis-

tributions are approximated through estimates of

the number of progressive stages needed to fit a linear-

chain model [17]. The number of compartments

necessary to model the incubation periods are given

by eh=1=(k2
hs

2
kh
) and ev=1=(k2

vs
2
kv
), and ih=1=(c2

hs
2
ch
)

for the infectious period in humans. For example, the

number of compartments necessary to model the

dengue infectious period in humans turned out to be

25 if one assumes a mean infectious period of 5 days

with a standard deviation of 1 day [16].

The formula of the reproduction number used to

obtain our estimates is given by [16] :

R0=
mC2bvhbhv

mvch

evkv
evkv+mv

� �ev

,

where C denotes the mean rate of mosquito bites

per mosquito; bhv is a constant transmission prob-

ability per bite from an infectious mosquito to a

human; bvh is a constant transmission probability
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per bite from an infectious human to a susceptible

mosquito; m is the mean ratio of female mosquitoes

per host ; and mv is the mean mosquito mortality rate.

R0 is therefore the product of the number of infec-

tious mosquitoes generated during the infectious

period of a primary infectious human (mCbvh)/ch
and

Cbhv
mv

evkv
evkv+mv

� �ev

,

the number of infectious humans generated by the

proportion of infectious mosquitoes surviving the ex-

trinsic incubation period.

There are few estimates of mosquito infestation in

Peru (e.g. densities of pupae and positive containers)

[18]. We were not able to obtain reliable estimates of

the number of female mosquitoes per person (par-

ameter m). On the other hand, a study in Thailand

reported an average of 20 female mosquitoes per

room [19] while a similar study in Puerto Rico found

5–10 female mosquitoes per house [20]. Here, we set

the average number of female mosquitoes per person

to 4 and perform a sensitivity analysis on the impact

of this parameter (see [16]). Estimates of the repro-

duction number for dengue have been found to be

insensitive to this parameter, from 3 to even 5 had no

impact on R [e.g. pairwise correlation coefficient

(>0.90) ; analysis of variance (P=0.94)].

The mean adult mosquito lifespan is taken as 10.5

days (95% CI 6–15) [21] ; the mean intrinsic incu-

bation period is taken to be 5.5 days (95% CI 4–7)

[22] ; and the mean infectious period is assumed to be

5 days (95% CI 3–7) [22]. Infected mosquitoes must

survive longer than their extrinsic incubation period

to be able to infect another human [23]. A typical in-

fected mosquito never becomes infectious. Further,

the extrinsic incubation period is sensitive to ambient

temperature. We use the thermodynamic relation

from Focks et al. [24] to model the temperature

dependence of the extrinsic incubation time. As

the temperature increases, the incubation period

decreases while the mosquito lifespan is relatively

unchanged (Fig. S4, online). The proportion of mos-

quitoes that survive the extrinsic incubation period is

given by

evkv
evkv+mv

� �ev

:

For parameter values of 1/kv=5 days, ev=25 (for a

mean ambient temperature of 35 xC and s2
kv
=1) and

mv=1/10.5 days, the fraction of mosquitoes surviving

the extrinsic incubation period is 62.4%.

We estimate the transmission rate from mosquitoes

to humans (Cbhv), the transmission rate from humans

to mosquitoes (Cbvh), the initial number of infectious

hosts, and the initial number of infectious vectors

through our least squares fitting of the initial phase of

the epidemic curve of dengue cases using as a marker

the onset of symptoms (see [16]). We are only able to

estimate the reproduction number for outbreaks

whose initial phase was comprised of at least five

epidemic weeks of data as four parameters had to be

estimated. The best parameter estimates are obtained

from model fits bounded when the x2 goodness-of-fit

statistic reaches a minimum [16].

