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SUMMARY

Eluted dried blood spot specimens from newborn screening, collected in 2004 in North Thames

and anonymously linked to birth registration data, were tested for maternally acquired rubella

IgG antibody as a proxy for maternal antibody concentration using an enzyme-linked

immunosorbent assay. Finite mixture regression models were fitted to the antibody

concentrations from 1964 specimens. The Bayesian Information Criterion (BIC) was used as

a model selection criterion to avoid over-fitting the number of mixture model components.

This allowed investigation of the independent effect of maternal age and maternal country of

birth on rubella antibody concentration without dichotomizing the outcome variable using cut-off

values set a priori. Mixture models are a highly useful method of analysis in seroprevalence

studies of vaccine-preventable infections in which preset cut-off values may overestimate the size

of the seronegative population.

INTRODUCTION

Results of antibody assays may be difficult to

interpret when used in population-based seroepidemi-

ological studies where quantification of previous ex-

posure to infectious disease, either through natural

infection or vaccination, is of interest. This is partly a

consequence of the difficulty in applying a meaningful

cut-off value to continuous distributions of antibody

concentrations in order to define seronegativity [1].

If a sample falls below a cut-off value set by the assay

manufacturer, this does not necessarily indicate

non-immunity, as IgG antibody assays for vaccine-

preventable diseases are most often employed in

screening to indicate a need for immunization. In this

context, cut-off values are likely to be set high to

avoid false negatives [2]. It follows that using fixed

cut-off values for seroepidemiological studies implies

an at best artificial, but in some cases completely

arbitrary, measure of the population at risk of infec-

tion. In addition, since the majority of antibody

assays are optimized for measuring antibody con-

centrations in serum, cut-off values provided by the

assay manufacturer may not apply if the assays have

been modified for use on other test media [3–5].

An alternative approach is to fit latent-class finite

mixture models [6] to continuous distributions of

antibody concentrations in order to characterize

different exposure categories in the population, e.g.

previously infected or vaccinated, and unexposed.

The basic assumption in a mixture model is that the

study population consists of individuals in different

exposure subpopulations. The number of subpopu-

lations is either assumed to be known a priori or,
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more often, is a quantity of interest to be determined

from the data. In either case, mixture models provide

a convenient framework to test hypotheses relating

to the number of exposure groups in the population

and their characteristics. Mixture models have been

reported in the literature for analyses of antibody

concentrations for various infections [1, 3, 7, 8].

In this study, we fit latent-class finite mixture

regression models to maternally acquired rubella IgG

antibody concentrations obtained from testing re-

sidual dried blood spots from newborn screening in

North London and surrounding counties in 2004.

Since newborn antibody concentration is used as a

proxy for maternal antibody concentration [9, 10], we

hypothesize that there would be three subpopulations,

one seronegative group, a second group with inter-

mediate antibody concentrations that has been vacci-

nated or infected but mounted a weaker antibody

response, and a third group with higher antibody

concentrations following infection or vaccination,

which is possibly more recent. This model can be

expressed as:

f(y)=plfl(y)+pmfm(y)+phfh(y), (1)

where y is antibody concentration, the parameters

(pl, pm, ph) are the component weights, and (fl, fm, fh)

are the density functions of the three components.

Maternal age and country of birth have been found

to be important predictors of maternal rubella anti-

body concentration [11]. In order to examine the

independent effects of these two variables on maternal

antibody concentration, we fit latent-class finite mix-

ture regression models of the form

f(y)=
XK

k=1

pk(X1, b1k) fk(y; X2b2k; X3b3k), (2)

where y is the antibody concentration, K is the

number of components, X1, X2 and X3 are design

matrices for the component weights (p), the location

and scale parameters of the kth component respect-

ively. {b1k} is the vector of parameters for the linear

predictor in each component weight, and {b2k} and

{b3k} are the location and scale parameters. We used

the identity, logarithmic and multinomial link func-

tions to fit the regression parameters for location,

scale and component weights respectively. We are not

aware of any papers reporting the use of this class of

mixture regression models to analyse antibody con-

centrations. We demonstrate their usefulness in

quantifying the independent effect of two or more

predictors on antibody concentration without di-

chotomizing this variable.

METHODS

Samples

We measured rubella IgG antibody concentration in

dried blood spots, left over from the North Thames

newborn screening programme. The newborn screen-

ing programme in North Thames covers inner and

outer North London, Bedfordshire, Hertfordshire

and Essex, an area with an ethnically diverse popu-

lation. All newborns are offered screening at around

5–8 days of age and coverage is estimated to be close

to 100% [12]. Four spots of blood are collected on

a Schleicher & Schuell 9031 filter paper card

(Schleicher & Schuell GmbH, Dassel, Germany) from

the baby’s heel by a midwife or health visitor who

then sends the specimens to the screening laboratory.

