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ABSTRACT

For many biological investigations, groups of individuals are genetically sampled from several geographic
locations. These sampling locations often do not reflect the genetic population structure. We describe a
framework using marginal likelihoods to compare and order structured population models, such as testing
whether the sampling locations belong to the same randomly mating population or comparing unidirectional
and multidirectional gene flow models. In the context of inferences employing Markov chain Monte Carlo
methods, the accuracy of the marginal likelihoods depends heavily on the approximation method used to
calculate the marginal likelihood. Two methods, modified thermodynamic integration and a stabilized
harmonic mean estimator, are compared. With finite Markov chain Monte Carlo run lengths, the harmonic
mean estimator may not be consistent. Thermodynamic integration, in contrast, delivers considerably better
estimates of the marginal likelihood. The choice of prior distributions does not influence the order and choice
of the better models when the marginal likelihood is estimated using thermodynamic integration, whereas with
the harmonic mean estimator the influence of the prior is pronounced and the order of the models changes.
The approximation of marginal likelihood using thermodynamic integration in MIGRATE allows the
evaluation of complex population genetic models, not only of whether sampling locations belong to a single
panmictic population, but also of competing complex structured population models.

INVESTIGATIONS using genetic samples from indi-
viduals taken across a geographic or biological range—

for example, water frogs caught at several ponds, blood
samples of humans collected in several villages, or
viruses collected from different host species that have
the same disease—are common. Whether the individ-
uals studied belong to a single population that is long-
term randomly mating or to two or more populations
that have varying degrees of genetic isolation from each
other is an important concern. Because the geographic
information about the locations often does not give
a clear indication about the degree of genetic isolation
of the individuals, we often use the genetic data them-
selves to calculate test statistics to suggest whether
or not the locations belong to the same population.
Many programs (Hudson et al. 1992b; Michalakis and
Excoffier 1996; Rousset 1996; Neigel 2002; Weir

and Hill 2002; Holsinger et al. 2002) use allele fre-
quencies to calculate FST for pairs of locations or use
Fisher’s exact test to reject panmixia for the whole
or subsets of the data (Raymond and Rousset 1995;
Rousset 2008).

Several methods test explicitly whether two popula-
tions are or are not panmictic (for example, Hudson

et al. 1992a; Rousset 1996). These methods are often
applied to all pairs of a multiple-population data set.
This is problematic, because both Beerli (2004) and
Slatkin (2005) have shown that pairwise analyses can
inflate the effective population size estimates, thereby
confounding estimators of migration that use the effec-
tive number of migrants.

Alternatives to tests based on allele frequencies have
been implemented, for example, in the programs
STRUCTURE (Pritchard et al. 2000), BAPS (Corander

et al. 2008), and STRUCTURAMA (Huelsenbeck and
Andolfatto 2007). These methods allow the assign-
ment of individuals to groups using the compatibility
of their multilocus genotypes. They can thus be used to
group locations into panmictic units on the basis of
allele profiles and geography; this capability led to many
advancements in landscape genetics and phylogeogra-
phy. If we are interested in directionality of migration,
however, this framework is often insufficient because
the assignment methods offer only limited insight into
population processes, such as migration, mutation, or
fluctuation of population size, that underlie and ac-
count for the present genetic structure (Palsbøll et al.
2007).

We describe here another alternative, using Bayesian
inference, that calculates probabilities of explicit pop-
ulation models using coalescence theory (a historical
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review is given by Kingman 2000). An extension of the
original n-coalescent of Kingman to multiple popula-
tions with migration (Strobeck 1987; Hudson 1991)
leads to probabilistic inference programs that consider
potentially complex migration patterns among sam-
pling locations (for example, Beerli and Felsenstein

2001; Beerli 2006; Kuhner 2006). The program MIGRATE
(Beerli and Felsenstein 2001; Beerli 2006) allows the
calculation of a likelihood ratio test (LRT) for nested
population models, but these calculations only approx-
imate the LRT (Beerli 2008), need a moderately com-
plicated approach with several independent runs (Beerli

2009), or require time-consuming large-scale simulations
(Carstens et al. 2005). In our approach, a Bayes factor
(BF) takes the role of an LRT. BFs and LRTs are not
equivalent, however: the BF is the ratio of the marginal
likelihoods of two hypotheses M1 and M2, whereas the LRT
measures support for one hypothesis over another at the
maximum likelihood. BFs are better suited for model
selection than LRTs because one can compare nonnested
as well as nested models. In addition, the programm-
ing and the successful application of Bayesian inference
programs are often simpler than maximum likelihood
(Beerli 2006).

Here, we report on the effect of two different ap-
proximations of the marginal likelihood on BF and
therefore on the support for specific population mod-
els. We provide examples of the use of these methods to
extend our tool set for investigating whether sampling
locations are part of a panmictic population or are parts
of a more complex population structure. Our approach
unifies the analysis of population models and allows
a wide spectrum of comparisons, from simple tests of
whether locations sampled are part of a single popula-
tion to more complex questions, such as whether there
are unambiguous migration directions among popula-
tions; it also calculates posterior distributions of param-
eters of these models.

MATERIALS AND METHODS

Our approach to population model selection uses a frame-
work that allows inferring parameters using coalescence
theory. The population models are simple structured coales-
cence models with possibly many parameters (Beerli and
Felsenstein 2001).

Bayes Factor estimation: In a typical Bayesian inference
using Markov chain Monte Carlo (MCMC) methods we do not
need to calculate the marginal likelihood to estimate the pos-
terior probability distribution of the parameters of a specific
model because the MCMC analysis depends only on likelihood
ratios and not absolute likelihoods. Because BF is a ratio of
marginal likelihoods of two models, however, calculation of
these absolute likelihoods is essential. Because we use absolute
likelihoods, we can now easily compare more than two models
with the BF framework by choosing a reference model and
comparing or ranking other candidate models with that.

We augmented the program MIGRATE (Beerli 2006) with
a module to calculate the marginal likelihood

LMi
¼ PðD jMiÞ ¼

ð
Ci

PðCi jMiÞPðD jCi ;MiÞdCi ; ð1Þ

which is the probability density of the data where the pa-
rameters, for example population sizes and migration rates,
and nuisance parameters, for example genealogies Ci, of the
model Mi are integrated out using the prior distribution
PðCi jMiÞ. The marginal likelihood is difficult to estimate with
sufficient accuracy because not only the region around the
mode, but also the tails of the distribution need to be ex-
plored. This is not straightforward in an MCMC context where
we bias toward more likely solutions and so have a tendency
to sample the tails of the distribution less frequently. The
marginal likelihood is calculated in a Bayesian context and
needs proper prior distributions to exist. Improper priors
would lead to infinitely large tails that do not allow a consistent
estimate of the marginal likelihood. We contrast two different
methods to estimate the marginal likelihood: harmonic mean
(Newton and Raftery 1994; Kass and Raftery 1995) and
path sampling (Gelman and Meng 1998). Studies of path
sampling have recently led to an alternative method of esti-
mating marginal likelihoods (thermodynamic integration)
(Gelman and Meng 1998; Lartillot and Philippe 2006;
Friel and Pettitt 2005, 2008).

Harmonic mean estimator: Newton and Raftery (1994)
described an approximation of Equation 1 using a harmonic
mean estimator. Our stabilized harmonic mean estimator
is a natural adaptation of Newton and Raftery’s harmonic
mean estimator to problems that treat genealogies as nuisance
parameters and summarize over all possible genealogies G
using the Metropolis–Hastings algorithm (our MCMC sampler
was described in detail by Beerli 1998, 2006 and Beerli

and Felsenstein 1999, 2001). We approximate the marginal
likelihood as

LHM ¼ PðD jMiÞ �
1

m

Xm

j¼1

1

PðD jGjÞ

 !�1

: ð2Þ

The extension from single-locus to multilocus data is not
straightforward even with unlinked loci. We developed a
method for combining independently inferred marginal like-
lihoods that allows fast parallel computation of unlinked loci.
The combined marginal likelihoods are the product of the
independent marginal likelihoods for each locus and a scaling
factor K for loci,

L
ðallÞ
HM ¼ K

YZ
z¼1

PðDz jMiÞ: ð3Þ

The scaling factor

K ¼
ð
P

YZ
z

PðDz j P;MiÞPðP jMiÞ1�Z dP; ð4Þ

where Z is the number of loci. We describe the scaling factor K
in detail in the appendix. K can be approximated using prior,
likelihood, and posterior values reported during the MCMC
run (appendix). Our program MIGRATE version 3.1 calcu-
lates K and reports locus-specific and combined marginal-
likelihood values when multiple loci are used.

