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Purpose: The authors present a method devised to calibrate the spatial relationship between a 3D
ultrasound scanhead and its tracker completely automatically and reliably. The user interaction is
limited to collecting ultrasound data on which the calibration is based.
Methods: The method of calibration is based on images of a fixed plane of unknown location with
respect to the 3D tracking system. This approach has, for advantage, to eliminate the measurement
of the plane location as a source of error. The devised method is sufficiently general and adaptable
to calibrate scanheads for 2D images and 3D volume sets using the same approach. The basic
algorithm for both types of scanheads is the same and can be run unattended fully automatically
once the data are collected. The approach was devised by seeking the simplest and most robust
solutions for each of the steps required. These are the identification of the plane intersection within
the images or volumes and the optimization method used to compute a calibration transformation
matrix. The authors use adaptive algorithms in these two steps to eliminate data that would other-
wise prevent the convergence of the procedure, which contributes to the robustness of the method.
Results: The authors have run tests amounting to 57 runs of the calibration on two a scanhead that
produce 3D imaging volumes, at all the available scales. The authors evaluated the system on two
criteria: Robustness and accuracy. The program converged to useful values unattended for every
one of the tests �100%�. Its accuracy, based on the measured location of a reference plane, was
estimated to be 0.7�0.6 mm for all tests combined.
Conclusions: The system presented is robust and allows unattended computations of the calibration
parameters required for freehand tracked ultrasound based on either 2D or 3D imaging
systems. © 2010 American Association of Physicists in Medicine. �DOI: 10.1118/1.3373520�
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I. INTRODUCTION

The use of intraoperative imaging based navigation systems
is becoming increasingly adopted in the operating room. One
limitation that remains is the fact that they are typically
based on preoperative imaging data. These data become in-
creasingly less representative of the conditions in the opera-
tive field, due to tissue resection or deformation resulting
from the surgery.1,2 As a way to remedy the situation, intra-
operative imaging has been explored by various groups in
several forms. Intraoperative MRI, for one, has been in-
stalled in a number of centers, using dedicated scanners3 or
specially designed less intrusive MR devices.4 Ultrasound
imaging in neurosurgery is a useful alternative to intraopera-
tive MRI or CT due to its much lower cost and smaller
instrumentation footprint.5–11 It is even more attractive when
spatially registered with preoperative MRI or CT studies and
viewed side-by-side or merged as overlays.12 Furthermore,

ultrasound scanheads generating fully volumetric 3D data
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sets are now available and the data produced by these instru-
ments can easily be merged with preoperative MRI or CT,
provided that they can be appropriately calibrated. In order
for this to be routinely realized, a calibration procedure is
required which is the topic of this presentation. In this paper,
we use the term voxel to designate image elements of both
2D and 3D data sets. More generally, we consider 2D images
to be a special case, i.e., a subset, of the more general 3D
volume in which the z coordinate is zero. We also will refer
to coregistration only to MRI studies with the understanding
that the discussion applies equally to both MR and CT.

I.A. General description of freehand tracked
ultrasound

In the literature, the term “3D ultrasound” has often been
used to describe systems based on conventional 2D ultra-
sound imaging in which the scanhead is rigidly coupled to a

3D tracker whose position in space can be monitored
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continuously.8,12–14 The term has become ambiguous with the
advent of fully 3D ultrasound imaging systems with which
one can now collect volumetric imaging data without mov-
ing the scanhead. To clarify the terminology, we refer to
freehand tracked ultrasound as the practice of using an ul-
trasound scanhead tracked spatially, whether it produces 2D
or 3D data. We use the terms 2D and 3D to refer to the nature
of the ultrasound data acquired, that is, 2D images or 3D
volumes. In 2D ultrasound, also known as B-mode ultra-
sound, images are collected with linear arrays, whereas 3D
ultrasound is collected with a two-dimensional array of pi-
ezoelectric elements phased to sweep a volume. There are
also mechanically swept systems based on a single trans-
ducer �as used in a 3D TRUS by Envisioneering, St. Louis,
MO� or mechanically swept linear arrays that can produce
3D data sets.

