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ABSTRACT

Horizontal gene transfer (HGT) is believed to be a major source of genetic variation, particularly for
prokaryotes. It is believed that horizontal gene transfer plays a major role in shaping bacterial genomes
and is also believed to be responsible for the relatively rapid dissemination and acquisition of new, adap-
tive traits across bacterial strains. Despite the importance of horizontal gene transfer as a major source of
genetic variation, the bulk of research on theoretical evolutionary dynamics and population genetics has
focused on point mutations (sometimes coupled with gene duplication events) as the main engine of
genomic change. Here, we seek to specifically model HGT processes in bacterial cells, by developing a
mathematical model describing the influence that conjugation-mediated HGT has on the mutation–
selection balance in an asexually reproducing population of unicellular, prokaryotic organisms. It is
assumed that mutation–selection balance is reached in the presence of a fixed background concentration
of antibiotic, to which the population must become resistant to survive. We find that HGT has a nontrivial
effect on the mean fitness of the population. However, one of the central results that emerge from our
analysis is that, at mutation–selection balance, conjugation-mediated HGT has a slightly deleterious effect
on the mean fitness of a population. Therefore, we conclude that HGT does not confer a selection
advantage in static environments. Rather, its advantage must lie in its ability to promote faster adaptation
in dynamic environments, an interpretation that is consistent with the observation that HGT can be
promoted by environmental stresses on a population.

HORIZONTAL gene transfer (HGT) is any form of
direct transfer of genetic material between two

organisms, where one organism is not the parent of the
other (the latter case is known as vertical gene transfer)
(Ochman et al. 2000; Brown 2003; Kurland et al. 2003;
Gogarten and Townsend 2005). HGT has become a
subject of great interest for both molecular and evolu-
tionary biologists, because it is believed that HGT plays
a large role in reshaping prokaryotic genomes (Ochman

et al. 2000; Brown 2003; Kurland et al. 2003; Gogarten

and Townsend 2005). HGT is believed to be primarily
responsible for the rapid spread of antibiotic drug re-
sistance in bacterial populations (Walsh 2000).

Currently, there are three known mechanisms by
which HGT occurs (Ochman et al. 2000; Brown 2003;
Kurland et al. 2003; Gogarten and Townsend 2005):
(1) transformation, when an organism collects genetic
material from its environment; (2) transduction, when a
virus directly infiltrates a bacterium with genetic mate-
rial; and (3) bacterial conjugation, when a bacterium
transfers genetic information via intercellular contact
with another bacterium.

Bacterial conjugation is believed to be the most
important mechanism responsible for HGT (Ochman

et al. 2000; Brown 2003; Kurland et al. 2003; Gogarten

and Townsend 2005), and so we focus on developing
mathematical models describing the role that conjugation-
mediated HGT has on the mutation–selection balance
of bacterial populations. Given the presumed impor-
tance that HGT has for the spread of antibiotic drug
resistance in bacterial populations, the mathematical
models we develop look at the influence of HGT on the
mutation–selection balance in the presence of an
antibiotic. This is not the most realistic setting in which
to study HGT, since it is more relevant to look at the role
that HGT plays in the evolution and spread of antibiotic
drug resistance in an initially nonresistant population.
Nevertheless, it is important to understand the mutation–
selection balance first, since this serves as a starting point
for modeling dynamics.

The best-characterized bacterial conjugation system is
the F1/F� system (Russi et al. 2008). Here, a bacterium
containing what is termed an F-plasmid fuses with a
bacterium lacking the F-plasmid. The bacterium con-
taining the F-plasmid is termed an F1 bacterium, while
the bacterium that does not contain this plasmid is
termed an F� bacterium. When the F1 bacterium meets
an F� bacterium, it transfers one of the strands of the
F-plasmid to the F� bacterium via a pilus. Once a strand
of the F-plasmid has been transferred from the F1

bacterium to the F� bacterium, a copy of the plasmid
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in both cells is produced by daughter strand synthesis
using the DNA template strands. The F� bacterium then
becomes an F1 bacterium that transcribes its own pilus
and is able to transfer the F1 plasmid to other bacteria
in the population (Russi et al. 2008). This process is
illustrated in Figure 1.

The F1/F� system is in some ways atypical for bacterial
conjugation systems: The F-plasmid system studied in
the K12 strain of Escherichia coli was permanently dere-
pressed, which meant that conjugation between F1 and
F� cells occurred at a significantly elevated rate. Gener-
ally, conjugative plasmids tend to be repressed, so that
only a small fraction of the plasmid-bearing bacterial
population is able to participate in conjugation at any
given time (Ghigo 2001). It is believed that this reduces
the metabolic costs associated with continuously main-
taining the enzymatic machinery necessary for conjuga-
tion (Ghigo 2001). Indeed, it is known that mutant
forms of the F-plasmid system are permanently dere-
pressed (Ghigo 2001), so it is possible that these are the
strains that were accidentally generated under the
experimental conditions that the plasmids were being
studied. Nevertheless, because the F-plasmid system
is one of the best-characterized bacterial conjugation
systems, and because it is representative of all known
bacterial conjugation systems, we believe it makes sense
to base our initial model for conjugation-mediated HGT
on the F-plasmid system.