Path sampling or thermodynamic integration estimator:
MCMC sampling spends more time in areas of the search
space proportional to the likelihood; as a result little attention
is paid to regions with low likelihoods despite the fact that
they may be large. Marginal likelihood is the integral over the
whole search space and therefore may depend on accurate
representation of these low-likelihood areas. Path sampling
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allows exploring these low-likelihood areas by distorting the
acceptance ratio of the MCMC procedure with scaling factor
t ranging from zero to 1.0, where at t¼ 0.0 the process samples
from the prior distribution and at t ¼ 1.0 it samples from the
distribution of interest. Thus, we calculate the log marginal
likelihood using the expectation of the distribution of all
coalescent genealogies G given the data D evaluated at scaling
factor t,

‘TI ¼ ln PðD jMiÞ ¼
ð1

0
EG jD;t ln PðD jG ;MiÞdt: ð5Þ

We approximate this integral using the trapezoidal rule for the
scaling factor t, using a small number of scaling values t0¼ 0 ,
t1 , . . . , tk , . . . , tn ¼ 1 and the corresponding marginal
likelihoods y0 . . . yn as

‘TI ¼
Xn

k¼2

ðtk � tk�1Þ
yk 1 yk�1

2
ð6Þ

with the average of log likelihoods, ln P(D j Gj, Mi), at a given
scaling value tk,

yz ¼
1

m

Xm

j¼1

ln Ptk ðD jGj ;MiÞ: ð7Þ

For multiple unlinked loci we then use

‘
ðallÞ
TI ¼ ln K

XZ

z¼1

‘z
TI: ð8Þ

The K is the same as the one in Equation 4. MIGRATE already
used a scheme to run parallel MCMC chains to improve
the exploration of search space using discrete scaling values
tk that is based on the scheme proposed by Geyer and
Thompson (1995): Metropolis coupled Markov chain Monte
Carlo (MCMCMC). They formulated their method in terms
of thermodynamic properties in which a chain that accepts
always, with t ¼ 0.0, is the hottest chain with a temperature
of 1/t ¼ ‘ because the chain bounces randomly in many
different areas of the search space, and a chain with t ¼ 1.0
is cold because its movements are smaller. After each chain
attempts a change of the genealogy, the system allows for
swapping trees among neighboring MCMC chains with scaling
factors ti and ti11 to improve the parameter estimates. The
swap ratio depends on the relative likelihood ratios of ran-
domly chosen pairs of chains with different t and is

r ,
PðD jGiÞti�1 PðD jGi�1Þti

PðD jGiÞti PðD jGi�1Þti�1
; 1 , i , n; ð9Þ

where r is a uniform random number between 0 and 1, and n is
the number of chains with different scaling factors t. We use
the term scaling classes to express the different discrete classes
with different values of t. One could express the same classes
as temperature classes where the temperature Ti is 1/ti.

For the thermodynamic integration we record the likeli-
hood values for each chain; these values are then used to cal-
culate the averages yk, which are used to calculate the marginal
likelihoods. This is a static variant of the step-stone method
proposed by Wangang Xie, Ming-Hiu Chen, Yu Fan, Lynn Kuo,
and Paul Lewis (L. Kuo and P. Lewis, personal communica-
tion in 2008).

Using discrete classes tk may be too simple for phylogenetic
applications (cf. Lartillot and Philippe 2006), but results
in consistent estimates even for few scaling classes (Figure 1),
except that the magnitudes of the estimates of the marginal
likelihood (the area under the curve) are correlated with the

number of scaling classes. The calculation time for each
scaling class is about the same, so a run with 4 scaling classes
will be about eight times faster than a run with 32 scaling
classes. In principle, the different chains can be run in parallel,
but the gain in speed is limited because the chains run in
lockstep and need to wait on the slowest chain. Because many
simulations (not shown) revealed that the shape of the path
sampling function (Figure 1) is very similar with different
migration models, we propose a different treatment of the first
(the hottest) interval, defined by the scaling factors t0 and t1

with log-likelihood values y0 and y1, respectively. We calculate
the area of this first interval analytically, using a cubic Bézier
spline with two additional control points c(0) and c(1) that are
calculated using the first three points. A point is a pair of ti and
log-likelihood yi and is defined as pi ¼ (ti, yi). The additional
control points are

cð0Þ ¼ t0;
1

5
y0 1

4

5
y1

� �
ð10Þ

cð1Þ ¼ t0;
t1y2 � t2y1

t1 � t2

� �
ð11Þ

so that we have four control points

pt;y ¼ ððt0; y0Þ; cð0Þ; cð1Þ; ðt1; y1ÞÞ: ð12Þ

The values of the y-axis of the additional control points were
chosen so that the Bézier curve mimics the path sampling
function estimated with many scaling classes. We calculate a
point p(w) on the Bézier function using

pðwÞt;y ðtÞ ¼
X3

i¼0

�
3
i

�
pðiÞt;y t ið1�tÞ3�1

: ð13Þ

The partial marginal likelihood by integrating the parametric
function over the hottest interval is then

‘ðt0;t1Þ ¼
ð1

0
pðwÞy ðtÞ

dpðwÞt

dt
dt ð14Þ

¼ 1

20
ððt1 � t0Þðy0 1 3cð0Þy 1 6cð1Þy 1 10y1ÞÞ: ð15Þ

This Bézier quadrature allows shorter run times than ap-
proaches with more scaling classes, an important fact because

Figure 1.—Comparison of integration accuracy. The shaded
curve with shaded squares shows means of 32 chains at equally
spaced intervals of t. Solid squares mark the curve derived
from 16 chains. The dashed line marks the curve from 4
chains. The dotted line is the cubic Bézier-spline approxima-
tion of the first interval of the 4-chain run.
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the estimation of large problems with many parameters can
take a long time to run.

Simulation studies to test the approximations to the mar-
ginal likelihood: The quality of the two estimators ‘̂TI and ‘̂HM

was tested using simulated data. These data sets were gener-
ated using a coalescence-based simulator (distributed from
http://people.sc.fsu.edu/�beerli/programs).

One- and two-population simulations: The HM and TI approx-
imations were compared with a standard test statistic based on
allele frequencies (Hudson et al. 1992a), using two groups of
simulated two-population data:

1. One hundred artificial DNA data sets containing 1000 sites
for 10 individuals in each of two populations using a model
with no immigration into population 2 with parameters
Q1 ¼ 0.005, Q2 ¼ 0.01, M2/1 ¼ 100, M1/2 ¼ 0 were
analyzed with nine different models. Q is the mutation-
scaled effective population size, 4Nem, and M is the ratio of
the immigration rate m and the mutation rate m per site
and generation. The marginal likelihoods of eight alterna-
tive models were then compared with the marginal likeli-
hood of the model used to simulate the data, the ‘‘true’’
model. This comparison of marginal likelihood ratios is
equivalent to Bayes factors.

2. Simulations of four sets of 100 single-locus data sets with
different degrees of isolation from each other were used
to compare the Bayes factor method against a traditional
test based on frequencies. These four sets were simu-
lated with (a) Q ¼ 0.01 and the 20 individuals randomly
split into two groups; (b) Q1 ¼ Q2 ¼ 0.005, M2/1 ¼
M1/2 ¼ 500; 000 (this is equivalent to a total Nm¼ 1250);
(c) Q1¼Q2¼ 0.005, M2/1 ¼ M1/2 ¼ 100 (this is equivalent
to a total Nm ¼ 0.25); and (d) Q1 ¼ Q2 ¼ 0:005;M2/1 ¼
M1/2 ¼ 1 (this is equivalent to a total Nm ¼ 0.0025). The
analyses of these four sets were done for two models, a single-
population model and a full two-population model.