The process of coregistering imaging data produced from
different sources requires it to be transformed into a common
frame of reference or coordinate system. With two imaging
modalities that are static, an example of which would be
MRI and CT studies from the same patient, one can identify
in both image stacks a few �at least three noncollinear but
usually more� reference points designated fiducial markers
and compute a single transformation matrix, which will ex-
press points from one data set in the coordinates of the other.
A method for computing the transformation using singular
values decomposition is described in detail in the book by
Hajnal et al.15 This method has the precious advantage of
ensuring an orthonormal transformation matrix compared to
other published approaches.13,16 Other techniques for coreg-
istration of imaging modalities exist, based on mutual infor-
mation, for example,17,18 on outlined features using the itera-
tive closest point procedure9,19 or on a weighted combination
of points and surfaces.20

With freehand ultrasound, while the basic principles are
the same, one must contend with multiple frames of refer-
ence, a potentially moving patient �e.g., an adjustable oper-
ating table� or tracking system, and a continuously changing
position of the handheld scanhead which generates the imag-
ing data to be coregistered. Figure 1 illustrates the various
components of the coregistration problem involving tracked
freehand ultrasound. In this illustration we identify five
frames of reference: FMR, the frame defined by the preopera-
tive MRI imaging stack; Fpt, the frame of reference defined
by a tracker that follows the patient’s movements; Fsc, the
frame of reference defined by the tracker that follows the
scanhead; FUS, the frame of reference defined by the ultra-
sound image data �2D or 3D�; and Ftr, the frame of reference
defined by the 3D tracking system. In this system, the 3D
tracker produces continuously updated transformation matri-
ces corresponding to the location of the ultrasound scanhead
tracker trTsc, expressed in Ftr, and the location of the patient
trTpt, also expressed in Ftr. The transformation matrix relating
the MRI frame of reference FMR to the patient ptTMR is ob-
tained at the beginning of a procedure using a fiducials-based
patient registration process. The transformation matrix scTUS,
which relates the voxels in the ultrasound data to the scan-

head tracker, is obtained prior to surgery and constitutes the
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scanhead calibration which is the topic of this paper. Armed
with all these transformations and data sets, it is possible to
merge the ultrasound data with MRI in a common space. The
chain of transformations required can be expressed as

�PUS�MR = �ptTMR�−1 � �trTpt�−1 � trTsc � scTUS � PUS,

�1�

where the subscripts for points �such as PMR� designate the
frame of reference in which they are expressed, and for
transformation matrices �such as ptTMR� the subscripts desig-
nate the originating frame of reference �“from”� while the
prefixed superscripts indicate the destination frame of refer-
ence �“to”�, using the customary notation.

In Eq. �1�, the ultrasound data expressed in the MRI frame
of reference �PUS�MR need to be transformed to the scanhead
space Fsc then to the tracker space Ftr successively using
scTUS and trTsc. Then it is transformed to the patient frame of
reference Fpt using the reverse transformation relating the
patient to the 3D tracker �trTpt�−1 and from patient to MRI
space using �ptTMR�−1. The overall transformation is therefore
the combination of these fixed and updated transformation
matrices. Figure 2 shows an example of a 3D ultrasound data
set merged with a preoperative MRI based on Eq. �1�.

I.B. Existing scanhead calibration methods

The calibration of a US scanhead consists of computing
the transformation matrix that relates the position of a voxel
�we use voxel centers� in the ultrasound data reference frame
and its position expressed in the frame of reference defined
by a tracker coupled to the scanhead. This problem has been
discussed in previous papers for use with 2D sequences of

13,16,18,21–28 29

FIG. 1. Overall view of the various components of image guidance involv-
ing freehand tracked ultrasound. At the top is the 3D tracker. The lower left
image shows the ultrasound scanhead, its rigidly coupled tracker, and the
image it produces. The lower middle image shows a patient and the tracker
coupled to the head clamp in the OR. The lower right images show the
preoperative MRI imaging study. The arrows indicate how the various
frames of reference are related and the respective transformation matrices
that are involved. The corresponding frames of reference are also shown �f�
near each image.
imaging data. Mercier presented an extensive �at
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the time� review of the methods of calibration that have been
proposed for 2D swept system, referred to as “freehand 3D
ultrasound systems.” Referring to our strict definition of 2D
and 3D ultrasound imaging, we do not know of anyone who
presented a calibration method that applies for both 2D and
fully 3D types of imaging systems. Broadly described, the
methods of calibration involve imaging various types of ob-
jects in tanks. The types of objects ranged from a single point
�the crossing of a few wires�, an orthogonal set of wires, and
“N-shaped” wire arrangements or surfaces �bottom of a
tank�. From these data, computation establishes the spatial
relationship between the ultrasound imaging planes and the
tracker. The objects’ position in several images and their po-
sition in absolute space produce sufficient data to solve for
the unknowns in the system, three rotation angles ��x ,�y ,�z�
and three translation distances �tx , ty , tz�. Some authors also
propose to calibrate scaling along the three axes, thus adding
three additional unknowns to the system of equation. We
chose to use the dimensional information provided by the
imaging data files �DICOM format headers� to scale all data
to mm using the pixel/voxel sizes given. The problem re-
duces to solving the following system of equations:

PW,i = WTtr,i � trTUS � PUS,i. �2�

In Eq. �2�, W indicates the world reference frame, while
the i index indicates that multiple data points are recorded to
produce the data needed to solve the system of equations. It
is also important to observe that the transformation matrix
trTUS is fixed, while the other elements of these equations
will change with each image. The problem reduces to com-

tr

FIG. 2. 3D ultrasound and MRI imaging data are merged. This image shows
a patient’s head intersected by the three principal planes from the MRI and
the overlapping 3D ultrasound planes visible as a triangular overlap in the
saggital and coronal planes and a smaller rectangular image in the axial
plane. Features that are visible in both imaging modalities align properly
due to the correct spatial co-registration.
puting TUS from the expanded system of equations:
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�xW1 xW2 xW3 . . .

yW1 yW2 yW3 . . .

zW1 zW2 zW3 . . .

1 1 1 . . .
� = WTtr � trTUS

� �xUS1 xUS2 xUS3 . . .

yUS1 yUS2 yUS3 . . .

zUS1 zUS2 zUS3 . . .

1 1 1 . . .
� ,

�3�

keeping in mind that while the matrix trTUS is a 4�4 matrix,
it only contains six independent variables which must be
constrained to produce an orthonormal transformation ma-
trix. It is also worth noting that zUSi in the right hand set of
point vectors will be 0 for 2D images. trTUS can be expanded
as four separate transformation matrices each representing
the effect of the individual components angles and transla-
tions

trTUS = �1 0 0 tx

0 1 0 ty

0 0 1 tz

0 0 0 1
� � �1 0 0 0

0 cos��x� sin��x� 0

0 − sin��x� cos��x� 0

0 0 0 1
�

� �cos��y� 0 − sin��y� 0

0 1 0 0

sin��y� 0 cos��y� 0

0 0 0 1
�

� � cos��z� sin��z� 0 0

− sin��z� cos��z� 0 0

0 0 1 0

0 0 0 1
� . �4�

Over the years, several methods have been proposed, in-
volving the acquisition of images of objects in known posi-
tions �i.e., known world coordinates�.16,17 Several variations
in this idea have been implemented, for example, using
points defined by the intersection of wires arranged in an
“N” �Ref. 30� or objects with known shapes visible in ultra-
sound such as a planar surface at the bottom of a tank.13

Some of these techniques require knowledge of the position
of the tanks in which the various objects are placed or the
locations of the objects themselves while others do not. It is
generally preferable, in our view, not to depend on measur-
ing accurately the location of the calibration object since this
will invariably be a source of error.

A formulation was proposed by Rousseau et al.,21 in
which a plane with unknown but fixed position in absolute
space is used. In this approach, the plane appears as easily
identified strong echoes in the shape of a line intersecting the
ultrasound images. The points on the images corresponding
to the water/plane �usually the bottom of a tank� boundary
are collected in a series of images. Based on an initial as-

tr
sumption about the calibration matrix TUS, their position in
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world coordinates is computed. Without spatially registering
the plane of reference �the plane used for the calibration�, it
is not possible to express an objective function based on the
distance of these points from the originating reference plane
in world or tracker space. However, it is possible to compute
the distances of this set of points from the plane that best fits
them. Using this measure of “planarity” as an objective func-
tion, the matrix trTUS can be adjusted iteratively. It should be
noted here that this method works for both 2D ultrasound,
where the plane-image intersection reduces to a line, and for
3D ultrasound, where a portion of the plane is captured. Our
formulation is based on the approach described by Rousseau
et al.,21 with some significant departures in its implementa-
tion, which we present in Sec. II, particularly its extension to
3D ultrasound.