METHODS

We assume that the genome of each bacterium con-
sists of two DNA molecules. The first DNA molecule
contains all of the genes necessary for the proper growth
and reproduction of the bacterium itself. It corresponds
to the large, circular chromosome defining the bacterial
genome. We assume that there exists a wild-type genome
characterized by a ‘‘master’’ DNA sequence. It is as-
sumed that a bacterium with the master genome has a
wild-type fitness, or first-order growth rate constant,
given by 1. Such a bacterium is termed viable. Further-
more, we assume that any mutation to the bacterial
genome renders the genome defective, so that the
bacterium then has a fitness of 0. Bacteria with defective
genomes are termed nonviable. This is known as the
single-fitness-peak approximation in quasispecies theory
(Tannenbaum and Shakhnovich 2005).

The second DNA molecule is the F-plasmid, which we
assume consists of two regions. The first region com-
prises the various genes necessary for bacterial conju-
gation. The second region is assumed to encode for the
various enzymes conferring resistance to a given anti-
biotic. As with the single-fitness-peak approximation
made for the bacterial genome, we assume that there
are master sequences for both the conjugation and the
antibiotic drug resistance regions. If the region coding
for bacterial conjugation corresponds to a given master

sequence, then, assuming that the bacterium is also
viable, the F-plasmid may be copied into another viable
F� bacterium. Otherwise, we assume that the plasmid
cannot be copied into another bacterium, in which case
the bacterium is treated as an F� bacterium. Similarly, if
the region coding for antibiotic drug resistance corre-
sponds to a given master sequence, then we assume that
the bacterium is resistant to the antibiotic. Otherwise,
the bacterium is not resistant to the antibiotic and is
assumed to die with a first-order rate constant kD. We
assume that only viable bacteria interact with the
antibiotic, since nonviable bacteria do not grow and so
may be treated as dead.

A given viable genome may be characterized by a two-
symbol sequence s ¼ 6 6, specifying the state of the
conjugation and resistance portions of the plasmid,
respectively. A ‘‘1’’ is taken to signify that the given
genome region is identical to the corresponding master
sequence, and a ‘‘�’’ is taken to signify that the given
genome region differs from the corresponding master
sequence. To develop the evolutionary dynamics equa-
tions governing this population, we let ns denote the
number of organisms in the population with genome
s. We wish to develop expressions for dns/dt for the
various s’s. We do not consider nonviable genomes,
since they do not reproduce or participate in the con-
jugation process and therefore do not contribute to the
evolutionary dynamics of the population.

The semiconservative replication of the bacterial ge-
nome is not necessarily error free, so that there is a
probability p, the replication fidelity, that a given tem-
plate strand will produce a daughter genome that is
identical to the original parent. Because our genome
consists of three genome regions, we may define three

Figure 1.—Illustration of the process of bacterial conjuga-
tion. In steps 1 and 2, an F1 bacterium containing the F-plasmid
(blue) binds to an F� bacterium lacking the plasmid. One of the
template strands from the F-plasmid then moves into the F�

bacterium, as shown in step 3. In step 4, the complementary
strands are synthesized to reform the complete F-plasmids in
both bacteria. Both bacteria are now of the F1 type.
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such probabilities, denoted pv, pc, and pr, corresponding
to the replication fidelities for the viability, conjugation,
and resistance portions of the genome. If we assume
that sequence lengths are long, then making an assump-
tion known as the neglect of back mutations (Tannenbaum

and Shakhnovich 2005), we assume that a template
strand derived from a parent that differs from the
master genome produces a daughter that differs from
the master genome with probability 1.

We assume that conjugation occurs between a viable
F1 bacterium and a viable F� bacterium. Thus, conju-
gation can occur only between a bacterium of type 1 6

and a bacterium of type�6. This process is modeled as
a second-order collision reaction with a rate constant g.
The conjugation process itself involves the transfer of
one of the strands of the plasmid from the F1 bacterium
to the F� bacterium, so that the full plasmid needs to be
resynthesized in both bacteria via daughter strand
synthesis. This introduces the possibility of replication
errors in either one of the bacteria.

It should be emphasized that we are assuming for
simplicity that all bacteria in the population contain ex-
actly one plasmid. We also assume that, during conju-
gation, the plasmid transferred from the F1 bacterium
replaces the plasmid in the F� bacterium. This is a
simplifying assumption that will obviously have to be
reexamined in future research, where we anticipate
developing more accurate models that allow for variable
plasmid numbers in the bacterial cell. The basis for this
assumption derives from the observation that plasmids
of similar compatibility classes cannot coexist in the same
cell (Uhlin and Nordstrom 1975) and that bacteria can
control the number of plasmids in the cell (Park et al.
2001).

Putting everything together, we obtain that the evo-
lutionary dynamics equations are

dn11

dt
¼ ½2pvpcpr � 1 1

g

V
ð2pcpr � 1Þðn�1 1 n��Þ�n11

dn1�
dt
¼ ½2pvpc � 1� kD 1

g

V
ð2pc � 1Þðn�1 1 n��Þ�n1�

1 2pcð1� prÞ½pv 1
g

V
ðn�1 1 n��Þ�n11

dn�1

dt
¼ ½2pvpr � 1� g

V
ðn11 1 n1�Þ�n�1

1 2ð1� pcÞpr½pv 1
g

V
ðn�1 1 n��Þ�n11

dn��
dt
¼ ½2pv � 1� kD �

g

V
ðn11 1 n1�Þ�n��

1 2ð1� pcÞð1� prÞ pv 1
g

V
ðn�1 1 n��Þ

h i
n11

1 2ð1� pcÞ pv 1
g

V
ðn�1 1 n��Þ

h i
n1�

1 2pvð1� prÞn�1; ð1Þ

where V is defined as the system volume. To put the
equations into a form that makes the analysis of the
mutation–selection balance possible, we define n to be
the total population of organisms and then define
population fractions xs via xs ¼ ns/n. We also define a

population density r ¼ n/V, and we assume that r is
constant. The assumption of a constant r can be
achieved if we assume that the system volume is not a
constant, but rather grows with the population size in
such a way to maintain a constant overall population
density. The idea is that each cell takes up a certain
amount of space, so that the total volume of the system is
proportional to the total number of cells.