Large-scale population simulations: Many real problems in-
clude many sampling locations for which the association of
sampling locations and panmictic populations is unknown. We
simulated data for 50 loci from 3 populations using a scenario
as outlined in Figure 2A. This stepping-stone model has five
parameters and for each locus 300 bp were simulated using
these values: Q1¼ 0.003, Q2¼ 0.003, Q3¼ 0.004, M1/2 ¼ 100,
M2/3 ¼ 100. The individuals (120, 120, and 160) in the 3
populations were then randomly grouped into 6, 6, and 8
sampling locations, respectively. The full data set contained 20
locations with 20 individuals each. These particular settings
were chosen because they mimic potential data sets that use
anonymous loci from the nuclear genome. A naive application

of these data would ask for a 20-population analysis. With a
default MIGRATE run we would need to estimate 20 popula-
tion sizes and 380 migration parameters, a daunting task with
few loci. A total of six potential migration models using dif-
ferent numbers of populations and different migration models
were explored. The six cases presented use models with 1, 2, 3,
and 20 populations with several candidate models (Table 1,
Figure 2). Specific MIGRATE run conditions are described in
supporting information, File S1.

TABLE 1

List of migration models used for simulation study

No. Pop. Loc. Param. Description (numbers are location numbers)

1 3 20 5 ð1; 2; 3; 4; 5; 6Þ/ð7; 8; 9; 10; 11; 12Þ/ð13; 14; 15; 16; 17; 18; 19; 20Þa
2 3 20 9 ð1; 2; 3; 4; 5; 6Þ� ð7; 8; 9; 10; 11; 12Þ� ð13; 14; 15; 16; 17; 18; 19; 20Þ� ð1; 2; 3; 4; 5; 6Þ
3 2 20 4 ð1; 2; 3; 4; 5; 6Þ� ð7; 8; 9; 10; 11; 12; 13; 14; 15; 16; 17; 18; 19; 20Þb
4 2 20 4 ð1; 3; 5; 7; 9; 11; 13; 15; 17; 19Þ� ð2; 4; 6; 8; 10; 12; 14; 16; 18; 20Þc
5 1 20 1 (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20)
6 20 20 400 (1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(17)(18)(19)(20)d

No., model number; Pop., population; Loc., location; Param., parameter.
a See Figure 2A (true model).
b See Figure 2B.
c See Figure 2C.
d Each location is connected with all others; see Figure 2D.

Figure 2.—Population structures used to generate artificial
data sets. (A) The true population model, where population 3
receives immigrants from population 2, which receives immi-
grants from population 1. Each solid disk represents a ran-
dom sample from the population and therefore represents
an arbitrary sample subdivision (location sample) of the pan-
mictic population 1, or 2, or 3. (A–C) show alternative parti-
tionings used of the true population model. (B) The 20
location samples are lumped into 2 populations, combining
populations 2 and 3 (see A). (C) An alternative 2-population
model. (D) A naive 20-population model assuming each sam-
pling location represents a population; arrows in A, B, and
lines in D represent potential migration routes; migration
routes in C are bidirectional from dark to light locations.
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Effect of prior choice and prior range: We explored the
effect of the choice of the prior distribution on the marginal
likelihood by using simulated multilocation single-locus data.
We compared two exponential and two uniform prior distri-
butions: narrow uniform prior distribution for Q and M with
a minimum of 0.00001, 0.0 and a maximum of 0.1, 5000,
respectively; a wide uniform distribution with a maximum for
Q and M of 0.5 and 50,000; a narrow exponential distribution
with the same minimum and maximum as the narrow uniform
but a mean of 0.01 and 100 for Q and M, respectively; and
a wide exponential distribution with minimum and maxi-
mum of the wide uniform, but with a mean of 0.1 and 1000,
respectively. Specific MIGRATE run conditions are described
in File S1.

Model selection: Model choice probabilities si were calcu-
lated as suggested by Kass and Raftery (1995) by

si ¼
BFiP
n
j BFj

: ð16Þ

Example data set: Our example problem reanalyzes part of
a data set of humpback whales from four sampling locations in
the Southern Atlantic collected by Engel et al. (2008): near
Brazil, Antarctica 1 (west of the Antarctic peninsula), Antarctica
2 (east of the Antarctic peninsula), and Colombia (Figure 1 in
Engel et al. 2008). The data were analyzed using several
different migration models. We used three subsamples of the
original data, two with 10 and one with 30 randomly selected
individuals from each location. We also ran one of the data sets
twice for all example models to assess the effect of the Markov
chain Monte Carlo error. We established a most likely mutation
model within the constraints for MIGRATE by using PAUP*
(Swofford 2003) to estimate parameters for site rate variation
and transition/transversion ratio.

RESULTS

Comparison of approximations of the marginal
likelihood: In all but trivial situations we cannot cal-
culate LM or its log value, lM, analytically. Using simu-
lated data, we compared the two different methods for
approximating LM: the thermodynamically estimated
‘̂ðTIiÞ using coupled scaling classes TIi and the harmonic
mean HM estimated as ‘̂ðHMÞ. In the context of co-
alescent simulations the artificial data Di simulated from
a set of true parameter values still include considerable
variability, so we do not expect a particular ‘̂M (for short:
‘̂) from all data sets. Nevertheless, we expect that the
different approximations will result in the same ‘̂ for a
specific data set. Figure 3 shows a comparison of the two
different approximations of lM. The relative magnitude
of ‘̂ among the different data sets is the same: a data set
that shows low ‘̂ with the HM estimator also shows low
values for the different TI schemes. ‘̂ðHMÞ is little affected
by the number of scaling classes, whereas the number
of scaling classes affects the absolute value of the ‘̂ðTIÞ.
When the results of a specific data set are compared, the
TI4 method delivers lower ‘̂ than the HM4, HM16, HM32,
TI16, and TI32 methods. The thermodynamically esti-
mated ‘̂ðTIc Þ using independent scaling classes is identi-
cal to the coupled scaling classes (data not shown).

Bayes factor estimation: Instead of reporting BF, we
report its log-equivalent LBF, which is lnðLM2

=LM1
Þ or

ð‘M2
� ‘M1

Þ. The log marginal-likelihood values ‘̂ are
dependent on the approximation, and the LBF de-
pends on the difference of the log marginal likelihoods
‘̂ and therefore the relative difference among models is
more important than the unbiased recovery of ‘̂ (Figure
3). Figure 4 compares the dependency of the approx-
imations on the length of the run. The shortest run took
only 5 sec with four chains, visiting 30,000 states and
discarding the first 10,000; the longest four-chain run
took 5 min 21 sec, visiting and discarding 256 times
more states. The thermodynamic integration approxi-
mation results in LBFs with high repeatability and
little variance even with only short runs, whereas the LBFs
using the HM estimator are unstable even for long runs,
and it appears that MCMCMC searches with many chains
result in reduced reliability of the HM estimators.