II. CALIBRATION METHOD

In this section we present the details associated with the
implementation of our calibration procedure. The data acqui-
sition itself, i.e., the recording of ultrasound images or vol-
umes is straightforward, involving the transfer of imaging
data together with the corresponding spatial tracking coordi-
nates, and is not discussed at length here, except when it
affects the processes presented below. Our image guided sur-
gery system is designed to acquire simultaneously an image
�or volume� from the ultrasound system and the tracking data
upon the user’s request either by clicking a button on the
user interface, or by pressing a switch placed for this purpose
on the tracking unit that is attached to the ultrasound scan-
head. Corresponding images and tracking data are labeled
with identical reference numbers so that the position of any
image can be recovered. Another point of detail needs to be
mentioned, pertaining to the difference in propagation ve-
locities between plain water at room temperature and in vivo
tissues. Others have made the observation that most clinical
ultrasound are calibrated for a nominal sound speed of 1540
m/s, while our tank experiment take place in water at room
temperature, which has a sound speed closer to 1500 m/s.31

We correct for this discrepancy in the simplest possible man-
ner simply by scaling distance as measured in the ultrasound
volumes by the ratio 1500/1540. This correction, however,
does not compensate the slight beam steering error intro-
duced by the different speeds of propagation in water vs
typical tissue. All computations were implemented using
MATLAB �the Mathworks Inc., Needham MA� and, when pos-
sible, we made use of functions from its image processing
toolbox. The method presented in this paper was initially
developed for our Sonoline ultrasound system �Sonoline Si-
enna digital ultrasound, Siemens Medical Systems, Elmwood
Park, NJ�, which is a 2D scanner. The same algorithm was
then adapted to work with our iU22 system �iU22 ultrasound
system, Philips Medical Systems, Bothell, WA�, which has
both 2D and 3D imaging capabilities.

II.A. Plane identification

Our calibration procedure depends on producing sets of

points from each image or volume which best describe the
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intersection of the image or volume with the plane of refer-
ence. Rousseau et al.21 used the Hough transform to identify
the line representing the plane of intersection with each im-
age. We experimented with the Hough transform and found
that it was not reliable. While it worked well with the simu-
lated images presented in Ref. 21, it failed on many of our
images. In addition, the Hough transform, which was devel-
oped for 2D image processing does not have a natural exten-
sion to 3D.

We adopted a solution to this problem which is both
simple and robust and readily implemented with either 2D or
3D imaging data. The method consists of tracing rays ema-
nating from the transducer and extending to the distal end the
image or volume, along which we compute the intensity pro-
files. Depending on the nature of the transducer, these rays
could be parallel �linear array�, or could converge to a point
�phased arrays�. We used every fifth column of voxels a way
to accelerate the computations without incurring an unac-
ceptable penalty in the accuracy or robustness of the algo-
rithm. Image intensity along these rays was filtered using an
eleven-point centered average so as not to introduce a spatial
phase shift to the filtered data, and in order to reduce the
effect of spurious ultrasound variations and/or artifacts in the
image. This is in effect a one-dimensional blur filter. We also
normalized the intensity along this ray by the maximum
value it contained and used this set of values to find the first
point at which the relative filtered intensity exceeded a
threshold value as a function of distance away from the US
transducer scanhead. This normalization procedure allowed
us to pick a single threshold for the detection of the transition
between water and the object of interest. The value of the
threshold was determined experimentally to result in a line
that would follow the transition �maximum gradient� be-
tween water �dark pixels� and steel �very bright pixels�. We
found that by setting the threshold to 0.5, we obtained the
best results. The first few voxels in a ray were set to zero to
eliminate the high intensity values typically observed near
the edge of the transducer. The identification of the threshold
defined by the reflections from the steel plate was helped
significantly by adjusting some of the ultrasound parameters,
appropriately. In particular, we found that reducing the trans-
mitted intensity improved the process by making the plane of
interest appear as a bright single line on a dark background
representing the water in the images. It also helped to reduce
imaging artifacts caused by reflections from the sides of the
tank, the water surface, and the transducer itself. By acquir-
ing ultrasound images of a steel plate in a water tank we are
able to control very carefully the quality of the images col-
lected. This in turn allows us to use relatively simple algo-
rithms to identify the calibration surface in our images.

With 2D images, the points collected in this fashion form
a cluster along the hyperechoic plane of intersection. They
are not necessarily exactly collinear, and there may be any
number of distant outliers corresponding to artifacts or re-
flections which would significantly compromise the fit of a
least-squares regression line. Instead, we have devised a
modified implementation of the random sample consensus

32
algorithm, where an adaptive method is used to determine
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the line of intersection by repeatedly computing the regres-
sion line and successively eliminating the farthest outliers
until all of the points that remain are within a predetermined
small distance of the resulting �and final� least-squares line.
For each image, we save the two points corresponding to the
intersections of the regression line and the image frame
boundary.