Blood spot samples are punched from the cards, and

tested for biomarkers for inherited or congenital

conditions including phenylketonuria and congenital

hypothyroidism.

When metabolic screening has been completed, an

extra sample is punched from the screening cards and

tested for anti-HIV antibody as part of the newborn

unlinked anonymous HIV surveillance programme.

Anonymized data linkage between screening card

data and birth registration records held by the Office

for National Statistics was established for this pro-

gramme. The data linkage and HIV testing algorithm

have been described in detail elsewhere [13, 14].

Laboratory methods

Two extra samples were punched from all blood spot

cards sent to the screening laboratory between 1999

and 2006 as part of a study to serotype samples found

to be HIV positive [15]. As part of the HIV testing

protocol, dried blood spot punches are placed in

96-well plates, and eluted in PBS-Tween 20 solution.

HIV-positive samples had to be excluded from the

analyses, since the remaining eluate is used for HIV

confirmatory testing. Following HIV tests, eluates

were kept at x20 xC for up to 20 months before

rubella antibody testing. Plates containing samples

received in the screening laboratory in the third

quarter of 2004 in North Thames were randomly

sampled for rubella IgG testing. A commercial

enzyme-linked immunosorbent assay (ELISA; Diesse,

Siena, Italy) was used to test for rubella IgG antibody.
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This ELISA has been found to be valid for use on

eluted dried blood spots [16]. Dried blood spot eluate

samples (50 ml each) were tested for rubella IgG anti-

body according to the manufacturer’s instructions.

The ELISA results are quantitative, given as a ratio

between the optical density reading of the sample

and a plate-specific reference sample provided by the

manufacturer. The optical densities can be converted

into antibody concentrations in international units

per millilitre (IU/ml) using a calibration curve, which

is constructed from four plate-specific reference

sample values with pre-determined antibody concen-

trations provided by the manufacturer.

Demographic data

Data on maternal age were available from screening

records, and on maternal country of birth through

data linkage to birth registration data. Maternal

country of birth was coded into a binary variable

(‘UK-born’ and ‘born abroad’).

Statistical methods

In order to amplify the values of the optical density

ratios between 0 and 1, which are of largest epidemi-

ological and clinical significance, we modelled the

distribution of the natural logarithm of the optical

density ratio [ln(ODR)]. Low optical density values

correspond to seronegative status.

We used the FLEXMIX [17] and GAMLSS.MX [18]

packages in the R statistical software version 2.5.1

[19] to fit continuous finite mixture models based

on a latent-class regression approach. Both packages

employ an expectation-maximization (EM) algorithm

that uses maximum likelihood to estimate the model

parameters and calculates the probability of belong-

ing to each component for every observation. Hence

the size of each component can be estimated as

follows: the probability that observation i belongs

to class j is given by

Pr j Xi1,Xi2,Xi3; yi; b1, b2, b3j½ �=
pj(Xi1, b1j) f(yi)PK

k=1 pk(Xi1, b1k) f yið Þ
,

(3)

where j=1, 2, …, K, and i=1, 2, …, n. We used this

expression (known as Bayes’ rule) to assign each ob-

servation to the class with the maximum probability.

We used the diagnostic tools provided by these

packages to check the models’ goodness-of-fit pro-

perties. We based our model selection strategy on the

Bayesian Information Criterion (BIC) [17, 20] de-

fined as

BIC=x2 lnL(b̂b1, b̂b2, b̂b3)+p ln(n), (4)

where L is the value of the likelihood evaluated at

the estimates (b̂b1, b̂b2, b̂b3), p is the number of model

parameters and n is the number of independent

observations. The BIC is more conservative against

overparameterization than other model selection

criteria, which is particularly important when fitting

mixture models as the optimal number of components

may otherwise be overestimated [17].

We fitted mixture models to the full distribution

of the natural logarithms of the ODRs available,

assuming normal and gamma distributions for the

components allowing for up to five components and

compared the goodness of fit of these models using

BIC. In order to fit gamma-distributed components

we added a constant to the ln(ODR) values to ensure

they were positive. Up to five sets of maximum-like-

lihood estimates were obtained for each regression

model, the optimal model for each set of covariates

being that which minimized BIC. Increasing the

number of components beyond five resulted in empty

components. The finite mixture regression models

were then compared using a stepwise procedure to

account for one covariate for the mean at a time, then

including both variables, and finally including an in-

teraction term. Maternal age was modelled both as a

linear and as a quadratic term in the linear predictors

defining the components’ means. Again, the optimal

model was that for which BIC was minimized. The

optimal regression model was also refitted with cov-

ariates for the component weights and variances,

using a stepwise approach, adding more covariates, to

assess whether the models’ fit improved.