Numerous artificial single-locus data sets from a model
with two populations of unequal size, in which only
one population receives migrants from the other, were
generated; this model has three parameters that are
free to vary: population sizes 1 and 2 and immigration
rate from population 2 to population 1, which is M0 ¼
h)n. Populations are indicated by squares. Two open
squares indicate populations constrained to have the
same size; one open and one solid square indicate
population sizes are not constrained. Arrows indicate
allowed migration direction [from population 1 to 2,
from 2 to 1, or in both directions; arrows with two heads
indicate symmetric migration rate parameters (M ¼ m/
m)]. These data sets were analyzed with all nine possible
simple models (one parameter, h; two parameters,
h4n, h/n, h)h; three parameters, h/n,
h)n, h4n, h !h; four parameters, h !n); models
that exclude gene flow among the populations were

Figure 3.—Comparison of the log marginal likelihood
lM inferred by harmonic mean (HM) and thermodynamic in-
tegration (TI), using 4, 16, and 32 scaling classes of 10 inde-
pendent data sets (sorted by magnitude of the likelihood
of the TI runs with four scaling classes). HM values for the
16- and 32-chain runs were so similar that the squares over-
lap on the y-axis scaling used, but are different up to 5 log-
likelihood units. The simulated data were generated using
model M ¼ h)n.
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omitted. We calculated log Bayes factors, LBF ¼
ð‘̂Mi
� ‘̂M0

Þ. These report the chance of accepting Mi

over M0. In Table 2 LBF using TI16 rejects models that
have more parameters than the true model or that
disregard unidirectional migration with high frequency.
Very simple models and asymmetric models are often
accepted as plausible models. LBF using HM is in-
decisive, even with models that are very different from
the true model, such as h4h. Overall, the estimates
from TI deliver a clearer guide about which models to
prefer than the highly variable HM estimates (see File
S1), which, on average, are less decisive.

A comparison with different strengths of migra-
tion rate among two populations (Table 3) shows that
the LBFTI4

is more variable than the LBFTI16
but the

numbers of acceptances or rejections of a hypothesis
(Table 3, Table 2S in File S1) are very similar between
TI16 and TI4. In contrast, the LBFHM has a higher vari-
ability of outcomes.

Comparison with a panmixia test method: Currently,
coalescence-based inference programs do not test
whether the sampling locations are in separate popu-
lations or not. Therefore, summary statistics such as
FST, Fisher’s exact test, or population genetic clustering
programs (Pritchard et al. 2000; Evanno et al. 2005;
Huelsenbeck and Andolfatto 2007; Manel et al.

2007; Guillot 2008) are being used to establish groups
of individuals or sampling locations that most likely
form panmictic populations. Waples and Gaggiotti

(2006) showed that contingency table permutation
methods work well. Hudson, Boos, and Kaplan (Hudson

et al. 1992a) developed a permutation test (HBK) that
has great potential but seems to be little used despite
its power to establish panmixia. For our comparison we
used four scenarios: (1a) a single population was sam-
pled and then the sample was randomly partitioned into
two ‘‘populations’’, (1b) two populations exchanging
1250 migrants per generation, (2a) two populations
exchanging 1 migrant every 4 generations, and (2b) two
populations exchanging 1 migrant every 400 generations.
Table 3 reveals that for a real panmictic population (1a),
LBFTI16

, LBFTI4
, and LBFHM detect panmixia in 100, 94,

and 73 of the data sets, respectively, whereas HBK finds
that all 100 data sets are panmictic. Recognition of
panmixia in scenario 1b was 100, 92, and 71 for LBFTI16

,
LBFTI4

, and LBFHM, respectively, whereas the HBK
method marks all data sets panmictic. With LBFTI, all
data sets from scenario 2b fit a two-population model;
with 2a the acceptance of a two-population model
shrank to 70, 49, and 53 of 100, signaling considerable
uncertainty about finding the correct population model.
HBK declares all data sets under scenario 2 to contain

Figure 4.—Comparison of
the LBF (ln BF) values for dif-
ferent run lengths of the MCMC
chain. The squares and circles
are LBF values using the aver-
age marginal likelihoods from
five replicated runs. The verti-
cal bars mark the range be-
tween the largest and the
smallest LBF value from five
replicated runs. (A) LBF ap-
proximated using the harmonic
mean; (B) LBF approximated
by thermodynamic integration.

The simulated data were generated using model M ¼ h)n and LBF ¼ ð‘h/n � ‘h)nÞ. LBF scales in A and B are very
different.

TABLE 2

Summary of support for specific models using LBF approximated with harmonic mean (HM) and thermodynamic
integration (TI) using 16 chains with different scalers

Evidence (‘‘true’’ M0 ¼ h)n) Counts (based on LBFTI and LBFHM)

nparam 4 3 3 3 2 2 2 1
Model h !n h/n h4n h !h h)h h/h h4h h

Approximation TI HM TI HM TI HM TI HM TI HM TI HM TI HM TI HM
Against M0 0 46 28 36 0 48 0 57 70 50 54 35 0 59 11 40
Against Mi 100 54 72 64 100 52 100 43 30 50 46 65 100 41 89 60

One hundred single-locus data sets were analyzed, each with a total of 20 DNA sequences simulated using a three-parameter
model with two different population sizes and unidirectional migration from population 2 to population 1 (model abbreviation is
h)n). All other models 1–8 (Mi), such as the full model (h !n) or the minimal model (h4h), are compared with this ‘‘true’’
model (h)n), which represents the M0 hypothesis. nparam: number of parameter estimated.
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two populations. LBFHM shows, for all scenarios, much
larger variability in acceptance and rejection of pan-
mixia (see File S1), resulting in a lower total acceptance
of the correct model.

Effect of loci and model complexity: Table 4 shows
the LBFs for six migration models (Table 1). The ther-
modynamic integration method consistently chooses
the true model as the best model. Differences for the
other models depend on the haphazard choice of the
order of the loci. Because only 50 loci were simulated for
all runs, the first locus is shared among all runs, and the
second locus is shared among all runs except the 1-locus
runs, etc. We expect that with many loci a clear order of
models is achieved. The model order for the 50-locus
run is 1, 2, 3, 6, 5, and 4. Runs with many loci (.10)
suggest that the one-population model (5) is superior to

the two-population model that combines the locations
in an intermixed pattern (4) and also suggest that the
400-parameter (6) analysis is preferable over analyses
with wrongly combined locations. Runs with only few
loci may suffer because there are not enough data to
correctly rank incorrect models 3, 4, 5, and 6. The
reported Bayes factor values suggest that model 1
should be picked with probability 1.0 over the five
alternatives. More loci increase this certainty consider-
ably: the difference between the first and the second
best model is already very large for a single locus. The
number of loci and the BF differences are positively
correlated. The results for the harmonic mean estima-
tor suggest that the preferred model is the 9-parameter
model (2) and not the model that was used to simulate
the data (1).

TABLE 3

Comparison of the influence of the approximation on the power of LBF for simple models with different
migration schemes

Evidence Counts (based on LBFTI16
, LBFTI4

, and LBFHM)

Model 1a 1b 2a 2b
Nm ‘ 1250 0.25 0.0025
Approximation 16 4 H 16 4 H 16 4 H 16 4 H

Against M0 0 5 26 0 8 29 70 49 53 100 100 78
Against M1 100 94 73 100 92 71 30 51 47 0 0 22

LBF compared a full model (model M1 ¼ h !n) with a panmictic population (model M0 ¼ h). Models used to simulate the
data were as follows: 1a, a single population, the sampled individuals split randomly into two sets (Nm/‘); 1b, two populations
exchanging many migrants (Nm ¼ 1250); 2a, two populations exchanging a moderate number of migrants (Nm ¼ 0.25); and 2b,
two populations with very low migration rate (Nm ¼ 0.0025). The marginal likelihoods used in the LBF were approximated with
thermodynamic integration (TI) with 16 and 4 scaler bins and with the harmonic mean (HM4).