Critical community size

Several studies have addressed the problem of per-

sistence of measles as a function of community size

in island and non-island populations (see [15]). It is

therefore of interest to provide rough estimates of a

‘critical ’ community size by geographic region above

which dengue epidemics would typically take off. The

determination of the critical community size, above

which infectious diseases persist, is of central import-

ance [15, 25]. Determining the effective or critical

community size for a particular invasion is a complex

matter because of variations in herd immunity,

immigration rates, the possibility of disease re-

introductions in the population, and the nature of

human interactions. Following the approach of

Wearing & Rohani [26], we assess whether or not

the critical community size for the case of dengue in

Peru could be estimated from the proportion of weeks

with no dengue reports for each of the provinces in

the time series (1994–2006) is a good indicator.

Scaling laws in the distributions of attack rates and

duration of epidemics

Here we estimate the type of distributions underlying

epidemic attack rates and epidemic durations at a

particular spatial resolution (e.g. province) over a long

window of time. We use these estimates to character-

ize dengue attack rates and epidemic duration across

Peru’s provinces during 1994–2006. We observed that

if Y denotes the dengue epidemic outbreak duration

then Y does not have a typical distribution (like a

normal) but rather a power-law distribution (known

as a Pareto distribution in statistics) of the form Yxb

1670 G. Chowell and others



where b is a positive constant. Similarly, when X de-

notes the dengue attack rate over this long window

in time it turns out to also follow a power-law dis-

tribution. That is, the data follows a straight line

when the points are plotted in a double-logarithmic

diagram. Final epidemic size and duration distribu-

tions have been estimated from multi-annual measles

epidemic data generated from outbreaks in island

populations [27]. They have also shown to be best

described by power laws [27].

Spatial heterogeneity

Spatial variations in attack rates have not been

extensively studied. Here, using the Lorenz curve

and associated summary Gini index, an approach

derived from econometrics, is used to quantify spatial

heterogeneity of infectious diseases (see [28–31]). The

Lorenz curve is a graphical representation of the

cumulative distribution function of a probability dis-

tribution, representing in our case the proportion of

cases associated with the bottom y% of a population.

Equal attack rates (no heterogeneity) result in a first

diagonal Lorenz curve. On the other hand, perfectly

unbalanced distributions give rise to a vertical Lorenz

line (maximum heterogeneity). Most empirical attack

rate distributions lie somewhere in between.

The Gini index summarizes the statistics of the

Lorenz curve (ranging between 0 and 1). It is calcu-

lated as the area between the Lorenz curve and the

diagonal representing no heterogeneity. A large Gini

index indicates high heterogeneous attack rates, i.e.

a situation where the highest attack rates are con-

centrated in a small proportion of the population.

A Gini index of zero indicates that attack rates are

directly proportional to population size (no hetero-

geneity).

Time-series analysis with climatological variables

Different aspects of the transmission dynamics of

dengue depend on climatological conditions including

the survival, development, and maturation of the

vector A. aegypti [32–34]. Moreover, the extrinsic

(mosquito) incubation period and susceptibility of the

mosquito depends on temperature [34]. We carry out

lagged cross-correlation analyses to assess the role of

climatological variables on dengue incidence lagged

effects. The time it takes for mosquito larva to de-

velop to adult stages; the time it takes infected mos-

quitoes to become infectious ; and the time from

infection in host to developing clinical symptoms are

critical to the transmission process [35, 36].

Timing of dengue epidemics and demographics

We evaluate the degree of association between the

timing of epidemic onset with demographic and geo-

graphic variables. Epidemic onset is defined here

as the first week with dengue reports for a given epi-

demic period.

RESULTS

The aggregated dengue epidemic curve in Peru seems

to support extremely high attack rates in 1996 when

the serotype DEN-2 first appeared in Peru, and in

2001 when serotypes DEN-3 and DEN-4 were first

identified (Fig. S5, online). Since 2001, recurrent an-

nual dengue outbreaks have been reported in Peru

(Fig. 2).

We conservatively estimate (using the definition in

this paper) an overall average dengue attack rate of

1.53 dengue cases/1000 people (S.D.=4.5). The aver-

age attack rates vary spatially from 0.0012 to 38.70

dengue cases/1000 people. Dengue attack rates over

the 12-year window in Peru were negatively correlated

with population size (Spearman r=x0.38, P<
0.0001). No significant correlations with population

density, latitude, longitude, and altitude are found.