Ethics approval

Ethics approval was obtained from the London

Multicentre Research Ethics Committee (MREC).

RESULTS

We analysed ln(ODR)s from 1964 dried blood spot

samples out of 1979 samples tested. Eleven samples

were excluded from analyses as they were HIV posi-

tive, and a further four because parents had opted

out of HIV testing or newborn screening. Linkage to

birth registration data was achieved for 1943 of 1964
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samples (98.9%). Data on maternal age was avail-

able for 1265 of these linked samples (65.1%). Mean

maternal age was 29.5 years (S.D.=5.9 years).

Maternal country of birth was available for 1811

samples (93.2%): 792 (43.7%) mothers were born

abroad. The distribution of ln(ODR) by maternal age

group (<25, 25–34 and o35 years) and country of

birth are shown in Figure 1(a, b).

Table 1 shows the model selection process for

the finite mixture models using the full population of

1964 samples, varying the number of mixture model

components, assuming normal or gamma distribu-

tions of the components. The former appeared to

provide a better fit, and therefore all subsequent

models were based on this assumption. The model

with three normally distributed components had

the lowest BIC; the three normal density functions

correspond to the three hypothesized groups of

exposure to rubella infection (Table 2). Note that the

component weights are not equal to the proportions

of samples allocated to each component since the

former are the estimates of the parameters pl, pm and

ph and the latter were calculated using equation (3).

Figure 2 shows the densities of each component of

this model, as well as the density of the total sample

of ln(ODR).

To account for the variation in antibody concen-

tration by maternal age and country of birth, we fitted

mixture regression models adjusting for these covari-

ates. In order to compare models with different covari-

ates using the BIC, all samples for which either

maternal country of birth or maternal age was missing

had to be excluded, leaving 1236 samples for analysis.

A summary of these regression models can be found

in Table 3.

The BIC was minimized for the model where only

maternal country of birth is included as a covariate

(model 3). This model was therefore refitted with

covariates for the component weights (p) and vari-

ance parameters using the same combinations of

covariates as described in Table 3.

A model in which maternal age was included as a

covariate for the component weights (with no covari-

ates for the variances) improved very marginally on

the optimal model described in Table 3 and resulting

in a BIC of 2503.6. The parameter estimates for the

linear predictors of this model are shown in Table 4a ;

–3 –2 –1

ln(ODR)

0·30

(a)

(b)

<25 years
25–34 years
�35 years

0·25

0·20

0·15

Pr
op

or
tio

n

0·10

0·05

0·00

0·30 Born abroad
Born in UK

0·25

0·20

0·15

Pr
op

or
tio

n

0·10

0·05

0·00

0 1

–3 –2 –1

ln(ODR)

0 1

Fig. 1. Distribution of the natural logarithm of the optical
density ratio [ln(ODR)] : (a) by maternal age group (n=
1265) ; (b) by maternal country of birth (n=1811).

Table 1. Model selection procedure for univariable

finite mixture models (n=1964)

No. of components

in model D.F. BIC

Normal components
1 2 4355.2
2 5 4130.2

3 8 4055.1
4 11 4067.8
5 14 4090.3

Gamma components

1 2 4875.7
2 5 4248.0
3 8 4086.4

4 11 4075.8
5 14 4083.3

D.F., Degrees of freedom; BIC, Bayesian Information
Criterion.
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note that the functions for the component weights

are given on the multinomial scale, considering the

low component as baseline. Table 4b gives the mean

and confidence interval (CI) for the components by

maternal country of birth.

The mean ODR for the low and medium mixture

model components is significantly lower for women

born abroad than for UK-born women. However, for

UK-born women, the mean of the medium compo-

nent is not significantly different to that of the low

component. Figure 3 shows how the component

weights change as a function of maternal age. These

curves were obtained by applying the inverse multi-

nomial function to the linear predictors in Table 4a.

Adding a quadratic effect for maternal age to these

probability functions did not improve the goodness

of fit.

As maternal age increases, women are less likely to

be assigned to the low component. The probability of

being assigned to the medium component increases

with maternal age, however, the proportion in the

higher component changes little across maternal

ages. For a mother of the mean age in our sample

(29.5 years), the component weights for the low,

medium and high components are therefore 5.7%,

54.1% and 40.2% respectively.