TABLE 4

Comparison of log Bayes factors (marginal log-likelihood differences) approximated by thermodynamic integration
and harmonic mean estimator, for different models and different numbers of loci

LBF for modela Rank of model

1 2 3 4 5 6 1st 2nd 3rd 4th 5th 6th

Thermodynamic integration
Loci

1 0 �10 �86 �583 �594 �253 1 2 3 6 4 5
2 0 �552 �1,946 �3,167 �3,338 �467 1 6 2 3 4 5
5 0 �697 �2,432 �4,757 �4,826 �542 1 6 2 3 4 5

10 0 �1,136 �4,266 �8,566 �8,352 �2,328 1 2 6 3 5 4
20 0 �2,072 �5,914 �12,913 �12,379 �4,835 1 2 6 3 5 4
50 0 �4,829 �14,683 �30,147 �28,439 �15,245 1 2 3 6 5 4

Harmonic mean estimator
1 0 �7 �20 �29 �28 �35 1 2 3 5 4 6
2 0 �76 �83 �123 �70 �168 1 5 2 3 4 6
5 0 �124 �133 �215 �160 �308 1 2 3 5 4 6

10 0 �236 �201 �430 �161 �420 1 5 3 2 6 4
20 0 �438 �565 �1,085 �453 �943 1 2 5 3 6 4
50 0 �819 �1,266 �2,613 �1,266 �2,723 1 2 5 3 4 6

Model 1 was used to simulate the data and is the reference model.
a Model numbers are specified in Table 1.
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Effects of prior distribution on the marginal likeli-
hood: Table 5 reveals that the marginal likelihoods
depend on the prior distribution: the LBF values are
different for different prior distributions. For the ther-
modynamic integration method, however, the order of the
models is identical among the narrow and wide prior
distributions, respectively, suggesting that most likely
the runs were rather short for the wide-prior models.
The harmonic mean estimator of the marginal likelihood
is similarly affected by the choice of prior distributions.
Using the harmonic mean estimator, the models are
ranked differently for each of the different priors.

Example analysis of migration patterns among
humpback whales sampling locations in the south seas:
Olavarrı́a et al. (2007) and Engel et al. (2008) de-
scribed the interaction of several humpback whale
populations (sampling locations). We use parts of their
data to showcase how BF can inform the discussion of
whether whales from these sampling locations belong
to the same genetic population or not and whether
some population models provide more appropriate
descriptions than others. Our analysis does not com-
pletely resolve the complex population interactions
of humpback whales, but it shows ways in which our
method is more useful than current methods for
model comparisons. Engel et al.(2008), using pairwise
FSTestimates, suggested that Antarctic locations A1 and
A2 appear panmictic; they used additional sighting
data to suggest that the individuals sampled near the
Brazilian coast probably do not move to the presumed
feeding grounds in the Antarctic but instead aggregate
at some unknown location. We chose a subset of models
to investigate (1) whether the regions Antarctica 1 and
2 belong to a single population and (2) whether the

Brazilian individuals and Antarctic individuals belong
to the same population. Table 6 shows the ‘̂ for each
model tested for three subsets of the full data set. Model 6,
which allows for structure between A1 and A2 and
reduced gene flow between Antarctica and Brazil, has
the highest marginal likelihood. This model was used
as the reference in LBF to compare all models. Our
analysis confirms the conclusion of Engel et al. (2008)
that the connectivity between the Brazilian and Antarctic
locations is reduced (model 6), but, unlike models 7–9,
does not suggest complete isolation of the Brazilian
individuals from the other locations. Model 2 is the
second best model; it shares almost all features of model
6 except that the migration rates between Antarctica
and Brazil are bidirectional. Models that suggest A1 and
A2 are part of a panmictic population (models 3–5)
have lower LBF values than models 2 and 6, but model
3 is superior to model 1. This suggests that A1 and A2
are probably not part of a panmictic population, but
the data do not support a complex model with many
parameters (model 1). Our current understanding of
the population structuring is based on a single locus
(mtDNA). These data are insufficient to resolve the
complex interactions among southern Atlantic hump-
back whales.

The data sets were analyzed using TI with 32 chains
and 4 chains. The Bézier-corrected 4-chain marginal
likelihoods result in LBF of the same magnitude as the
32-chain runs, despite the greatly reduced run time.

DISCUSSION

The approximation of lM using the harmonic mean
estimator is concordant with the thermodynamic in-

TABLE 5

Log Bayes factors (LBF) estimated by thermodynamic integration and by the harmonic mean using
different prior distributions

Thermodynamic integration

LBF for modela Rank of model

Prior 1 2 3 4 5 6 1st 2nd 3rd 4th 5th 6th
Uniform narrow 0 �77 �108 �487 �540 �254 1 2 3 6 4 5
Uniform wide 0 �232 �165 �409 �277 �364 1 3 2 5 6 4
Exponential narrow 0 �17 �84 �531 �542 �255 1 2 3 6 4 5
Exponential wide 0 �170 �158 �461 �270 �394 1 3 2 5 6 4

Harmonic mean estimator

LBF for modela Rank of model

Prior 1 2 3 4 5 6 1st 2nd 3rd 4th 5th 6th
Uniform narrow 0 �3 �29 �23 �4 �55 1 2 5 4 3 6
Uniform wide 0 �2 �18 �25 �25 �29 1 2 3 5b 4b 6
Exponential narrow 0 �8 �30 �23 �8 �37 1 5b 2b 4 3 6
Exponential wide 0 �8 �23 �36 �18 �55 1 2 5 3 4 6

Model 1 was used to simulate the data and is also the reference model.
a Model numbers are specified in Table 1.
b Tied.
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tegration method, although the HM estimate is always
higher than the TI estimator. Paul Lewis (P. Lewis,
personal communication, 2009) has shown that this is
an artifact of MCMC runs in which the HM estimator
is biased toward the high probability regions of the
parameter space. TI, in contrast, estimates very similar
magnitudes of ‘̂ over replicated runs of the same data
and run parameters. Nevertheless, the magnitude of ‘̂
using the thermodynamic method is correlated with
the number of classes, although the relative difference
among models persists independently of the absolute
magnitude. Using the Bézier quadrature with a low
number of chains at different scalers removes this dif-
ference. The run time is dependent on the number
of chains, so the use of the Bézier quadrature may be
preferable for large data sets and large population
models because running many MCMC chains requires
more time than is usually available in computer time
budgets.

Analyses with different run lengths showed that the
Bayes factor based on the harmonic mean estimator is
more variable than that based on the thermodynamic
integration estimator. Most disconcerting are the results
with many chains because multiple LBF estimates based
on the HM estimates show a wide range for the same
data set, suggesting that an appropriate MCMC search
results in unreliable HM estimates. The path of the
MCMC chain influences the HM-based BF considerably
because, for a good estimate of ‘̂, the chain needs to
explore areas of the solution space that have low prob-
ability. Once a low value is recorded, it affects the
harmonic mean disproportionately. Runs that rarely
visit such low values will report an ‘̂ that is inflated.
Using such values in the LBFHM leads to high variance
because the low values are not visited in the correct

proportions. Our results corroborate the work of other
authors (for example, Lartillot and Philippe 2006)
who consider the HM inferior to the TI method.

The LBF usually supports the correct model inde-
pendent of the number of chains used in the thermo-
dynamic approximation method. In the comparison
in Table 2, several models were weakly supported.
This is interesting because these alternative models
(h/n, h)h; h/h), which are models with strong
unidirectional gene flow, are viable competitors for the
real model (h)n) given the small sample size (20
individuals) and the large variance in coalescent simu-
lations. Without multiple loci it is particularly difficult to
estimate the migration direction from genetic data that
often differ only in the frequency of alleles. The multi-
locus runs show the same general pattern as the analyses
with few loci, but in the larger analyses the certainty of
the order of models increases. The HM estimator is less
certain for all scenarios than the TI estimator, corrob-
orating the problems visible in Figure 4, suggesting
again that the HM estimator should not be used.

LBF is relatively powerful for identifying appropriate
models for samples from panmictic populations and
well isolated populations, but showed a high variance
for structured populations with moderate immigration
rates (Table 3). In contrast, the Hudson–Boos–Kaplan
estimator, using a permutation test, clearly suggested
two populations for all analyzed data sets that were
generated from models with reduced immigration
rates. Because this test does not incorporate the un-
certainty of the mutation model and the coalescence,
however, it may overconfidently reject simpler (panmic-
tic) interpretations.