Final epidemic size is strongly correlated to the timing

of the epidemic peak (Spearman r=0.66, P<0.0001)

and its peak size (Spearman r=0.89, P<0.0001). The

final epidemic size is found to be weakly correlated

with longitude. That is, the final epidemic size in-

creases as outbreaks ‘move’ from the jungle areas

(x69x W) to the coastal areas (x81x W) (Spearman

r=x0.14, P=0.01). The epidemic peak size followed

a similar pattern (Spearman r=x0.16, P=0.004).

The possibility of a dengue epidemic ‘wave’ cannot be

discarded.

Transmissibility estimates

Estimates of the reproduction number (R) showed

high variability. Their interquartile ranges (IQR) were

from 0.83 to 4.46 with a median of 1.76. The esti-

mated R ranged from 0.1 to 112.8. We estimated 59

reproduction numbers (43 dengue outbreaks had

R>1) using dengue outbreaks with an initial epidemic

phase comprising of at least five epidemic weeks. We

found a moderate positive correlation between

Dengue fever in Peru, 1994–2006 1671



reproduction number and population size (Spearman

r=0.28, P=0.03). We found that R is negatively

correlated with the timing of the epidemic peak

(Spearman r=x0.28, P=0.03) and positively corre-

lated with the epidemic peak size (Spearman r=0.32,

P=0.01). The estimates for R are not correlated with

latitude or longitude coordinates, elevation, or type of

geography (one-way ANOVA for comparison of

means, P=0.20).

Critical community size

We found that the proportions of weeks with no

dengue reports during the entire period (1994–2006)

are negatively correlated with population size in

jungle areas (Spearman r=x0.72, P<0.0001). Less

than 30% of the weekly records had zero dengue

incidences whenever the population was >500 000

people (Fig. 3). We did not find a correlation between

these variables in coastal or mountain range areas.

Scaling laws in the distributions of attack rates and

duration of epidemics

The distribution of dengue attack rates and epidemic

(outbreak) durations (weeks) both follow power-law

distributions (coefficient of determination >85%,

P<0.004). Both distributions have approximately the

same power-law exponent of 1.7 when data for the

1994–2006 outbreaks were used (Fig. 4).

Regression models for dengue attack rates and

reproduction numbers

Regression models are used to explain the correlation

structure between dengue attack rates and three sig-

nificant predictor variables, population size (P=
0.0004), epidemic duration (P<0.0001), and longi-

tude (P=0.0023). In fact, simple models were ob-

tained via stepwise regression. Population size and

epidemic duration are log-transformed to stabilize

their corresponding variances. This regression model
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explains 26% of the variability in the data with

an overall P<0.0001. Moreover, population size

(log transformed, P=0.0475) and epidemic duration

(log transformed, P<0.0001) are found to be signifi-

cant predictor variables for a model of the final epi-

demic size. This regression model explains 22% of

the observed variance with an overall P<0.0001. No

model with more than one significant predictor vari-

able was found to explain the reproduction number

estimates.

Spatial heterogeneity

The spatial heterogeneity of dengue incidence, as

measured by the Gini index, decreases from the

coastal areas (0.59), to the mountain range (0.36), to

the jungle areas (0.27) (Fig. 5). The elevations of

Peruvian provinces range from 0 m to 4942 m with

high variability across coastal, mountain and jungle

areas (one-way ANOVA for comparison of means,

F=46.62, P<0.0001) (Fig. S3, online). The dengue

attack rates (n=315) in the coastal areas are signifi-

cantly higher than in the mountain range and the

jungle areas (one-way ANOVA for comparison of

means, P=0.0012). Dengue outbreaks are reported in

provinces with a median elevation of 304 m (IQR 173-

518). The outbreaks that occurred at the highest ele-

vations were at altitudes of 1236 m (163 cases),

1277 m (10 cases), 1536 m (16 cases), and 4041 m (se-

ven cases). The last outbreak was probably ‘ im-

ported’ from other locations (26/195 provinces are at

an elevation >4041 m, and did not report dengue

outbreaks). We do not find a significant correlation

between elevation and final epidemic size (P=0.21),

attack rates (P=0.55), or transmissibility as measured

by the reproduction number (P=0.4).
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Time-series analysis with climatological variables