This method extends naturally to 3D volumes by exploit-
ing the fact that with our system �Philips iU22 with a X3–1
transducer�, the image intensity data is organized in a 3D
array indexed by �r ,� ,��, r being the distance from the
transducer “center,” and � and � being angles along perpen-
dicular directions representing a nonstandard spherical coor-
dinate system that describes locations in a volume having the
shape of a frustum. Step sizes in the radial and both angular
coordinates are known so that a voxel’s location in space is
easily computed. It should be noted here that the effective
tangential resolution within the image volume decreases with
distance away from the transducer. This indexing method is
advantageous for identifying the intersection of the plane of
interest with the frustum of ultrasound data because we can
easily search along rays which represent one of the indexing
directions in the matrix containing the volume of ultrasound
intensity data. From the points �center of voxels� obtained by
thresholding, we compute the best-fit by plane by minimiz-
ing the cumulative shortest absolute distances of the indi-
vidual points from the plane based on the singular value
decomposition solution of the least-squares problem.33,34

Here, we use the same adaptive approach of computing mul-
tiple plane-fits and discarding the farthest outliers at each
iteration until the remaining points are within a predefined
narrow slice of space on either side of the final best-fit plane.
This gradual elimination of distant outliers in either the lin-
ear �2D images� or planar �3D volumes� data fit algorithm is
the first level of adaptability of our overall algorithm. The
computations are outlined in more detail in the Appendix.
The parameters defining the plane of reference, expressed in
the coordinate system �FUS� of the 3D ultrasound image vol-
ume are used to compute the intersection points between this
idealized plane and the four rays defining the edges of the
frustum. Thus, four points are obtained from each 3D data
set to be used in the optimization procedure described in Sec.
II B.

II.B. Objective function

The data in the left side matrix in Eq. �3� correspond to a
set of points in FW which represents a plane. When trans-
forming the points obtained from the images or volumes, as
described in the previous section, we make use of two trans-
formations: trTUS which relates ultrasound coordinates to
tracker coordinates and WTtr which relates tracker coordi-
nates to world coordinates. WTtr is given by the tracking sys-
tem and is assumed correct, while the parameters defining
the matrix trTUS are unknown and need to be estimated. If all
transformations leading from ultrasound image space to
world coordinates are known accurately, then the points

identified in the images or volumes will be coplanar once
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expressed in world coordinates, by definition, since they rep-
resent a fixed physical plane. Conversely, should trTUS be
incorrect and all other transformations known, this would
result in those points tending to diverge for different poses of
the scanhead between data sets. While this is not a formal
demonstration, it can easily be visualized or demonstrated
with appropriate 3D representation tools. It is also de facto
demonstrated in the fact that our calibration algorithm con-
verges, provided the data is not corrupted.

This observation is used to compute the parameters of the
trTUS transformation matrix by formulating a minimization
problem in which the planarity of the points transformed into
world coordinates is optimized. More specifically, we imple-
ment the following algorithm:

�1� Initialize trTUS �arbitrary initial guess or last calibration�.
�2� Load US defined points PUS,i �see Sec. II A�.
�3� Transform the points to world coordinates PW,i per Eq.

�2�.
�4� Compute the planarity of PW,i �see Appendix�.
�5� If the data are sufficiently planar or if max number of

iterations is reached, STOP.
�6� Update trTUS �see Sec. II C�.
�7� Go back to �3�.

We refer the reader to the Appendix which describes how
the measure of planarity is found as a byproduct of using the
singular value decomposition solution to the least-squares
problem of fitting a plane to a set of points. The remaining
component of our calibration technique is the optimization,
itself, which is discussed in Sec. II.C.

II.C. Optimization

We have six parameters to adjust ��tx , ty , tz� and
��x ,�y ,�z�� in order to optimize the planarity of the points
obtained from ultrasound data and transformed to world co-
ordinates. We have programmed two algorithms to solve this
problem, the first using a gradient descent �GD� and the sec-
ond being an adaptation of simulated annealing �SA�. Upon
some preliminary experimentation, we have found that the
GD algorithm, while much faster in its execution on occa-
sion, would converge to a nonoptimal solution �compared to
the SA algorithm� and decided not to use it for that reason.
This was a deliberate choice we made, indicating a bias to-
ward robustness �i.e., reliable unsupervised execution�. Our
tests did indicate that if a close initial guess was provided,
the convergence of the GD algorithm occurred very close to
100% of the time. We must also add that while execution
time may be a consideration for some, in our case the rigid
coupling holding the tracker to the scanhead is semiperma-
nent and very stiff, thus we can calibrate an assembly prior to
use in the OR, overnight if necessary. Moreover, the comple-
tion of the computation for a given scale takes on the order
of 15 min with the initial guess of all parameters being zero,
and less than 5 min with a close initial guess �computations
performed on a MacBook Pro, 2.16GHz Intel Core Duo�.