It has been known for a while now through recent
examples (Beerli and Felsenstein 1999; Felsenstein

TABLE 6

Log Bayes factor (LBF) using thermodynamic integration of different gene flow models Mi compared with model
6 for four sampling locations of humpback whales (C, Colombia; B, Brazil; A1, Antarctica east of the Antarctic

peninsula; A2, Antarctica west of the Antarctic peninsula)

LBF of nine models compared against M6

Method Samples

1 2 3 4 5 6 7 8 9

1 10a �16.9 �6.1* �21.2 �39.9 0.0*** �198.8 �241.7 �531.4
10a �17.0 �6.1* �14.7 �39.3 �39.3 0.0*** �217.0 �194.1 �484.5
10 �16.6 �4.5** �13.8 �20.7 �36.8 0.0*** �237.3 �241.9 �523.8
30 �91.3 �32.0 �84.4 �105.8 �227.9 0.0*** �291.4 �167.8 �605.5

2 10a �15.1 �9.5 �13.9 �17.0 �29.0 0.0*** �180.0 �222.6 �494.3
10a �14.7 �9.3 �13.5 �16.3 �28.8 0.0*** �184.3 �193.8 �458.0
10 �14.6 �7.8* �12.4 �15.4 �25.2 0.0*** �276.2 �244.9 �501.8
30 �75.0 �30.5 �77.0 �83.1 �164.6 0.0*** �189.4 �207.4 �663.2

Method 1, using 4 chains and Bézier approximation; method 2, using 32 chains. Model probabilities: *0.01 , si , 0.05; **0.05 ,
si , 0.10; and ***0.9 , si , 1.0.

a Same data, but different start values of the MCMC run.
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2005; Heled and Drummond 2008) that the number of
unlinked loci increases the accuracy of the coalescent
estimators considerably; our comparison of the effect
of multiple loci is no exception. Rejection of incorrect
models became stronger with more loci when the mar-
ginal likelihood was approximated with thermodynamic
integration. The harmonic mean estimator preferred a
more complicated model with increased certainty, cor-
roborating our findings with the two-population models
(Tables 2 and 3) that the harmonic mean estimator
should be avoided.

The Bayes factor framework demands proper priors,
formally, priors that integrate to one. In our framework
all priors are proper, although some may not be optimal:
for example, uniform prior distributions over a very
large range are wasteful because the posterior distribu-
tion covers only a small range of values and forces very
long runs for accurate estimates. Our experimentation
with different prior distributions shows that suboptimal
priors can often result in long run times before con-
vergence. The effect on the marginal likelihoods, how-
ever, seems small and the effect of such suboptimal
priors on model choice seems negligible. In contrast,
misspecification of the prior distribution, for example,
choosing too narrow a prior distribution range, has a
detrimental effect on the estimation of the posterior
distribution of the parameters of the model and results
in incorrect marginal likelihoods.

Our example (Table 6) confirms that, in a coalescence
framework, a small sample per location has almost as
much power as a large sample (cf. Felsenstein 2005)
because not only is the LBF of a replicated run the
same with the same sample, but also different randomly
sampled sets of the same and larger size return the same
ranking among the models. The Bézier-spline approx-
imation of 4 chains gives LBF values that are equivalent
to runs using 32 chains, but the run time is about one-
eighth as long. This suggests that we are able to estimate
LBF values of very large data sets in a reasonable time
with good accuracy without the need to use a large
number of chains or the reversible-jump MCMC (Green

1995) method that has recently been proposed by
Lartillot (Lartillot and Philippe 2006) in a phyloge-
netic context. Our approach asks for independent
runs for each model, in contrast to model selection
approaches that use reversible-jump MCMC. This may
look inelegant, but we believe that our method is pref-
erable both because each run pays full attention to a
single model and because the effort does not depend
on the particular model-sampling algorithm and there-
fore is independent of the geometry of the complex
solution space. In any study, the number of models
depends on the number of populations and increases
at a superexponential rate, so it is unlikely to evaluate
all possible models, in contrast to mutation models,
all of which are able to be evaluated (Huelsenbeck

and Ronquist 2005). In addition, our scheme can be

run in parallel without problems and without further
programming.

The simulation study clearly shows that BFs are
capable of distinguishing between different models
and allow us to retrieve the model that was used to
simulate the test data with high certainty when the true
parameters produced a clear scenario. Single-locus data
will often not be sufficient to retrieve a fairly complex
model unambiguously, so that when available data are
few, we should prefer simple models. Of course, multi-
locus data sets increase the certainty about the models
considerably (Beerli and Felsenstein 1999; Heled

and Drummond 2008).
We do not believe that our method should replace

assignment- or allele-frequency-based methods, because
for large problems the demand for large computer
resources may make the analysis difficult or very time
consuming. Our method does, however, add another
tool for the researcher interested in natural population
structures.

Our methods are available in the program MIGRATE
from our website http://popgen.sc.fsu.edu. Simulated
data sets and humpback whale example data sets are
available at (http://people.sc.fsu.edu/�beerli/data) or
upon request.
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APPENDIX

Independent calculation of marginal likelihoods: Maximum-likelihood inference for a multilocus data set can be
run concurrently because, assuming the loci are independent, the calculation for each locus can be easily parallelized,
and the final result is a simple combination of the individual results. In Bayesian inference, the independent
calculation of the posterior distribution for each locus is simple. In contrast to the combination of maximum-
likelihood estimates over loci, however, the product of these posterior distributions leads to an overuse of the prior.
Correction for this overuse allows us to calculate the posterior distributions independently on different computers or
CPU cores, therefore improving the speed of analysis considerably. The calculation of marginal likelihoods of a
multilocus data set with independent calculations for each locus is difficult because the individual marginal like-
lihoods cannot be simply combined as in the maximum-likelihood analysis: there are interdependencies among the
prior and the posterior distributions. Therefore, a scaling factor is needed for the combination of the locus-specific
marginal likelihoods. Here we show how to correct for the overuse of priors and how to evaluate the multilocus
marginal likelihoods that are generated from these independent posterior evaluations.
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The combination of posteriors over multiple loci was done naively in our program MIGRATE (Beerli 2006); we
overused the priors. This resulted in biases when the priors are highly skewed and do not match the posterior
distribution. Analyses with uniform priors or single-locus analysis with any prior were not biased toward the prior
mode.

Theorem 1. The posterior

Pðu jD1;D2; . . . ;DnÞ ¼
PðuÞ

Q
n
i PðDi j uÞÐ

u
PðuÞ

Q
n
i PðDi j uÞdu

ðA1Þ

with independent locus data D1, D2, . . . , Dn, and a set of parameters u can be calculated by

Pðu jD1;D2; . . . ;DnÞ ¼
PðuÞ1�n

Q
n
i Pðu jDiÞÐ

u
PðuÞ1�n

Q
n
i Pðu jDiÞdu

: ðA2Þ

Proof. Expanding P(u j Di) in (A2) leads to

Pðu jD1;D2; . . . ;DnÞ ¼
PðuÞ1�n

Q
n
i ðPðuÞPðDi j uÞ=

Ð
f

PðfÞPðDi jfÞdfÞÐ
u

PðuÞ1�n
Q

n
i ðPðuÞPðDi j uÞ=

Ð
f

PðfÞPðDi jfÞdfÞdu
: ðA3Þ

The integrals over f cancel, so that

Pðu jD1;D2; . . . ;DnÞ ¼
PðuÞ1�n

Q
n
i PðuÞPðDi j uÞÐ

u
PðuÞ1�n

Q
n
i PðuÞPðDi j uÞdu

: ðA4Þ

Moving the P(u) in (A4) out of the products results in equivalence of (A1) and (A2). n

The denominator in (A2) can be built up during the MCMC run. The main difference between (A1) and (A2) is that
the latter allows completely independent calculation for the unlinked loci and therefore allows easy distribution of the
inference on a computer cluster or even computer grids, facilitating the analysis of data sets with many unlinked loci.