Converting from population numbers to population
fractions, we obtain

dx11

dt
¼ ½2pvpcpr � 1 1 grð2pcpr � 1Þðx�1 1 x��Þ � kðtÞ�x11

dx1�
dt
¼ ½2pvpc � 1� kD 1 grð2pc � 1Þðx�1 1 x��Þ � kðtÞ�x1�

1 2pcð1� prÞ½pv 1 grðx�1 1 x��Þ�x11

dx�1

dt
¼ ½2pvpr � 1� grðx11 1 x1�Þ � kðtÞ�x�1

1 2ð1� pcÞpr½pv 1 grðx�1 1 x��Þ�x11

dx��
dt
¼ ½2pv � 1� kD � grðx11 1 x1�Þ � kðtÞ�x��

1 2ð1� pcÞð1� prÞ½pv 1 grðx�1 1 x��Þ�x11

dx11

dt
¼
�

2pvpcpr � 1 1 2ð1� pvÞð1� pcÞ
2pc � 1

� kðtÞ
�
x11; ð2Þ

where k (t)¼(1/n)(dn/dt)¼x111x�11(1�kD)(x1�1

x��) is the mean fitness of the population or, equiva-
lently, first-order growth constant of the population.

Another point to be noted from our equations is that,
in their original formulation using absolute population
numbers, the equations assume unrestricted exponen-
tial growth. However, when we change variables from
population numbers to population fractions, then the
form of the equations is identical to what would be
obtained if we made a more realistic assumption that the
population was growing in a chemostat (Tannenbaum

and Shakhnovich 2005).
To determine the values for pv, pc, and pr, we assume

that daughter strand synthesis has a per-base mismatch
probability e, which incorporates all DNA error-correction
mechanisms such as proofreading and mismatch repair.
Because we are assuming complementary double-
stranded DNA molecules, we assume that all postrepli-
cation mismatches are corrected via various lesion
repair mechanisms (e.g., nucleotide excision repair,
NER). However, because at this stage there is no dis-
crimination between parent and daughter strands, a
mismatch either is correctly repaired with probability
1/2 or is fixed as a mutation in the genome with
probability 1/2 (Voet et al. 2008). Thus, the net per-
base mismatch probability is e/2. If the total sequence
length is L, then the probability of producing a
mutation-free daughter from a given parent template
strand is (1 � e/2)L.

If we define m¼ Le, so that m is the average number of
mismatches per template strand per replication cycle,
and if we assume that L/‘ while m is held constant,
then we obtain that ð1� e=2ÞL/e�m=2. For the case of
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the three-gene model we are considering, we let Lv, Lc,
and Lr denote the lengths of the genome controlling
viability, conjugation, and resistance, respectively. De-
fining L ¼ Lv 1 Lc 1 Lr and av ¼ Lv/L, ac ¼ Lc/L, and
ar ¼ Lr/L, we then obtain that

pv ¼ e�avm=2

pc ¼ e�acm=2

pr ¼ e�arm=2: ð3Þ

It should be noted that holding m constant in the limit
of infinite genome length is equivalent to assuming a
fixed per genome replication fidelity in the limit of long
genomes.

RESULTS AND DISCUSSION

We present the mean fitness at mutation–selection
balance, denoted by k, for two different sets of parameter
regimes: (1) arbitrary kD, but with gr/0 and gr/‘,
and (2) arbitrary gr, but with kD/0 and kD/‘.

Details of the derivations of the various results are in
the appendix.

Behavior of k for arbitrary kD: The steady-state mean
fitnesses for arbitrary kD for the gr/0; ‘ cases are
provided in Table 1. We can show that kgr/‘ , kgr/0.

Figure 2 shows plots of k vs. m for both the gr/0 and
the gr/‘ limits. Plots were obtained using both the
analytical formulas obtained in this article, as well as via
stochastic simulations of replicating organisms.

Behavior of k for arbitrary gr: Now we consider the
behavior of k for arbitrary values of gr, but where kD is
either very small or very large. Combined with the results
of the previous subsection, we may then piece together a
qualitative sketch of how k depends on kD and gr.

kD/0: When kD/0, there is no selective advan-
tage for maintaining antibiotic drug resistance genes in
the genome, and so we expect these genes to be lost to

genetic drift. Thus, we expect, at mutation–selection
balance, that x11¼ x�1¼ 0. From Table 1, we also have
that k ¼ 2pv � 1.