DISCUSSION

Left-over dried blood spots from newborn screening

provide a large, relatively inexpensive, and near-

universal sampling frame within which rubella anti-

body concentrations among newly delivered women

can be investigated. However, because this implies

using newborn antibody concentration as a proxy for

maternal antibody concentration, using cut-off values

to define the seronegative population would not be

appropriate for our data. We therefore used finite

mixture models to analyse the natural logarithms

of the ODRs, as this avoids dichotomizing the out-

come variable of interest.

Several authors [1, 3] have commented on the

usefulness of finite mixture models for analysing

results of seroprevalence studies in which the speci-

ficity of the antibody assay used is low. This is sup-

ported by our findings; using this approach and

assuming that the samples allocated to the component

with the lowest mean antibody concentration are

seronegative (Table 2), 3.6% of samples would be

considered antibody negative (95% CI 2.8–4.4). This

is similar to the proportion of women who were

described as susceptible through antenatal screening

in London in 2004 [21]. By applying the cut-off

recommended by the assay manufacturers (of samples

with an antibody level <7 IU/ml classed as sero-

negative), the proportion of samples that would be

Table 2. Summary of the three components in the univariable model with lowest Bayesian Information

Criterion (means and confidence intervals have been anti-logged)

Component

No. of

observations
in component

Samples
(%)

Component
weights (p)

Mean
ODR S.D.

95% CI
for mean

Low 71 3.6% 6.7% 0.33 0.94 (0.18–0.62)
Medium 897 45.7% 47.4% 1.03 0.51 (0.98–1.08)

High 996 50.7% 45.9% 2.31 0.34 (2.24–2.40)

ODR, Optical density ratio, S.D., standard deviation; CI, confidence interval.
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Fig. 2. The density functions of the three components of the

finite mixture model with lowest Bayesian Information
Criterion and the density function of the total distribution
of the natural logarithm of the optical density ratio

[ln(ODR)] (n=1964).
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considered seronegative is 15.3% (95% CI 13.8–

17.0), which is a gross overestimate. This emphasizes

the need for caution in applying cut-off values deter-

mined a priori, which are intended for use in a clinical

setting, without consideration for the particular

context in which they are applied, or of the specimens

used in the serosurvey.

As Figure 2 shows, there is some overlap among

the components of the mixture model. This implies

that some samples (e.g. with log optical densities

between x1 and 0), which may have been assigned

to the medium antibody component also have a non-

negligible probability of being assigned to the low

antibody component. This raises some questions

about the validity of determining a cut-off value based

on this particular mixture model.

Since data on maternal country of birth were

available from data linkage between the newborn

Table 3. Model selection strategy for mixture regression models (n=1236)

Model Model covariates
No. of
components D.F. Log-likelihood BIC

1 No covariates 3 8 x1227.1 2511.2

2 Maternal age only 3 11 x1221.1 2520.6
3 Maternal country of birth only 3 11 x1212.7 2503.7
4 Maternal country of birth

+maternal age

3 14 x1206.3 2512.3

5 Maternal country of birth
+maternal age+interaction term

3 17 x1204.4 2529.9

6 Maternal age2

+maternal age only

3 14 x1219.0 2523.7

7 Maternal age2+maternal age
+maternal country of birth

3 17 x1202.3 2525.6

8 Maternal age2+maternal age
+maternal country of birth
+interaction term

3 23 x1199.1 2561.9

D.F., Degrees of freedom; BIC, Bayesian Information Criterion.

Table 4a. Linear predictors for the optimal model

Component p m s

Low 0 x1.53+1.15 �UK-born 0.74

Medium x1.88+0.14 �maternal age x0.04+0.19 �UK-born 0.52
High x1.88+0.13 �maternal age 0.84+0.02 �UK-born 0.32

Table 4b. Summary of the optimal mixture regression model with maternal age as a covariate for

the component weights (p) and maternal country of birth as a covariate for the mean of the components

(means and confidence intervals have been anti-logged)

Component
No. in each
component (%)*

Mean
ODR for

women
born in UK 95% CI

Mean
ODR for

women born
abroad 95% CI

Low 48 (3.9%) 0.68 (0.41–1.15) 0.22 (0.17–0.27)

Medium 608 (49.2%) 1.17 (1.02–1.34) 0.96 (0.90–1.02)
High 580 (46.9%) 2.38 (2.16–2.62) 2.32 (2.22–2.43)

