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SUMMARY

Expansion of dengue has been attributed to urbanization. To test this concept, we examined

dengue transmission intensities in Thailand. We used the inverse of mean age of dengue

haemorrhagic fever (DHF) cases as a surrogate of dengue transmission intensity (or force

of infection). The transmission intensity in Bangkok decreased rapidly since the mid-1990s,

to levels that are currently lower than in other regions. Regression analysis revealed that

transmission intensity is highest in the Northeastern rural region, mainly due to scarcity of

private water wells. Private wells reduce the need for household water containers, the major

breeding sites for vectors. Cumulatively, these results show that urbanization is not necessarily

associated with intense dengue transmission in Thailand. Paradoxically, the DHF incidence in

Bangkok has surpassed other regions despite declines in transmission intensity. This finding

implies the existence of endemic stability (i.e. low incidence of a clinical illness in spite of high

transmission intensity).

INTRODUCTION

Dengue haemorrhagic fever (DHF), a life-threatening

manifestation of dengue infection, emerged in the

1950s [1] and has rapidly increased [2]. In the years

following its emergence, DHF was most often re-

ported in urban areas [3]. For this reason, the expan-

sion of dengue virus and DHF has been attributed

to urbanization [4]. Bangkok, which is inhabited by

9% of the Thai population, was proposed to be the

epicentre from which annual waves of DHF have

been emitted to the other parts of Thailand [5].

The idea that urbanization constitutes a risk for

dengue infection has not been thoroughly tested.

To begin to test this idea, transmission intensities (or

force of infection) of dengue virus among different

regions of Thailand were compared. Our analysis

centred on DHF, but not on the more benign dengue

fever, since dengue fever is not regularly reported

in endemic countries [6]. The incidence of DHF

fluctuates dramatically with a cycle of 3–4 years [7],

possibly due to the oscillation in population immunity

[8]. Hence, the incidence may not accurately represent

the transmission intensity. Instead, we assumed that

the inverse of the mean age of DHF cases (IMA-

DHF) could be used as a surrogate for the trans-

mission intensity of dengue virus. The inverse of

mean age of infected individuals is generally regarded

as an approximation of the force of infection (i.e. ‘per

capita rate at which susceptibles acquire infection’)

for infectious diseases which confer life-long im-

munity [8]. This relationship has not been confirmed
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for DHF, since DHF occurs mainly in secondary

infections [9, 10]. However, a secondary infection,

as well as a primary infection, would be expected to

occur at an earlier age under more intense trans-

mission. Consistent with this, recent simulations have

predicted that the mean age of DHF is negatively

correlated with the force of infection of dengue virus

(Nagao & Sakamoto, unpublished observations). In

addition, an epidemiological study conducted in

Thailand revealed a strong negative correlation

between mean age of DHF cases and proportion of

houses infested with larvae/pupae of vector mos-

quitoes (Thammapalo et al., unpublished obser-

vations). Therefore, we based our analysis upon the

assumption that the IMA-DHF reflects the force

of infection of dengue virus, albeit not necessarily

linearly.

The present study illustrates the spatial patterns

of transmission intensities of dengue across Thailand,

as determined by IMA-DHF. In addition, the ob-

served spatial patterns are explained by using climatic

and socioeconomic conditions as independent vari-

ables. The results highlight the rapidly shifting epi-

demiological state of dengue transmission, which may

also be present in other tropical countries.

METHODS

Epidemiological data

In Thailand, there are currently 926 districts in 76

provinces. Among these districts, 50 are considered

to be part of the Bangkok metropolitan province.

Detailed epidemiological data were obtained from the

Bureau of Epidemiology, Ministry of Public Health

of Thailand. Data regarding the annual number of

DHF cases were stratified by age group (0, 1–4, 5–9,

10–14, 15–24, 25–34, 35–44, 45–54, 55–64, o65

years). The mean age of DHF cases was obtained by

averaging the mid-point age of each group (i.e. 0.5, 3,

7.5, 12.5, 20, 30, 40, 50, 60, 75 years) weighted by the

number of DHF cases in each group. Then, by ad-

justing the number of DHF cases in each group to the

national demographic structure in 2000, the adjusted

mean age of DHF was obtained. The DHF case data

were also used to derive the annual DHF incidence,

based upon population data obtained from the

National Statistics Office of Thailand. Between 1981

and 1994, the spatial resolution of these data was

province level. Between 1995 and 2004, it was district

level. We used the district-level data for our analysis.