Furthermore, the fraction of viable conjugators, x11 1

x1�, exhibits a transition as a function of gr. For suf-
ficiently small values of gr, we have that x11 1 x1� ¼ 0,
while for sufficiently large values of gr, we have that

x11 1 x1� ¼ 2pv � 1� 2pvð1� pcÞ
grð2pc � 1Þ : ð4Þ

The transition between the two regimes may be shown
to occur at

ðgrÞtrans [
2pvð1� pcÞ

ð2pv � 1Þð2pc � 1Þ : ð5Þ

It may be shown that the disappearance of the
conjugators below the critical value of gr corresponds
to a localization to delocalization transition over the
portion of the plasmid coding for conjugation, so
that this transition is a conjugation-mediated HGT
analog of the well-known error catastrophe from
quasispecies theory (Tannenbaum and Shakhnovich

2005).
To understand this behavior, we note that plasmids

with defective genes for conjugation nevertheless rep-
licate due to the replication of the bacteria in which
they reside. Thus, for plasmids with functional genes
for conjugation to be preserved in the population, their
additional growth rate due to conjugation must over-
come the loss of functionality due to replication mistakes
in the genes controlling conjugation. If the conjugation
rate is too slow and unable to overcome this loss of func-
tionality, then the fraction of conjugators in the popula-
tion drops to zero.

Figure 3 illustrates the regimes, as a function of m

and gr, where a positive fraction of conjugators exist at
steady state and where the fraction of conjugators is

TABLE 1

A summary of the steady-state mean fitness results obtained from our model

Regime Mean fitness

gr/0, arbitrary kD max{2pvpr � 1; 2pv � 1� kD}

gr/‘, arbitrary kD max
2pvpcpr � 1 1 2ð1� pvÞð1� pcÞ

2pc � 1
; 2pv � 1� kD

� �
kD/0 2pv � 1

gr # ðgrÞtrans, kD/‘ 2pvpr � 1

gr/‘; kD/‘; finite gr regime
2pvpcpr � 1 1 2prð1� pvÞð1� pcÞ

1� 2prð1� pcÞ

gr=kD/0; gr; kD/‘
2pvpcpr � 1 1 2prð1� pvÞð1� pcÞ

1� 2prð1� pcÞ

gr=kD/‘; gr; kD/‘
2pvpcpr � 1 1 2ð1� pvÞð1� pcÞ

2pc � 1
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zero. This is computed for the kD¼ 0 limit. Note that, as
m increases, gr must be pushed to higher values so that
there is a positive fraction of conjugators at steady state.
As explained before, this increase in gr is necessary to
overcome the mutation-induced loss of functionality as
m increases.

kD/‘: We now consider the case where kD/‘. In
contrast to the case where gr/‘ of the previous sub-
section, where we could solve for k for arbitrary values of
kD, here we cannot readily analytically solve for k for
arbitrary values of gr. However, we can obtain analytical
solutions for k in certain limiting cases of gr and then
interpolate between the two solution regimes. As will be
seen in the subsection comparing theory and simula-
tion, this approach turns out to be fairly accurate.

In the first limiting case, we assume that gr remains
finite in the limit that kD/‘. This ensures that x1� ¼
x�� ¼ 0, since the rate of death due to the presence of
antibiotics is so fast that no nonresistant genotypes are
present in the population.

We then obtain either that k ¼ 2pvpr � 1 or that k is
the solution to the following equation:

gr ¼ 2ð1� prÞ
2pcpr � 1

k 1 2ð1� pvÞ
k

3
ðk 1 1� 2pvpcprÞ2

½1� 2prð1� pcÞ�k� ½2pvpcpr � 1 1 2prð1� pvÞð1� pcÞ�
: ð6Þ

In the first case, we have that x11 ¼ 0, while in the
second case we have that x11 . 0. The transition
between the two regimes may be shown to occur at

ðgrÞtrans ¼
2pvprð1� pcÞ½1� 2pvð1� prÞ�
ð2pvpr � 1Þð2pcpr � 1Þ : ð7Þ

where x11 ¼ 0 for gr # (gr)trans and x11 . 0 for gr .

(gr)trans. We may show that this expression for (gr)trans

is larger than the corresponding expression for the kD¼
0 case.

To understand the behavior of k where gr . (gr)trans,
we consider the asymptotic behavior of k in the limit as
gr/‘. In this case, Equation 6 reduces to

k ¼ 2pvpcpr � 1 1 2prð1� pvÞð1� pcÞ
1� 2prð1� pcÞ

: ð8Þ

We may show that this expression is smaller than the
expression for k obtained in the arbitrary kD, infinite
gr case.

We now consider the second limiting case in the
kD/‘ limit, specifically where gr is itself infinite. Here,
however, the ratio between kD and gr plays an important
role in the competition between death of nonresistant
bacteria and their ‘‘rescue’’ by conjugation with resistant
bacteria. Thus, here, we assume that both gr; kD/‘,
but we take gr/kD to have some given value in this limit.

We may show that

gr

kD
¼ k 1 2ð1� pvÞ

k

3
½1� 2prð1� pcÞ�k� ½2pvpcpr � 1 1 2prð1� pvÞð1� pcÞ�
½2pvpcpr � 1 1 2ð1� pvÞð1� pcÞ� � ð2pc � 1Þk ð9Þ

and so obtain that

kgr=kD/0 ¼
2pvpcpr � 1 1 2prð1� pvÞð1� pcÞ

1� 2prð1� pcÞ

kgr=kD/‘ ¼
2pvpcpr � 1 1 2ð1� pvÞð1� pcÞ

2pc � 1
: ð10Þ

Therefore, for large kD, we expect that k will initially be
given by 2pvpr� 1 up to a critical value of gr, after which

Figure 2.—Plots of k vs. m for both the gr/0 and the
gr/‘ limits. The parameter values we took are av ¼ 0.6,
ac ¼ ar ¼ 0.2, and kD ¼ 10. We show both analytical results
and results from stochastic simulations. The analytical results
are plotted using thin solid lines, where the top curve corre-
sponds to the gr ¼ 0 result, while the bottom curve corre-
sponds to the gr ¼ ‘ result. The dotted line corresponds
to the stochastic simulation for gr ¼ 0, and the dashed line
corresponds to the stochastic simulation for gr ¼ ‘. Parame-
ter values for the stochastic simulations were Lv ¼ 30, Lc ¼
Lr ¼ 10, and a population size of 1000.