ODR, Optical density ratio ; CI, confidence interval.
* The number of samples in each component was estimated using the posterior probabilities derived using equation (3).
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screening records and birth registration data, and

maternal age could be obtained from screening

datasets, finite mixture regression models could be

fitted, allowing the means, component weights and

variances in the model to vary by risk factors. In

previous studies where finite mixture models have

been used, only age group has been of interest as

a predictor of antibody level [1, 3, 8], and mixture

models are therefore often stratified in order to

determine the proportion of seronegative samples

in each age group. This is important in order to

establish whether further vaccination is required due

to higher susceptibility in some cohorts. However,

maternal country of birth or ethnic group has been

reported to be a highly significant predictor of rubella

susceptibility among pregnant women in the United

Kingdom [11, 22]. Our method allows hypotheses

about the independent, as well as the combined

effects, of age and country of birth on antibody con-

centration to be tested.

In our optimal model, the means of the low and

medium components for women born abroad were

significantly lower than those for women born in

the United Kingdom, yet the component weights were

not found to vary by country of birth. One possible

reason for this is that women born in the United

Kingdom with low antibody concentrations may

have been exposed to the virus through vaccination

several years previously and therefore their anti-

body concentrations may have waned without

‘boosting’ through contact with wild virus. This is

in contrast to women born abroad with low antibody

levels who may not have had previous virus contact.

For UK-born women, the difference in means be-

tween the low and the medium component was

not statistically significant. A larger sample size

will allow the component means to be more pre-

cisely estimated, as well as the inclusion of a more

detailed maternal country-of-birth variable to ident-

ify specific groups at high risk of infection during

pregnancy.

We also found that the weight for the low com-

ponent decreased as maternal age increased, but

increased with maternal age for the medium compo-

nent, implying that younger pregnant women are

more likely to be seronegative, as defined by the

mixture models. Vyse et al. [1] also found a similar

age pattern of rubella seronegativity among women

in England and Wales. This could be a consequence

of the antenatal screening programme, where women

who screened negative in a previous pregnancy were

vaccinated post partum.

With the possibility of adjusting for several covari-

ates, it is important that the model selection process

avoids models which overfit the number of compo-

nents as well as the number of covariates. The FLEXMIX

and GAMLSS.MX R-packages allow for the calculation

of BIC as a model selection statistic. In comparison

to using log-likelihood only, the BIC penalizes both

for sample size and the number of parameters, and

is therefore more conservative in terms of the opti-

mal number of components and variables included

(Table 3). The use of BIC for model selection in

finite mixture regression models depends, as all

likelihood-based procedures, on all competing models

being fitted to the same dataset. Because maternal

age was missing for a large proportion of samples,

this resulted in the sample sizes for the regression

models including this covariate being reduced by

about 40%.

Several previous papers [1, 3, 8] in which mixture

models were applied to results of seroprevalence

studies have assumed normal distributions for the

mixture model components. We tested the assump-

tion that gamma-distributed mixture model compo-

nents provided a better fit, however, this was found

not to be the case.

In this paper we have distinguished between the

estimates of the component weights (p1, p2, …, pK)

and the estimated proportion of observations in each

component, which is calculated based on the posterior

probabilities given in equation (3). This is the only
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Fig. 3. Component weights (p) by maternal age for the
optimal model described in Tables 4a and 4b.
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feasible approach for finite mixture regression models

fitted with covariates for the component weights.

Indeed, this procedure should be used even in finite

mixture regression models without covariates for the

component weights since the posterior probabilities

allow the assessment of how well defined the compo-

nents are. The posterior probabilities also allow the

analysis of the characteristics of the individuals

whose samples have been assigned to a particular

component. Using our approach, it can be shown that

60.4% of women whose samples were assigned to

the low component described in Table 4b were born

abroad. This would not have been possible if compo-

nent weights had been used to estimate the size of

the components.

The use of residual dried blood spots from new-

born screening anonymously linked to birth regis-

tration data provides a near-universal sampling frame

from a large and ethnically diverse area such as North

Thames. This allows differences in maternal rubella

antibody concentrations by maternal age and country

of birth to be investigated. We have demonstrated

that latent-class finite mixture regression models are

a powerful statistical method for analysing antibody

concentrations from serosurveys in which assay cut-

off values are not applicable. Fitting these models

allows inclusion of linear predictors for antibody

concentration and the identification of groups of preg-

nant women who may require vaccination. Newborn

dried blood spots can therefore be used to obtain

more detailed estimates of the proportion of women

who are seronegative in different age and country-

of-birth categories.
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