Our implementation is a variation in the SA algorithm.

The search variables, the translation, and rotation parameters
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are updated at every iteration by adding to the current pa-
rameters random values that are uniformly distributed in the
range �1 �mm or degrees� and scaled by a varying step size.
This step size can be very large upon starting and thus the
search space can be large initially. In accordance with the SA
procedure, the step size is gradually decreased resulting in an
increasingly small search neighborhood around the current
position. Step sizes are different for angular and translation
variables because of the different sensitivities of the objec-
tive function to these variables. The step size is increased by
a large factor ��1000� every time an improvement is ob-
tained in the objective function, thus increasing the search
space around the current optimum point. Conversely, any
time a test computation results in no improvement, the step
size is reduced by a small factor �0.6%�. Thus, the search
space is very gradually reduced to the neighborhood around
the current optimum. Furthermore, the ratio of the adjust-
ment factors regulates how long the algorithm dwells in the
farther reaches of the search space, compared to the close
neighborhood of the current optimum point. The search vari-
able values are kept within reasonable ranges, by keeping the
angles within �180°, and the X and Z translation parameters
within �50 mm and the Y translation parameter to the range
�0, 50� mm by successive subtractions, thus preserving the
random element of the update step. This last value is based
on our knowledge of the geometry of the physical coupling
between the tracker and the ultrasound scanhead.

In addition, to the slow narrowing of the search toward
the current optimum point in the search space, we also
implemented a system in which we were able to detect and
reject bad data sets. We designate as “bad data sets” points
obtained from an individual ultrasound data set �or “3D im-
age”� and which do not readily line up with the other planes.
This poor alignment becomes apparent after the algorithm
has run for some time and most of the other data sets form a
very tight planar point cloud, while possibly a few do not.
We discovered this simply by drawing the entire scene �re-
constructed plane outlines in 3D space� using the 3D plotting
facilities in MATLAB. Once we found this cause for occa-
sional failures to properly converge, we were able to elimi-
nate it. More precisely, it is possible to compute the distance
of each point in the complete set �all the calibration ultra-
sound data sets� from the plane that best fits these points
collectively �what we refer to as the planarity of the data
sets�. It is therefore possible to compute how well a given
individual data set fits with that plane and eliminate it from
the overall data pool if it exceeds a threshold. This is the
second adaptive feature of our overall calibration procedure.

III. VALIDATION

We evaluated our calibration procedure based on two cri-
teria separately: Robustness and accuracy. Since it was our
goal to devise a program that would allow completely unat-
tended computations, we evaluated it on that feature. Simi-
larly, the accuracy of the resulting computations was critical
in deciding if our code was useful and this aspect was evalu-

ated separately as well. We describe our methodology for
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gauging both in the following paragraphs. We performed an
extensive series of calibration tests with our ultrasound
equipment, basing our evaluation on data obtained with the
iU22 system. While we successfully and accurately used this
technique to calibrate both 2D and 3D imaging data, we
present here results of our 3D calibration with a X3–1 matrix
transducer �Philips Medical Systems, Bothell, WA� since 2D
calibration has been presented extensively by others. We
calibrated several of the nominal scales available for this
device, 15 in all, all of them in 3D mode. What we refer to as
scale is the size of the volume spanned by the scanhead,
expressed as the maximum radial distance from the top of
the imaging volume frustum. For each scale we ran a few
separate calibrations, between two and six separate runs
based on approximately 20 images to test the overall proce-
dure’s ability to converge. In all, we ran 57 tests using X3–1
scanhead.