The Bayesian inference offers a convenient tool for comparing different population models without requiring that
models be nested. The marginal likelihoods are normally not computed during an MCMC run because these
normalizing weights cancel in comparisons during the run. They need to be computed and recorded, however, when
the combined marginal likelihoods need to be calculated; to do that we must evaluate the denominator of (A1):

PðD1;D2; . . . ;Dn jMiÞ ¼
ð

u

Pðu jMiÞ
Yn

i

PðDi j u;MiÞdu: ðA5Þ

Theorem 2. The combined marginal likelihoods over all independent data blocks can be calculated as a product of independently
calculated marginal likelihoods for each data block and a constant.

Proof. The combined estimator of the posterior distribution is

Pðu jD1; . . . ;Dn;M1Þ ¼
Pðu jM1Þ

Q
n
i PðDi j u;M1Þ

PðD1; . . . ;Dn jM1Þ
: ðA6Þ

Converting the likelihoods using posteriors on the right,

Pðu jD1; . . . ;Dn;M1Þ ¼
Pðu jM1Þ

Q
n
i Pðu jDi ;M1ÞPðDi jM1Þ

Pðu jM1ÞnPðD1; . . . ;Dn jM1Þ

¼
Q

n
i Pðu jDi ;M1ÞPðDi jM1Þ

Pðu jM1Þn�1PðD1; . . . ;Dn jM1Þ
;

ðA7Þ

and moving P(D1, . . . , Dn j M1) to the left and P(u j D1, . . . , Dn, M1) to the right results in

PðD1; . . . ;Dn jM1Þ ¼
Yn

i

PðDi jM1Þ
Q

n
i Pðu jDi ;M1Þ

Pðu jM1Þn�1Pðu jD1; . . . ;Dn;M1Þ
: ðA8Þ

The fraction has to be a constant with respect to u because both the product of the individual marginal likelihoods and
the combined marginal likelihood on the left are also constants with respect to u:
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K ¼
Q

n
i Pðu jDi ;M1Þ

Pðu jM1Þn�1Pðu jD1; . . . ;Dn ;M1Þ
: ðA9Þ

Moving the combined posterior and integrating both sides with u leads to a reexpression of K,

Pðu jD1; . . . ;Dn;M1ÞK ¼
Yn

i

Pðu jDi ;M1ÞPðu jM1Þ1�n ðA10Þ

ð
u

Pðu jD1; . . . ;Dn;M1ÞKdu ¼
ð

u

Yn
i

Pðu jDi ;M1ÞPðu jM1Þ1�ndu; ðA11Þ

and because

ð
u

Pðu jD1; . . . ;Dn;M1Þdu ¼ 1; ðA12Þ

K ¼
ð

u

Yn

i

Pðu jDi ;M1ÞPðu jM1Þ1�ndu: ðA13Þ

This allows the calculation of the combined marginal likelihood using independent inferences

PðD1; . . . ;Dn jM1Þ ¼ K
Yn

i

PðDi jM1Þ: ðA14Þ

n

The denominator in (A2) is equivalent to K and has already been calculated during the MCMC run; it can be reused
to calculate the combined marginal likelihoods.

Calculation of the scaling factor K in MIGRATE: In a Bayesian inference run of MIGRATE, K is calculated from the
recorded posterior probabilities P(u j Di) and the prior P(u) for a particular model M where u are all the parameters of
the model and Di is the data for each unlinked locus. For example, in a simple one-parameter scenario, u ¼ a, we
record a and its prior during the MCMC run. Then we construct a histogram of the a-values that represents the
posterior distribution P(a jD). The prior distribution is also calculated at the values of the histogram columns.
Summing over the histogram corrected for the overuse of the prior approximates the integral and calculates K. With a
single locus, K ¼ 1 and the "combined’’ marginal likelihood is the same as the single-locus marginal likelihood. With
multiple parameters the integral will be multidimensional. If we assume that the parameters are independent of each
other, the integration can be simplified. If we believe that the parameters are correlated, then we would need to
calculate a multidimensional histogram; this is more tedious but certainly doable. MIGRATE uses the assumptions
that parameters are independent because in our experience mutation-scaled migration rates and mutation-scaled
population sizes are almost uncorrelated.

Specification of population models when some populations are isolated: MIGRATE uses two options to specify
particular population models. The connection matrix allows the specification of directionality of gene flow, such as
symmetric numbers of immigrants, symmetric immigration rates, average immigration rates, and immigration rates
fixed to particular constants, for example, zero. If constants other than zero are used, then the start parameter settings
need to be used in addition to the connection matrix to specify the values. This system allows approximating models
where the populations are isolated from each other (Table 6) by inserting immigration rates that are very close to zero.
For the humpback whale example we fixed all immigration rates to an isolated population as 100 times smaller than
the mutation rate.

Run time considerations: The run time of MCMC programs is often difficult to predict because little automatic
control can be given to users to check whether the MCMC chain has converged and enough samples from the desired
distribution have been taken. Almost all applications have a tendency to sample too few steps along the MCMC chain.
The faster a single step in the chain can be evaluated, the more steps can be sampled in the same time. The runs in this
work all used similar run–parameter options (data sets and parameters are available in File S1). The run time values in
Fig. 3 for data set 10 were 18 min using 4 different scaling classes, 70 min using 16 scalers, and 152 min using 32 scalers.
In MIGRATE a deliberate decision was made not to farm out the Metropolis-coupled Markov chain sampling that is
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used for the thermodynamic integration; the run time increases proportionally with the number of chains. The
expected run times based on the shortest run with 4 concurrent chains took 18 min (4 3 4.5 min), for 16 concurrent
chains 3 4.5¼ 72 min, and for 32 3 4.5¼ 144 min; the actual run times (18, 72, and 152 min) fit these values well. The
run time is dependent on the number of sampling locations and the number of individuals in each location. For large
data sets these values change to hours or days. Except for the 20-location example, we deliberately ran only small data
sets for which we could easily establish convergence of the MCMC chain. Different Bayes factor runs are independent
of each other and therefore one can run many models at the same time on a cluster. Many analyses in this work were
run, in fact, on the high-performance cluster at Florida State University.
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File S1

Unified Framework to Evaluate Panmixia and Migration Direction Among Multiple Sampling Locations Using
Marginal Likelihoods

1 Comparison of simulated datasets: Expanded tables 2 and 3

Tables 2 and 3 in the article are abridged versions that do not highlight the strength of rejection of particular
models. We present the full tables here and also give in Table 1S (Kass and Raftery 1995) the interpretation of the
strength of support for the different values of the LBF. Table 2S and 3S give a more detailed answer than Table
2 and 3, but do not change the interpretation of the results. Unidirectional models models have high support
even when the migration direction is incorrect when the number of parameters is small compared to the true
model. Highest support among the incorrect models is given to the model with the correct migration direction and
with constrained population sizes. It is worth noting that this support has a clear trend in the thermodynamic
integration scheme; the harmonic mean estimator does not show such a trend, but shows a high variance.

Table 1S: Bayes factors and strength of acceptance of a
model in comparison to a reference model (Kass and Raftery
1995). BFM2,M1 is the Bayes factor of model 2 versus model
1
LBFM2,M1 = loge(BFM2,M1) Evidence against Model 1

0 to 1 weak
1 to 3 positive
3 to 5 strong
>5 very strong
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Table 2S: Comparison of the influence of the approximation on the power of LBF for simple models with different
migration schemes. LBF compared a full model (Model M1 = � � �) with a panmictic population (Model
M0 = �). Models used to simulate the data were: (1a) a single population (Nm → ∞), the sampled individuals
were split randomly into two sets; (1b) two populations exchanging many migrants (Nm = 1250); (2a) two
population exchanging a moderate number of migrants (Nm = 0.25); and (2b) two populations with very low
migration rate (Nm = 0.0025). The marginal likelihoods used in the LBF were approximated with thermodynamic
integration (TI) with 16 and 4 temperature bins and with the harmonic mean (HM4). The reported counts are
the number of replicates that fall into the categories outlined in Table 1S

Evidence Counts [based on LBFTI16 ,LBFTI4 , LBFHM ]
(M0: one population)