Map data

The geographic information system software em-

ployed was MapInfo 7.0 (MapInfo, Troy, NY, USA).

A digital map that delineates the boundaries of the

926 districts was obtained from MapInfo Thailand.

Detection of spatial clustering

To examine the spatial clustering of transmission

intensity, we employed a methodology proposed by

Getis & Ord [11–13]. In this methodology, the G*i

spacial statistic describes clustering of the variable

of interest, Y, around location i. Large G*i values

indicate local clustering of large Y values ; whereas, a

small G*i indicates clustering of low Y values. We

derived G*i and associated one-tailed P values for

the variable of interest, IMA-DHF, at each district i.

The binary distance matrix required by this method-

ology was generated based upon a cut-off distance

of 200 km between paired district centres. Spatial

clusterings (at the level of P<0.001) were noted on

the map.

Climatic data

Climatic data beginning from 1987 were obtained

from the University Corporation of Atmospheric

Research [14]. For each year between 1995 and 2004,

we extracted the following data: the annual mean of

daily mean temperatures (Tmean in the official data

definition, xC), the daily minimum temperature (Tmin,

xC), the daily maximum temperature (Tmax, xC), the

total reported precipitation per month (RPCP,

mm/month), the average vapour pressure deficit

(AVPD, hPa) which is the saturation vapour pressure

minus the observed vapour pressure, and the average

pan evapo-transpiration (APET, mm/day) which is

the amount of water transformed into vapour from a

pan of a standard size. This study enrolled 89 weather

stations on the Indochina peninsula, which consist-

ently reported all these variables between 1995 and

2004. These climatic variables were interpolated to

the geographic centre (centroid) of each district, as

reported previously [15].

Socioeconomic data

Over 250 socioeconomic variables have been surveyed

from each of the 61 000 Thai villages on a bi-annual

basis, as described previously [15]. Data were col-

lected in even-numbered years between 1994 and 1998
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and in odd-numbered years since 2001. This was

performed under the initiative of the National Rural

Development Committee of Thailand. This rural

database, officially coded ‘NRD2C database’, does

not include Bangkok. We selected the variables that

(i) were consistently recorded in all six surveys con-

ducted between 1994 and 2005, (ii) covered more

than 90% of all villages in any survey, and (iii) were

not related to technical detail for a specific industry.

Twenty-five variables were selected (Table 1). Among

these, six variables were related to local water re-

sources, four to education, two to public health, four

to transportation, three to demographic character-

istics, and six to other aspects. These variables were

averaged for each district and linearly interpolated

to the years intervening the surveyed years. This

database can be accessed at : http://www.vector-

borne-diseases.org/socioeconomics_thailand.

Regression analyses

To explain the spatial pattern of transmission inten-

sity of dengue (represented by IMA-DHF) based

upon climate and socioeconomics, regression analyses

were performed. Two regression methodologies were

used in tandem in order to select the most robust

explanatory variables. The first methodology, the

random-effect linear regression model, adjusted for

the possible biases caused by repeated measurement

or temporal autocorrelation. In the present study,

this bias would have arisen from the fact that each

district reported a maximum of ten annual values of

IMA-DHF. The second methodology was employed

to adjust for spatial autocorrelation [16, 17]. For this

spatial regression analysis, both dependent and inde-

pendent variables were averaged from the entire study

period for each district.

For the random-effect linear regression analysis,

we first selected an ‘optimal time lag’ at which trans-

mission intensity is optimally predicted by each cli-

matic variable as follows. For each climatic variable,

the mean value of the previous j years (j=0–8) was

incorporated as a single independent variable in the

random-effect univariate linear regression. The time

lag, j, which resulted in the maximum R2, was selected

as the optimal time lag for each climatic variable.