III.A. Robustness

We define robustness as how reliably the procedure oper-
ates correctly while executing completely unsupervised,
which was the goal. In a typical calibration session, the user
acquires 20 images for a given setting at each of the 15
nominal scales. This number of images is most likely exces-
sive, but the time needed to acquire it is not prohibitive, and
it gave us sufficient redundancy to be able to safely discard a
few images if necessary, as described above. In prior tests,
we were able to successfully complete usable calibration
with as few as three data sets. Volumes data sets are acquired
in a tank in which a steel plate �12�10 in.2, 1/2 in. thick
stock machine steel� is oriented in an oblique plane. The
plate was clean and of even roughness, which was produced
by sanding it with very fine sandpaper. The plane is clearly
visible in the ultrasound images as a very bright reflection.
We used an oblique plane because it provided an easy way to
vary the distance between the intersected plane and the trans-
ducer, and it allowed us to accommodate all of the scales
available, which range from 40 to 260 mm. We used a stand
to hold the scanhead steady during image acquisition and 3D
tracking. In addition to imaging data, we simultaneously ac-
quired position data, recording the pose �location and angles�
of the ultrasound scanhead using our Polaris Hybrid �North-
ern Digital Inc., Waterloo, Ontario� 3D tracking system. The
tracking device attached to the ultrasound scanhead was of
the active type, consisting of a Y shaped frame outfitted with
three pods of seven infrared emitting diodes �IREDs� manu-
factured by Traxtal �Toronto, Ontario�. In addition, we had a
fixed tracker, simulating a patient tracker, attached to the
tank in which the data acquisition was taking place. This
precaution was used to avoid errors due to the tracking sys-
tem itself, which is mounted on a cart, moving in relation to
the experimental region of interest. In this fashion, we were
able to compute the position of the ultrasound tracker in
relation to that of the patient tracker regardless of any pos-
sible motion of the cart. During image acquisition, a delib-
erate effort was made to vary all degrees of freedom �rotation

and translation about all three axes� by sliding the transducer
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over the plane in all directions �forward/back, left/right and
up/down� and by tilting it in all directions as well using a
systematic pattern.

Following an image acquisition session, the calibration,
consisting of the plane identification and optimization rou-
tines, proceeded automatically. Combining all the attempted
calibration procedures, that is, every run performed for every
scale, 57 runs in all for this evaluation of robustness, we
found that every one succeeded, in that it converged to a
result we considered accurate. We observed that in all the
runs, one or more of the data sets recorded were discarded,
indicating that the adaptive mechanism designed to reject
“bad data” was working. Upon closer examination we deter-
mined that the cause for the rejection of data sets in almost
all cases �56 out of 57 �98%�� was due incorrectly identified
planes in the ultrasound data, due to reflections and other
visible artifacts. We had one instance of bad 3D tracker data.
In that particular case, one of the data sets was acquired
while the patient tracker was not “seen” by the tracker �re-
ported MISSING by the POLARIS software�. This was most
likely caused by the operator obstructing the line of sight
between the camera and the target.

III.B. Accuracy

Groups of four points are produced for each ultrasound
volume collected for a particular calibration and used to
drive the optimization procedure to converge so that the
points collectively form as good a fit to a global plane as
possible. This plane does not necessarily match the location
of the physical plane that was used to collect the ultrasound
data. In order to gauge the accuracy of our procedure, we
recorded the location of the steel plate defining our reference
plane with a tracked stylus placed at its four corners in suc-
cession. We were able, therefore, to compute the distances of
the calibration points obtained from the images or volumes
to the digitized reference plane. Note that the reference plane
location itself was not used to compute the calibration, and it
would not be recorded under normal operation; it was re-
corded only for the purpose of this validation. We then de-
fined our calibration accuracy as the distance between se-
lected test points on the calibration volumes and the recorded
position of the reference plane for that test. The test points in
question were different from those used in the calibration.
The points selected consisted of five points on the plane
identified in the respective ultrasound volumes; one point
corresponding to the intersection of the US beam axis ��
=0, �=0� and four additional points on that same plane
corresponding to ��=0, �=�min�, ��=0, �=�max�, ��
=�min, �=0�, and ��=�max, �=0�. We performed our ac-
curacy evaluation for each scale separately, basing it on the
individual volume data sets collected for each, with 20 im-
ages per run �approximately� and two to six runs per scale,
resulting in 40–120 tests per scale for our evaluation.

To gauge the accuracy of our calibration procedure, we
used the overall mean distance of the test points from their

respective reference planes which yielded an accuracy of
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0.7�0.6 mm for all the tests at all the scales combined.
Table I shows the breakdown of errors by scale.

While trends were visible between the mean and the
nominal scales, as well as the standard deviation and the
scales, the coefficient of determination were weak �r2

=0.380 and 0.135, respectively�.

IV. DISCUSSION AND CONCLUSIONS

Our results are based on using an optical 3D tracking
system. Such systems have well understood limitations, such
as the need for an unobstructed line of sight between the
tracking cameras and the objects of interest. Furthermore, the
way of coupling the tracking device to the scanhead, with
some distance separating the image field from the IREDs �for
practical necessity� will likely have a multiplying effect on
the measurement errors associated with the tracker in defin-
ing the image physical location. It should be noted, however,
that these factors, while affecting our results, are not limita-
tions of our algorithm, but those of the tracking system, and
that our method could be applied to most freehand tracking
technologies �e.g., trackers based on electromagnetic sens-
ing�. Errors, in the form of measurement inaccuracies, enter
the calibration process we devised through several avenues.
The first and most obvious is the error of the POLARIS 3D
tracker system. The specification on its accuracy is given as
0.35 mm RMS for a single point.35 Readings from multiple
points are required to track an object and the error in defining
its position and orientation �pose� is a complicated function
of the contributions from the individual points used. Wiles36

presents in some detail the complicated relationship between
the reported point measurement accuracy and the reported
tracker pose. This complicates significantly the task of estab-
lishing with what accuracy one can measure the location of
an object consisting of several points in space, the accuracy

TABLE I. Mean error by scales.