Model (1a) (1b) (2a) (2b)
Nm ∞ 1250 0.25 0.0025
Method 16 4 H 16 4 H 16 4 H 16 4 H

against M0 very strong 0 1 0 0 2 0 32 34 0 100 100 59
strong 0 1 1 0 2 0 10 6 1 0 0 3
positive 0 0 5 0 0 5 18 5 18 0 0 11
weak 0 3 20 0 4 24 10 4 34 0 0 5
Total 0 5 26 0 8 29 70 49 53 100 100 78

against M1 weak 1 1 40 4 1 38 13 4 33 0 0 5
positive 6 3 31 4 3 30 10 3 13 0 0 2
strong 35 8 5 32 8 3 7 7 1 0 0 0
very strong 57 82 0 60 80 0 0 37 0 0 0 15
Total 100 94 73 100 92 71 30 51 47 0 0 22

Table 3S: Summary of support for specific models using LBF approximated with harmonic mean (HM) and
thermodynamic integration (TI) using 16 chains with different temperatures. 100 single-locus data sets were
analyzed, each with a total of 20 DNA sequences simulated using a 3-parameter model with 2 different population
sizes, and unidirectional migration from population 2 to 1 (Model abbreviation is �← �; see Methods for details).
All other models 1 to 8 (Mi), such as the full model (� � �) or the minimal model (�) are compared with this
’true’ model (�← �) that represent the M0 hypothesis. nparam accounts for the number of parameter estimated.

Evidence
(M0 = �← �) Counts [based on LBFTI and LBFHM]
nparam 4 3 3 3 2 2 2 1
Model � � � �→ � �↔ � � � � �← � �→ � �↔ � �
Approximation TI HM TI HM TI HM TI HM TI HM TI HM TI HM TI HM
against M0 very str. 0 1 0 0 0 3 0 4 0 1 0 1 0 1 9 10

strong 0 4 1 2 0 1 0 1 0 4 0 3 0 6 0 1
positive 0 22 3 13 0 23 0 27 20 21 17 17 0 28 0 16
weak 0 19 24 21 0 21 0 25 50 24 37 14 0 24 2 13

0 46 28 36 0 48 0 57 70 50 54 35 0 59 11 40
against Mi weak 0 26 38 18 0 24 0 17 22 16 24 24 0 19 0 19

positive 2 21 31 31 2 21 1 23 7 25 20 26 1 18 18 23
strong 66 5 3 6 63 4 46 3 0 5 1 10 44 3 18 4
very str. 32 2 0 9 35 3 53 0 1 4 1 5 55 1 53 14

100 54 72 64 100 52 100 43 30 50 46 65 100 41 89 60
Different data sets 76 76 97 97 89 89 88 88 99 99 99 99 98 98 96 96
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2 Run conditions for Figure 1

Ten artificial two-population data sets were created with the programs migtree and migdata using the following
settings:

Mutation model F84-model with transition/transversion ratio=2.0
Mutation rate 2× 10−6

Sequence length 1000

Population model Population 1 Population 2

Population size N
(i)
e 625 1250

Immigration rate mji 0.0002 0.0
Sample size 10 10

Each data set was run under 3 different heating schemes with the following temperature settings:

Chains Temperature settings Ti = 1/ti. Ordering is T1...Tn

4 1.0, 1.5, 3.0, 1000000.0
16 1.0, 1.071, 1.154, 1.25, 1.364, 1.5, 1.667, 1.875, 2.143, 2.5, 3.0, 3.75, 5.0, 7.5,

15.0, 1000000.0
32 1.0, 1.03, 1.069, 1.107, 1.148, 1.19, 1.24, 1.29, 1.35, 1.41, 1.48, 1.55, 1.63, 1.72,

1.82, 1.94, 2.07, 2.21, 2.38, 2.58, 2.82, 3.10, 3.44, 3.875, 4.429, 5.167, 6.2, 7.75,
10.33, 15.5, 31.0, 1000000.0

All other settings were at the default values except the following:

Increment (sampling every x state) 1,000
Sampled states 20,000
Discarded states 1,000,000

3 Run conditions for Figure 3

One random dataset from the artificial data sets used in Figure 1 was used. Same temperatures as for Figure 1,
but run parameters where changed to

Relative run-length Increment (sampling every x state) Sampled states Discarded states

1 100 200 10, 000
2 100 400 20, 000
4 100 800 40, 000
8 100 1, 600 80, 000

16 100 3, 200 160, 000
32 100 6, 400 320, 000
64 100 12, 800 640, 000

128 100 25, 600 1, 280, 000
256 100 51, 200 2, 560, 000
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4 Run conditions for Figure 4

Run conditions were identical to figure 1.

5 Run conditions for Table 2

100 artificial data sets for the Model xx0x were generated:

Population model Parameters Population 1 Population 2

Two populations Population size N
(i)
e 625 1250

(Model �← �) mutation rate 2× 10−6

Immigration rate mji 0.0002 0.0
Sample size 10 10

The mutation model was F84 with a mutation rate of 0.000002. Each sequence was 1000 base pairs long. All run
parameters were identical to Figure 1, but the runs used different population models as indicated in Table 2. The
runs were executed on the High-performance cluster at Florida State University using the commonly available
backfill queue. This queue allows runs maximally 4 hours long, which resulted in some table cells with fewer than
100 runs. A total of 900 runs were executed for Table 2.

6 Run conditions for Table 3

100 artificial data sets for each of the following population models were generated:

Population model Parameters Population 1 Population 2

Single population Population size N
(i)
e 1250 -

(Model 1a) Mutation rate 2× 10−6

Immigration rate mji - -
Sample size 20

Two populations Population size N
(i)
e 625 625

(Model 1b) Mutation rate 2× 10−6 2× 10−6

Immigration rate mji 1.0 1.0
Sample size 10 10

Two populations Population size N
(i)
e 625 625

(Model 2a) Mutation rate 2× 10−6 2× 10−6

Immigration rate mji 0.0002 0.0002
Sample size 10 10

Two populations Population size N
(i)
e 625 625

(Model 2b) Mutation rate 2× 10−6 2× 10−6

Immigration rate mji 0.000002 0.000002
Sample size 10 10

The mutation model was F84 with a mutation rate of 0.000002. Each sequence was 1000 base pairs long. All run
parameters were identical to Figure 1. Each data set was run twice for each of the approximation methods (TI4,
TI16), with the single population model x and with the unrestricted two-population model xxxx.
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7 Run conditions for Table 4: Effect of number of loci on Bayes factors

All parameter settings were default, except
Prior distribution for mutation-scaled population size Uniform with range 0.0 to 0.1
Prior distribution for mutation-scaled migration rates Uniform with range 0.0 to 1000
Increment between samples 100
Samples per replicate 1,000
Burn-ins per replicate 100,000
Replicates 10
Heating static with temperatures 1, 1.5, 3, 106

8 Run conditions for Table 5: Effect of prior distribution on Bayes factors

All parameter settings were default, except
Type Priors for

Mutation-scaled population size Mutation-scaled migration rates
Minimum – Mean – Maximum Minimum – Mean – Maximum

Uniform narrow 0 – 0.05 – 0.1 0.0 – 2500 – 5000
Uniform wide 0 – 0.25 –0.1 0.0 – 25,000 – 50,000
Exponential narrow 0 –0.01 – 0.1 0.0 – 100 – 5,000
Exponential wide 0 – 0.1– 0.5 0.0 – 2,000 – 50,000

9 Run conditions for Table 6: Humpback whale example

Mutation model F84-model
Transition/transversion ratio 11.400000
Site rate modifier (3 groups) 0.416751 2.274676 6.216591
Probabilities of site rates 0.708460 0.280989 0.010551
Prior distribution for mutation-scaled population size Uniform with range 0.0 to 0.1
Prior distribution for mutation-scaled migration rates Uniform with range 0.0 to 5000
Increment between samples 200
Samples per replicate 5,000
Burn-ins per replicate 100,000
Replicates 50

Proposal distribution for parameters was Slice-sampling, whereas the genealogy proposals were using Metropolis-
Hastings.