Climatic variables averaged from their corresponding

optimal time lags were incorporated into subsequent

Table 1. Socioeconomic variables as explanatory variables for inverse of mean age of DHF cases

Variable Definition

Surface water Proportion of villages with surface water
Piped water Proportion of villages with supply of piped water

Health station Proportion of villages with health station
Kindergarten Proportion of villages with kindergarten
Primary school Proportion of villages with primary school

High school Proportion of villages with high school
Electricity Proportion of villages with electricity
Road to district centre Proportion of villages connected to the district centre by roads
Public bus Proportion of villages where public bus service is available

Firewood Proportion of villages where firewood is used for cooking
Working remotely Proportion of villages where residents work outside of the subdistrict
Public large wells Per capita number of public large water wells

Private large wells Per capita number of private large water wells
Public small wells Per capita number of public small water wells
Private small wells Per capita number of private small water wells

High-school graduates Proportion of population who graduated from senior high school
Pickup trucks Proportion of households which possess pickup trucks
Motorcycles Proportion of households which possess motorcycles
Land ownership Proportion of households which own land

Rent houses Proportion of households which do not own any land
Area for agriculture Proportion of area which is used for agriculture
Population density Population per km2

Household density Number of households per km2

Population per house Average population per household
Birth rate Number of births in the previous year per 1000 population
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multivariate random-effect regression. Only the socio-

economic variables that were recorded in the same

year as the dependent variable were used as indepen-

dent variables. To consider the possible confounding

by ecological differences among the regions, dummy

variables were included to stratify the analysis by

region. The year value of each record was also incor-

porated as an independent variable to represent

the temporal trend. The independent variables (i.e.

climate, socioeconomics, region-specific dummy vari-

ables and year) that significantly contributed to the

multivariate random-effect model were selected fol-

lowing a stepwise process of elimination.

Finally, multivariate spatial regression analysis,

which has been frequently used in socioeconomic and

health studies [16, 17], was performed using the sel-

ected variables. As a result, the variables that remained

after stepwise elimination in both random-effect and

spatial regressions should be the most robust.

In both random-effect and spatial regressions, the

final models were retested after replacing the crude

IMA-DHF with the IMA-DHF calculated from the

adjusted mean age, to exclude confounding by het-

erogeneity in the demographic structure. Statistical

significance was based upon a two-sided a-level of

0.05. In all regression analyses, the records with no

DHF cases were omitted from the analysis. In prelimi-

nary regression analyses, we normalized IMA-DHF

[18], and obtained largely similar results to the results

from non-normalized IMA-DHF. Considering the

difficulty in the interpretation of results, we presented

the results from non-normalized IMA-DHF. Stata 9.0

(Stata Corp., College Station, TX, USA) was used for

statistical analysis. Software for the spatial analysis

was provided by Maurizio Pisati (University of

Milano, Bicocca).

RESULTS

DHF epidemiological data

We divided Thailand into four regions, with Bangkok

located in the central region (Fig. 1). Changes in the

mean age of DHF cases were gradual, while DHF

incidence fluctuated dramatically across all regions

(Fig. 2a, b). The mean age of DHF cases was con-

sistently the lowest in Northeastern region (Fig. 3).

The mean age of DHF cases in the entire country

increased gradually beginning in the 1980s, and this

increase accelerated beginning in the mid-1990s

(Fig. 2a). The increase in mean age of DHF, which
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Fig. 1. Regions in Thailand. Thailand is classified into four
regions : North (N), Northeastern (NE), Central (C), and

Southern (S). Bangkok is shown in black.
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Fig. 2. Temporal shift in the mean age and annual incidence
of dengue haemorrhagic fever (DHF) cases across Thailand
from 1981 to 2004. (a) Mean age and (b) annual incidence

(per 100 000 individuals) of DHF are presented for Bangkok
(–&–) and for other regions (- -%- -).
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is equivalent to a decrease in transmission intensity,

was most prominent in Bangkok. In Bangkok, the

mean age of DHF increased from 11 to 22 years

between 1995 and 2004, while the average age in the

population increased only from 31 to 34 years. DHF

incidence in Bangkok was generally lower than other

regions before the mid-1990s, as has been reported

[19] ; however; Bangkok frequently surpassed other

regions afterwards (Fig. 2b).