We apply stepwise regression models using the weekly

number of dengue cases as the response variable

to four climatological variables as predictors (mean,

minimum, and maximum temperature and precipi-

tation). These models explain on average from 39.4%

to 47.3% of the observed variance when the cli-

matological variables are lagged from 0 to 20 weeks

(Fig. 6). The best regression model (explaining a mean

of 47.3% of the variability) is obtained when the

climatological variables are lagged by 5 weeks. The

regression model without lag periods in the climato-

logical variables explains a mean of 42% of the

observed variance. We found minimum temperature

to be the most significant climatological variable, i.e.

the one with the highest frequency in regression

models. The maximum temperature ranked second

(Fig. 6).

Timing of epidemic onset

Our analysis shows that the 2000–2001 epidemics

were most likely to start in larger population areas

from where the disease spreads to lower population

areas (Spearman r=x0.43, P=0.03). This happens

during a time when serotypes DEN-3 and DEN-4 are

identified for the first time. Similar trends have been

observed in other years, but the pattern for those re-

peated instances is not statistically significant. Hence,

the possibility of epidemic outbreaks as the result of

emergent and re-emergent diseases seems the most

likely explanation. In other words, the absence of

herd immunity, homogenizes the host population and

increases the likelihood of epidemic outbreak waves.

DISCUSSION

We have analysed the transmission dynamics of den-

gue fever in Peru during the period 1994–2006 using

weekly dengue incidence data stratified by provinces

and a diverse set of statistical and mathematical tools.

To the best of our knowledge this is the first popu-

lation study of dengue fever at such spatial resolution.

Our analyses included the estimation of the local re-

production number for each of the dengue outbreaks

occurring across Peru during the period 1996–2004,

the evaluation of the notion of critical community size

previously studied in the context of other infectious

diseases [15, 25], the characterization of the distribu-

tions of attack rates and epidemic durations, and the

quantification of spatial heterogeneity using standard

measures in economics (Lorenz curve and Gini

index).

Estimates of the reproduction number (R) for den-

gue fever have varied significantly across locations

because of variations in several factors including

serotype circulation, available data, immunological

history of the population, mosquito infestation levels,

and climate variability. Our R estimates lie in the

range from 0.1 to 112.8 (IQR 0.83–4.46). These are

comparable with estimates forR (between 1.3 and 2.4)

in the 1986 national dengue serosurvey in Mexico

[37] ; 1.1–3.3 in the state of Colima, Mexico in 2002

[16] ; 4–6 in Thailand [38] ; 1.6–2.5 in Sao Paulo, Brazil
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Fig. 6. The correlation between dengue incidence and cli-
matological variables for each of the dengue outbreaks oc-
curring across the Peruvian provinces during the period
1994–2006. (a) Stepwise regression models of the weekly

number of dengue cases using initially four climatological
variables as predictors (mean, minimum, and maximum
temperature and precipitation) explain on average between

39.4% and 47.3% of the observed variance when the cli-
matological variables are lagged from 0 to 20 weeks. The
best regression model (explaining a mean of 47.3% of the

variability) was obtained when the climatological variables
were lagged by 5 weeks. (b) The minimum temperature was
found to be the most significant predictor variable in most
of the regression models analysed for each dengue outbreak,

followed by maximum temperature.
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in 1991 [39] ; 3.6–12.9 in Sao Paulo, Brazil in 2000

[40] ; and 2–103 in nine Brazilian regions during the

period 1996–2003 [41].

The data in jungle areas suggest that a critical

community size of about half a million individuals is

needed to sustain an epidemic. We did not observe a

clear pattern in the role of community size in coastal

or mountain areas where dengue seems to be reaching

endemic levels (Fig. 3). Kuno [23] estimated that the

critical community size lies between 150 000 and

1000 000 to sustain a dengue epidemic in Puerto Rico

and Trinidad. Wearing & Rohani [26] report that

local dengue extinctions in Thai provinces become

rare when the population size is higher than one mil-

lion.