Figure 3.—Regimes of existence and nonexistence of con-
jugators as a function of m and gr, where kD ¼ 0. The bound-
ary between the two regimes was computed analytically.
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it begins to decrease according to Equation 6. Once gr

becomes sufficiently large, we expect that the gr/kD

ratio is such that the functional form for k transitions
from the finite gr solution to the infinite gr, fixed gr/kD

solution. To estimate the transition point between the
two solution regimes, we equate the values for gr as
a function of k for the two solutions. This allows us to
solve for k and thereby allows us to solve for gr.

We then obtain that the transition point occurs at

grffiffiffiffiffiffi
kD
p
� �

trans

¼ 2pr
2pcpr � 1 1 2ð1� pvÞð1� prÞ

2pvpcpr � 1 1 2prð1� pvÞð1� pcÞ

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pvð1� pcÞ

1� 2prð1� pcÞ

s
: ð11Þ

Note that, as kD/‘, we have that ðgrÞtrans/‘ and
ðgr=kDÞtrans/0, so the assumptions that allowed us to
make the calculation above are valid.

Figure 4 shows three plots of k vs. gr for kD¼ 10. One
of the plots was obtained by numerically solving for the
mutation–selection balance using fixed-point iteration.
The other two plots correspond to the infinite kD, finite
gr and infinite kD, fixed gr/kD expressions for k given
in the preceding subsections. Note that already for kD¼
10 the approximate analytical solutions capture the
dependence of k on gr fairly accurately.

Conclusions: We developed a mathematical model
describing the role that conjugation-mediated HGT
has on the mutation–selection balance of a unicellular,
asexually reproducing, prokaryotic population. We found
that, in a static environment at mutation–selection
balance, conjugation actually reduces the mean fitness
of the population. However, by studying the depen-
dence of the mean fitness on gr for large values of kD,
the antibiotic-induced first-order death rate constant,
we find that the behavior is somewhat more compli-
cated: For small values of gr, the mean fitness is
constant, and the fraction of viable conjugators in the
population is 0. At a critical value of gr, the fraction of
viable conjugators begins to increase, and the mean
fitness decreases to its minimum value. After reaching
its minimum, the mean fitness increases asymptotically
to the gr/‘ limit, which is nevertheless smaller than
the small gr value for the mean fitness. We developed
approximate analytical solutions for the functional
dependence of the mean fitness on gr in the limit of
large kD and found that these solutions agree well with
simulation. Although the fitness variations as a function
of gr were fairly small for the parameter values studied,
we believe that this is nontrivial behavior that is
important to characterize.

Although the results of our article are based on a
highly simplified model, they nevertheless suggest that
HGT does not provide a selective advantage in a static
environment. This is likely due to the fact that, due to
mutation, HGT can destroy antibiotic drug resistance in
a previously resistant cell. While HGT can also confer

resistance to a nonresistant cell, natural selection alone
is sufficient to maximize the population mean fitness in
a static environment. HGT simply has the net effect of
destroying favorable genes, thereby lowering the mean
fitness. This result may be viewed as an example of the
‘‘If it is not broken, do not fix it’’ principle.

Thus, on the basis of the results of this article, we
argue that HGT likely has a selective advantage only in
dynamic environments, where it would act to speed up
rates of adaptation. While this result needs to be
checked in future research, it is nevertheless consistent
with the observation that bacteria can regulate their
rates of HGT. For example, it is known that, in response
to stress, bacteria can activate the SOS response
(Beaber et al. 2004), which has the effect of increasing
rates of HGT. It is also suspected that bacteria can
increase their mutation rates in response to stress
(Bjedov et al. 2003), which, coupled with the observa-
tion that mismatch-repair-deficient cells, or mutators,
have significantly increased rates of recombination and
HGT (Denamur et al. 2000), suggests that there is a
strong correlation between HGT, stress, and adaptation.
This is consistent with our results suggesting that HGT
should be kept at a minimal level in static environments
and increased in dynamic environments. It is also worth
mentioning that while conjugation-mediated HGT has
not been specifically modeled before in this manner (at
least to our knowledge), other HGT-like models have
been studied (Cohen et al. 2005; Park and Deem 2007),
and these studies have found that HGT does indeed
allow for faster adaptation in dynamic environments
(Cohen et al. 2005).

It should be noted that we have obtained our con-
clusions by an analysis of the mean fitness of the popu-
lation. Thus, our analysis is based on what is known as a

Figure 4.—Plots of k vs. gr for kD ¼ 10, m ¼ 0.4, av ¼ 0.6,
ac ¼ ar ¼ 0.2. The plot marked with the solid line was ob-
tained by numerically solving for k using fixed-point iteration.
The dashed line was obtained by using the infinite kD, finite
gr expression for k, while the dotted line was obtained by us-
ing the infinite kD, fixed gr/kD expression for k.
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group selection approach, whereby we assume that what is
beneficial for the population as a whole dictates what
will actually be observed. The group selection approach
is known to have some serious drawbacks, specifically
because it cannot explicitly account for selfish behavior
such as defection from a cooperative strategy or in-
dependently replicating entities that act as parasites on
a larger host system (the plasmids may be viewed as such
an example).