Cluster of transmission intensities

A clustering of high transmission intensities (rep-

resented by high IMA-DHF values) was consistently

present in the Northeastern region (Fig. 4). In con-

trast, a clustering of low transmission intensities

initially existed in the Northern region. In 2000, the

mean age in this region was comparable to the

Central region, hence this cluster of low transmission

intensities disappeared. Another clustering of low

transmission intensities subsequently emerged in the

late 1990s in the area surrounding Bangkok and

expanded thereafter.

Regression analyses

The optimal time lag was determined by univariate

random-effect regression analysis for each climatic

variable as follows: 5 years for Tmean, Tmin, Tmax and

RPCP; 8 years for APET and AVPD. These climatic

variables with corresponding optimal time lags, along

with socioeconomic variables, were incorporated

into multivariate random-effect linear regression to

select variables with significant contributions to IMA-

DHF [Table 2, column (a)]. The mean age was then

predicted based upon this multivariate random-effect

model. The trend towards a low mean age in the

Northeastern region was well reproduced (Fig. 5a

vs. Fig. 3, 2004). This was mainly because public

‘ large water wells ’ (bobadan in Thai), a positive risk

factor, were most prevalent in this region (Fig. 5b).

Conversely, private ‘small water wells ’ (bonamten),

a negative risk factor, were scarce (Fig. 5c).

The variables selected by random-effect linear

regression were further tested by spatial regression

analysis [Table 2, column (c)]. The results suggested

that private small water wells are potential risk re-

ducers of the transmission intensity. APET, public

large/small water wells, high school, land ownership,

and birth rate remained positive risk factors. The

spatial patterns of some of these variables are
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presented in Fig. 5. In both random-effect and spatial

regressions, the adjustment of mean age of DHF

affected the results only slightly [Table 2, columns

(b), (d)], ensuring that the interference by the demo-

graphic structure was minimal.

DISCUSSION

It has often been held that dengue transmission is

more intense in urban areas, based on the observation

that cities are often associated with a high incidence

of DHF. However, DHF incidence was highly vol-

atile, suggesting that incidence may not accurately

reflect the transmission intensity. In addition, inci-

dence is subject to biases caused by over-/under-

reporting and local modification of diagnostic criteria

for DHF [6, 10, 20, 21]. In contrast, mean age of DHF

showed higher continuity and is less likely to be

affected by over-/under-reporting or modified diag-

nostic criteria. Based on this rationale, the inverse

of mean age of DHF was employed as a surrogate of

Table 2. Variables which explain transmission intensity, represented by inverse of mean age of dengue

haemorrhagic fever cases (IMA-DHF)

IMA-DHF$

Random-effect regression

(n=7902)

Spatial regression

(n=873)#

(a) (b) (c) (d)
Crude Adjusted Crude Adjusted

Independent variables· Regression coefficients
Year x0.0029*** x0.0030*** Not used Not used
APET (mm/day) 0.054*** 0.056*** 0.036*** 0.030***

Public large wells 0.21* 0.21** 0.56** 0.82***
Public small wells 0.65*** 0.38** 0.57** n.s.
Private small wells x0.081*** x0.081*** x0.053** x0.059***

Birth rate 0.00063*** 0.00046*** 0.0014*** 0.0010***
Land ownership 0.0086** 0.0087** 0.025*** 0.027***
High school 0.017** 0.015** 0.032*** 0.032***
Northeastern region 0.018*** 0.019*** Not used Not used

Southern region 0.011*** 0.0083*** Not used Not used
Constant 5.7*** 5.9*** x0.038 x0.0058
R2 0.14 0.21 0.33 0.39

APET, Average pan evapo-transpiration.

# Independent and dependent variables were averaged in each district outside Bangkok.
$ IMA-DHF was obtained from either crude or adjusted mean age of DHF cases.
· Each socioeconomic variable is defined in Table 1.