Heterogeneity in dengue attack rates was higher in

coastal areas followed by mountain range areas and

jungle areas. Dengue outbreaks occurred at elevations

of up to y1500 m, and a small possibly ‘ imported’

outbreak of seven cases occurred at an elevation of

4041 m. In fact, mosquitoes are able to survive a life-

cycle indoors at altitudes as high as 2200 m above sea

level [42]. A dengue outbreak has been documented at

an altitude of 1700 m in Mexico [43].

We found that most dengue outbreaks are asso-

ciated with a small attack rate, although a small

number of epidemics are associated with high attack

rates. In fact, we found that the distribution of dengue

attack rates and epidemic durations at the level of

provinces in Peru follow power-law (Pareto) dis-

tributions with remarkably similar mean power-law

exponents.

Minimum temperature was the most significant

climatological variable in the stepwise regression

models. This is in agreement with Yasuno & Tonn

[19] who found that the lowest daily temperature,

rather than the average temperature, was more in-

fluential on the extrinsic (mosquito) incubation

period.

In our study, climatological variables alone were

able to explain up to an average of about 50% in the

variability in dengue incidence when these were tem-

porarily lagged by 5 weeks. Other factors such as

mosquito infestation levels that were not considered

in this study might be contributing substantially to the

dengue incidence levels in Peru. Such infestation levels

will be directly associated with the intensity and tim-

ing of control interventions. In fact, a positive corre-

lation between A. Aegypti indices and seroprevalence

of dengue antibody levels has been reported, which

suggests the presence of a critical vector density in

order for dengue outbreaks to take place [44]. In some

regions in Peru, highly heterogeneous mosquito in-

festation levels and dengue seroprevalence have been

reported (e.g. [45–47]). Regarding the effects of vector

control interventions, the fraction of houses infested

by vector mosquitoes has been found to be negatively

correlated with the intensity of anti-mosquito inter-

ventions in a Brazilian city [48]. Unfortunately, spa-

tially resolved data on vector infestation levels across

Peru was not available, and therefore, the interaction

of climatological information, geography and demo-

graphics with infestation levels and the intensity and

timing of control interventions remains an open

question for future research.

The highest correlation of climatological variables

with dengue incidence data at different temporal

lags has been found to vary significantly across

studies. For instance, an analysis using monthly data

of the 2002 dengue epidemic in Colima, Mexico [49]

indicated that precipitation, mean temperature, and

minimum temperature were most correlated with

dengue incidence without a lag period whereas maxi-

mum temperature and evaporation were most corre-

lated to dengue incidence at lags of 1 and 3 months,

respectively [49]. On the other hand, Keating [36]

found the highest correlation between mean tempera-

ture and dengue incidence at a lag period of 3 months

in Puerto Rico [36]. Furthermore, Depradine &

Lovell [35] reported different lag periods with highest

correlation with dengue incidence in the small

Caribbean island of Barbados. They found a 6-week

lag for vapour pressure, 7-week lag for precipitation,

12-week lag for minimum temperature, and a 16-week

lag for maximum temperature.

Large population areas were associated with an

earlier epidemic onset than low population areas

during the 2000–2001 epidemic suggesting a hier-

archical transmission network. This result is in accord

with Cummings et al. [50] who identified a travelling

wave of dengue infection in Thailand emanating from

Bangkok and disseminating to less populous areas.

Travelling waves have also been reported in the

spread of other infectious diseases including measles

[51] and seasonal influenza [52, 53].

Overall our findings indicate that highly refined

spatial and temporal epidemic data of dengue fever

are critically needed not only to increase our under-

standing of the dynamics of dengue fever around

the world but also to generate new hypothesis and

provide a platform for testing innovative control

policies.
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NOTE

Supplementary information accompanies this paper

on the Journal’s website (http://journals.cambridge.

org).
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