However, in a certain sense, even analyses based on
individual-selection models are themselves group selec-
tion approaches. For example, in analyzing the dynam-
ics of defection and cooperation, one looks at the rate of
growth of defectors vs. the rate of growth of coopera-
tors. If, by group selection, one means that the mean
fitness of the entire population is used to determine the
structure of the mutation–selection balance, then in-
deed this approach will fail to give the correct results.
However, if two mean fitnesses are used, one for the
defectors and one for the cooperators, then the result-
ing analysis will capture the coevolutionary dynamics
between cooperators and defectors in the correct man-
ner. Similarly, when dealing with host–parasite interac-
tions, one does not simply consider the mean fitness of
the host and study the influence that the parasites have
on the host fitness. Rather, one works with mathematical
models that consider both the host and the parasite
fitnesses, which again leads to a coevolutionary dynam-
ics that can lead to correct results. This is the approach
one must take when dealing with plasmid–bacteria sys-
tems or with viral–bacteria systems.

Given the discussion in the above paragraph, it
may then appear that there is something contradictory
between the analysis we stated should be done on
bacteria–plasmid systems and the analysis that we
actually carried out. To resolve this, we must emphasize
that the purpose of this article is not to characterize the
coevolutionary dynamics of bacteria and plasmids.
Rather, the purpose is to determine what effect the
presence of plasmids and, in particular, the presence of
plasmids that confer some selective advantage to the
bacterial hosts (e.g., drug resistance) has on the overall
fitness of a population of bacteria in a static environ-
ment. As stated, we find that the mean fitness has
nontrivial aspects to its behavior, but the central result is
that plasmids capable of moving between bacteria via
conjugation actually have a deleterious effect on fitness
in a static environment.

This in no way suggests that plasmids will therefore
not undergo conjugation, since, as selfish genetic
elements residing within bacterial cells, they are under
a selection pressure to evolve a conjugation ability even
if they negatively affect bacterial fitness (the case of
viruses in the lytic phase makes this point very obvious).
However, to the extent that bacteria can control rates of
conjugation, the results of this article suggest that, in a
static environment at mutation–selection balance, bac-

teria have an ‘‘interest’’ in keeping rates of conjugation
as low as possible, as long as the costs associated with
such control mechanisms are not prohibitive. This is
consistent with the observation that HGT can become
significantly elevated in response to stress.

There are several extensions of the model that should
be considered in future research: First, we need to
model the role that HGT plays in adaptive dynamics.
Second, we need to develop more realistic models for
the conjugation process itself. This includes moving
away from the single-plasmid-per-bacterium model con-
sidered here and to actually model plasmid compatibil-
ity classes and the regulation of copy number inside
bacterial cells. This also includes properly modeling the
repression/derepression dynamics associated with the
activation of the conjugation process itself. Third, our
current model assumes that all plasmids have identical
characteristics. This does not take into account that,
in many models of recombination, a modifier allele
that allows for cell-specific recombination rates is often
considered and that the evolution of the recombination
rate itself is often modeled. Such models will be useful to
determine the optimal level of horizontal gene transfer
in various environments and to understand the distri-
bution of horizontal gene transfer rates in bacterial
populations.

Finally, and perhaps most importantly, it is important
to carry out experimental studies to see if the qualitative
predictions made as to how the mean fitness of the
population varies as a function of conjugation rate are
correct. We believe that the existing model may be
relevant for plasmid systems that have low copy number
in their host cells. Recent work (Barrick et al. 2009)
points to the kinds of experimental studies in this area
that are desired.
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APPENDIX: DERIVATION DETAILS OF THE ANALYTICAL RESULTS

Derivation of k for arbitrary kD and gr/0: Due to the nature of exponential growth, for the population fractions
to converge to a stable steady state we must have that k $ 2pvpcpr � 1; 2pvpc � 1� kD; 2pvpr � 1; 2pv � 1� kD. Because
2pvpcpr � 1 , 2pvpr � 1 and 2pvpc � 1 � kD , 2pv � 1 � kD, it follows that k $ 2pvpr � 1; 2pv � 1� kD. However, if
we then look at the steady-state version of Equation 2, obtained by setting the time derivatives to 0, we then obtain that
x11¼ x1� ¼ 0. If x�1 . 0, then the third equation gives us that k ¼ 2pvpr � 1; otherwise the fourth equation gives us
k ¼ 2pv � 1� kD.

So, we have shown that k $ 2pvpr � 1; 2pv � 1� kD, and yet k ¼ 2pvpr � 1 or 2pv � 1 � kD. These two requirements
imply that k ¼ maxf2pvpr � 1; 2pv � 1� kDg. Note that we have also shown that x11 1 x1� ¼ 0, so that our claim that
conjugation is lost due to genetic drift has also been proven.