*** P<0.001, ** P<0.01, * P<0.05, n.s., not significant.

1996 1998 2000 2002 2004

Fig. 4. Spatial clustering of dengue transmission intensity, represented by inverse of mean age of DHF cases (IMA-DHF), in

Thailand from 1995 to 2004. Local clusterings of both high (&) and low ( ) values of IMA-DHF are indicated. Data is
presented only for even-numbered years.
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transmission intensity. Use of this methodology

revealed clustering of high transmission intensity in

the Northeastern rural region and clustering of low

transmission intensity in Bangkok and the Northern

region.

Regression analysis was employed to explain the

transmission intensity in light of climatic and socio-

economic conditions. As an initial step, optimal time

lag was selected for each climatic variable. For all

the climatic variables, the optimal time lags were

longer than 4 years. This may suggest that the trans-

mission intensity at a time-point is determined by the

accumulated effect of climate during the preceding

years.

The highest transmission intensity in the North-

eastern region could be explained by a combination

of the highest prevalence of public large water wells

and the lowest availability of private small water

wells, as shown by multivariate regression analysis.

The residents who obtain water from public wells

store the water in household containers, which pro-

vide breeding sites of vector mosquitoes, Aedes. On

the other hand private wells reduce the necessity of

storing water in houses. These results are consistent

with our previous report that public wells and private

wells were positive and negative risk factors, respect-

ively, for infestation by Aedes [15].

The birth rate remained a positive risk factor per-

haps because it represents the supply of susceptible

population. The finding that ‘ land ownership’ was a

positive risk factor may be explained by the fact that

the large water containers frequently observed in rural

Thailand require a yard. In addition, garbage, used

tyres, and tree hollows that may be found in a yard

often provide breeding sites [22, 23]. The proportion

of villages in which high schools are present remained

a positive risk. This might suggest that high schools

represent a centre of contact between hosts and

vectors, persisting after decades-long vector control

efforts targeted at primary schools. An alternative

explanation might be that pupils in districts with

fewer high schools may lodge near their school, in

another district, affecting the age profile of DHF in

these districts. APET remained a positive risk factor

possibly because people in the arid area have to store

water in household containers. The high APET in the

Northeast (Fig. 5d ) explains the high transmission

intensity observed in this region. Taken together,

biological causality can be explained by most of the

independent variables selected in the final model.

Moreover, these findings provide reciprocal support
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for the use of IMA-DHF as a surrogate for dengue

transmission intensity.

The variable ‘year ’ showed strong negative con-

tribution in the random-effect regression suggesting

that there has been a downward trend in dengue

transmission intensity that cannot be explained solely

by the climatic and socioeconomic factors examined.

This trend may reflect, to some extent, vector control

efforts. Regional vector control offices have been dis-

tributing larvicide freely and conducting educational

campaigns within communities and schools. It is

probable that such vector control efforts were more

intense in urban areas than in remote areas due to

the fact that regional offices are located in cities. If so,

the rapid increase of mean age of DHF cases around

Bangkok might reflect these intense vector con-

trol activities. Air-conditioned or window-screened

houses, which have been increasingly prevalent in

Bangkok, may also have contributed to the rapid

decrease of transmission intensity there.

Dengue transmission intensity, represented by

IMA-DHF, has been lower in Bangkok than in other

regions since the mid-1990s. In contrast, DHF inci-

dence in Bangkok surpassed other regions during

the same period. These paradoxical findings are

consistent with a state of ‘endemic stability ’ [24, 25].

Endemic stability is defined as a state in which the

incidence of a clinical illness is low, while the trans-

mission intensity is high. In support of the existence

of endemic stability, we recently found that the

correlation between DHF incidence and vector

abundance were partially ‘negative ’ (Thammapalo

et al., unpublished observations; Nagao et al., un-

published observations). We hypothesize that the

unique aetiology of DHF (i.e. enhancement in sec-

ondary infections) may give rise to this endemic

stability (Nagao & Sakamoto, unpublished obser-

vations). Regardless of its underlying mechanism,

the possibility of such a partially negative correlation

between DHF incidence and transmission intensity

has an important implication. It implies that insuf-

ficient vector reduction might transiently increase

DHF incidence in areas at high transmission inten-

sity; Bangkok may provide such an example. Hence,

a greater awareness of the relationship between DHF

incidence and transmission intensity is warranted.
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