Derivation of k for arbitrary kD and gr/‘: In the limit where gr/‘, we have that x�1¼ x� �¼ 0. However, grx�1

and grx�� may converge to positive values. So, we define z�1 ¼ grx�1 and z�� ¼ grx��.
Because x�1 ¼ x� � ¼ 0, we also have that dx�1/dt ¼ dx��/dt ¼ 0, and so from Equation 2 we have that

0 ¼ �z�1ðx11 1 x1�Þ1 2ð1� pcÞ pv 1 z�1 1 z��
	 


pr x110 ¼ �z��ðx11 1 x1�Þ
1 2ð1� pcÞ pv 1 z�1 1 z��

	 

ð1� prÞx11 1 x1�
	 


: ðA1Þ

Summing these two equations and solving for z�1 1 z�� gives

z�1 1 z�� ¼
2ð1� pcÞpv

2pc � 1
: ðA2Þ

Substituting into the expressions for dx11/dt and dx1�/dt from Equation 2 we obtain, after some manipulation,

dx11

dt
¼ 2pvpcpr � 1 1 2ð1� pvÞð1� pcÞ

2pc � 1
� kðtÞ

� �
x11

dx1�
dt
¼
�

2pv � 1� kD � kðtÞ
�

x1�1
2pvpcð1� prÞ

2pc � 1
x11: ðA3Þ

Following a similar argument to the gr/0 case, we obtain the expression for kgr/‘ given in the main text.

To prove that kgr/‘ , kgr/0, we need only show that

2pvpcpr � 1 1 2ð1� pvÞð1� pcÞ
2pc � 1

, 2pvpr � 1: ðA4Þ

After some manipulation, it may be shown that this inequality is equivalent to pr , 1, which clearly holds, thereby
proving the claim.

Derivation of k for kD/0 and arbitrary gr: We can add the first two equations from Equation 2, and also the third
and fourth equations, to obtain the pair of equations

dðx11 1 x1�Þ
dt

¼ ½2pvpc � 1 1 grð2pc � 1Þðx�1 1 x��Þ � kðtÞ�ðx11 1 x1�Þ

dðx�1 1 x��Þ
dt

¼ ½2pv � 1� grðx11 1 x1�Þ � kðtÞ�ðx�1 1 x��Þ

1 2ð1� pcÞ½pv 1 grðx�1 1 x��Þ�ðx11 1 x1�Þ: ðA5Þ

Summing these two equations then gives
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dðx11 1 x1�1 x�1 1 x��Þ
dt

¼ ½2pv � 1� kðtÞ�ðx11 1 x1�1 x�1 1 x��Þ ðA6Þ

from which it follows that k ¼ 2pv � 1 at steady state.
Substituting this value for k into the steady-state version of Equation A5, we obtain

0 ¼ ½ð2pc � 1Þgrðx�1 1 x��Þ � 2pvð1� pcÞ�ðx11 1 x1�Þ; ðA7Þ

which gives either that x11 1 x1� ¼ 0 or that x�1 1 x� � ¼ 2pv(1 � pc)/[gr(2pc � 1)]. If the second case holds, then
since 2pv � 1 ¼ k ¼ x11 1 x1�1 x�1 1 x��, we obtain that

x11 1 x1� ¼ 2pv � 1� 2pvð1� pcÞ
grð2pc � 1Þ : ðA8Þ

Now, for large values of gr, we expect that the population will consist of a nonzero fraction of conjugators, so that
x11 1 x1� . 0. However, because x11 1 x1� cannot be negative, we must have that

gr $ ðgrÞtrans[
2pvð1� pcÞ

ð2pv � 1Þð2pc � 1Þ ðA9Þ

for x11 1 x1� $ 0. Therefore, by continuity, we expect that x11 1 x1� ¼ 0 for gr # (gr)trans and x11 1 x1� ¼
2pv � 1� 2pvð1� pcÞ=grð2pc � 1Þ. 0 for gr . ðgrÞtrans.

Derivation of k for kD/‘ and finite gr: In this limiting case, although x1� ¼ x�� ¼ 0, it is possible that y1� [

kDx1� and y��[ kDx��have nonzero, finite values in the limit as kD/‘, and so we need to consider the effect of these
quantities in our analysis. We then have that the steady-state version of Equation 2 reads

0 ¼ ½2pvpcpr � 1 1 grð2pcpr � 1Þx�1 � k�x11

0 ¼ ½2pvpr � 1� grx11 � k�x�1 1 2ð1� pcÞpr½pv 1 grx�1�x11

y1� ¼ 2pcð1� prÞ½pv 1 grx�1�x11

y�� ¼ 2ð1� pcÞð1� prÞ½pv 1 grx�1�x11 1 2pvð1� prÞx�1: ðA10Þ

If x11 ¼ 0 at steady state, then k ¼ 2pvpr � 1. So, let us consider the case where x11 . 0. Summing the first two
equations from Equation A10 gives

2ð1� prÞgrx11x�1 ¼ ½2pvpr � 1� k�ðx11 1 x�1Þ: ðA11Þ

Summing the last two equations from Equation A10 then gives

y1�1 y�� ¼ ½2pv � 1� k�ðx11 1 x�1Þ: ðA12Þ

Now, in the limiting case being considered here, we have that k ¼ x11 1 x�1 � y1� � y�� ¼ ½k 1 2ð1� pvÞ�
ðx11 1 x�1Þ, and so,

x11 1 x�1 ¼
k

k 1 2ð1� pvÞ
: ðA13Þ

Since x11 . 0, the first equation from Equation A10 gives

x�1 ¼
k 1 1� 2pvpcpr

grð2pcpr � 1Þ ; ðA14Þ

and so,

x11 ¼
k

k 1 2ð1� pvÞ
� k 1 1� 2pvpcpr

grð2pcpr � 1Þ : ðA15Þ

Substituting into Equation A11 gives the following nonlinear equation that k must satisfy,
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2ð1� prÞ
k 1 1� 2pvpcpr

2pcpr � 1

"
k

k 1 2ð1� pvÞ
� k 1 1� 2pvpcpr

grð2pcpr � 1Þ

#

¼ k

k 1 2ð1� pvÞ
½2pvpr � 1� k�; ðA16Þ

which, after some manipulation, may be shown to be equivalent to Equation 6.
To determine the critical value for the transition between the x11¼ 0 and the x11 . 0 regimes, we note that if x11 is

continuous at this transition, then we must have that x11 ¼ 0 using the expression in Equation A15, which gives that
k ¼ 2pvpr � 1 from Equation A16, so that k is also continuous at this transition. Solving for the critical value of gr then
gives

ðgrÞtrans ¼
2pvprð1� pcÞ½1� 2pvð1� prÞ�
ð2pvpr � 1Þð2pcpr � 1Þ : ðA17Þ

So, for gr # (gr)trans, we have that x11 ¼ 0 and k ¼ 2pvpr � 1, while for gr . (gr)trans we have that x11 . 0 and k is
given by the solution to Equation 8 or, equivalently, Equation A16.

To show that this value for (gr)trans is larger than the corresponding value obtained for kD¼ 0, we need to show that

2pvprð1� pcÞ½1� 2pvð1� prÞ�
ð2pvpr � 1Þð2pcpr � 1Þ .

2pvð1� pcÞ
ð2pv � 1Þð2pc � 1Þ : ðA18Þ

After some manipulation, this inequality may be shown to be equivalent to

4pvprð2pc � 1Þð1� pvÞ1 2pvpr � 1 . 0; ðA19Þ

which clearly holds, and so the inequality is established.
Finally, to show that the value of k as gr/‘ is smaller than the value of k obtained in the arbitrary kD, gr/‘ limit,

we need to show that

2pvpcpr � 1 1 2prð1� pvÞð1� pcÞ
1� 2prð1� pcÞ

,
2pvpcpr � 1 1 2ð1� pvÞð1� pcÞ

2pc � 1
: ðA20Þ

After some manipulation, this condition may be shown to be equivalent to

pvð2pcpr � 1Þð1� pcÞð1� prÞ. 0; ðA21Þ

which establishes the inequality.
Derivation of k for kD/‘ and fixed value of gr=kD: Because gr is infinite, we expect that x�1¼ x� �¼ 0, although

z�1 [ grx�1 and z�� [ grx�� may converge to positive, though finite, values. Also, because the 1� genomes, as
conjugators, cannot be ‘‘rescued’’ by conjugators themselves, we expect that x1� ¼ 0 in the limit as kD/‘, although
again it is possible that y1�[ kDx1� converges to a positive value. We expect only x11 . 0, since the 11 genomes are
both conjugators and resistant to the antibiotic and so are not destroyed by conjugation or by antibiotic-induced
death.

The steady-state equations then become

k ¼ 2pvpcpr � 1 1 ð2pcpr � 1Þðz�1 1 z��Þ
y1� ¼ 2pcð1� prÞ½pv 1 z�1 1 z���x11

z�1 ¼ 2ð1� pcÞpr½pv 1 z�1 1 z���
kD

gr
z�� ¼ ½2ð1� pcÞð1� prÞðpv 1 z�1 1 z��Þ � z���x11: ðA22Þ

From the first equation we have that z�1 1 z�� ¼ ðk 1 1� 2pvpcprÞ=ð2pcpr � 1Þ. We therefore have that
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y1� ¼
2pcð1� prÞ
2pcpr � 1

ðk 1 1� pvÞx11

z�1 ¼
2ð1� pcÞpr

2pcpr � 1
ðk 1 1� pvÞ

z�� ¼
½1� 2prð1� pcÞ�k� ½2pvpcpr � 1 1 2prð1� pvÞð1� pcÞ�

2pcpr � 1

kD

gr
z�� ¼

2pvpcpr � 1 1 2ð1� pvÞð1� pcÞ � ð2pc � 1Þk
2pcpr � 1

x11 ðA23Þ

and we also have in this limit that k ¼ x11 � y1� � kD=ðgrÞz��. Substituting in the expressions for y1� and kD/(gr)z� �,
we obtain

x11 ¼
k

k 1 2ð1� pvÞ
: ðA24Þ

Substituting this expression into the last equality of Equation A23, and using the expression for z��, gives us
Equation 9.

Derivation of the transition point between the two functional forms for k for kD/‘: Equating the finite gr with
the infinite gr expressions for k, we obtain that the transition point occurs where

½1� 2prð1� pcÞ�k� ½2pvpcpr � 1 1 2prð1� pvÞð1� pcÞ�

¼ k 1 1� 2pvpcprffiffiffiffiffiffi
kD
p

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� prÞ
2pcpr � 1

ð½2pvpcpr � 1 1 2ð1� pvÞð1� pcÞ� � ð2pc � 1ÞkÞ
s

: ðA25Þ

Since kD/‘, we then obtain that the transition point occurs where the left-hand side is zero, so that
k ¼ ½2pvpcpr � 1 1 2prð1� pvÞð1� pcÞ�=½1� 2prð1� pcÞ�. To estimate the value of gr where this transition occurs in
the limit of large kD, we substitute the expression for ½1� 2prð1� pcÞ�k� ½2pvpcpr � 1 1 2prð1� pvÞð1� pcÞ� given in
Equation A25 into Equation 6 and then substitute the value of k that we obtained for the transition. After some
manipulation, we obtain the expression given by Equation 11.
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