Scale
�mm�

Mean
�mm�

Stdev
�mm�

40 0.83 0.90
50 0.36 0.32
70 0.23 0.19
80 0.39 0.32

100 0.96 0.87
120 0.68 0.49
130 0.59 0.46
141 0.63 0.47
161 0.60 0.47
170 0.71 0.56
180 0.82 0.74
200 1.08 0.77
221 0.83 0.57
242 0.79 0.78
261 1.03 0.71

All scales 0.70 0.61
of measuring individual points being a function of many pa-
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rameters, including the position of the measurement volume
inside the volume of operation of the 3D tracker. However,
we can assume that the localization of a point in the center of
a planar rectangle can be computed to a greater level of
accuracy, given the positions of its corners with a given ex-
pected error, than for the corners themselves �inverse lever
arm effect�. Minimizing as much as possible this type of
error was the reason for devising a calibration method which
did not require knowing �e.g., measuring� the position of the
reference plane. The present results estimate the error in
tracked ultrasound to be 0.7�0.6 mm based on our calibra-
tion procedure and evaluation. These errors are approxi-
mately twice that specified for an individual point by the
manufacturer of our tracking system. Another source of error
in our procedure stems from the identification of the refer-
ence plane within the image or data volume. This error arises
from the definition of the surface of the reference plane in
terms of the voxel values in the resulting ultrasound data and
from the result of our adaptive line or plane fit. We associ-
ated the surface of reference plane with the steepest gradient
in image intensity. However, when dealing with actual im-
ages in water tanks, we have to contend with many features
that have nothing to do with the plane of reference. For ex-
ample, the spike in intensity that occurs at the transducer
surface, multiple reflections from the water surface, the ref-
erence surface, the tank sides, and the transducer itself. In
some cases, the formation of bubbles in nondegassed water
produces additional artifacts in the images. For these rea-
sons, we defined a 50% threshold in the normalized image
intensity, along rays, as the surface detection criterion which
provided us with a robust algorithm. Visually, the approach
produced good results, although we do not know if the lines
obtained correspond exactly to the plane of reference. An-
other factor that may introduce errors at this stage relates to
our scaling of the speed of sound �1500 vs 1540 m/s�
amounting to approximately 2.6% in radial error and some
unaccounted for amount of error in the lateral steering angle.
It is well understood that the speed of sound in water in
water is a function of temperature and that means that our
single valued correction factor may be off by some amount
simply on the basis of temperature fluctuations in the labo-
ratory.

We have developed a semiautomatic calibration proce-
dure, in which user intervention would be limited to the ac-
quisition of ultrasound images or volumes consisting of the
echo coming from a reflective plane in a tank. It is conceiv-
able that even this part of the data collection could be auto-
mated with the use of a robotic arm. In our evaluation, the
calibration algorithm converged to an acceptable solution in
all cases. This is in large part due to two levels of adaptive
features in our program, first in identifying the calibration
plane in the collected ultrasound data, and second in reject-
ing data sets that do not follow the global trend of a given
calibration set.

The only publication presenting a method similar to ours
is from Rousseau et al.,21 where the Hough transform was
used to identify the plane/image intersection. Our program

uses a different method which has the advantage of being
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more robust and extensible from 2D to 3D data sets. The
algorithms we developed function effectively with both 2D
and 3D ultrasound data, which has not been possible with
previous approaches. We also established that the gradient
descent method performs well with real data subject to the
condition that a good starting point is selected. However,
since in few cases the adoption of this algorithm resulted in
failures to converge to a good solution, we decided to use a
modified form of the simulated annealing algorithm instead.
This has proved to be much more robust �100% conver-
gence� and effective.

APPENDIX: COMPUTING PLANE PARAMETERS
FROM A SET OF POINTS

Just as one can fit a line �y�x�=ax+b� through a set of
points in a plane, one can also fit a plane �Ax+By+Cz+D
=0� through a set of points in 3D space. In the case of a line
fit, the solution consists of minimizing in a least-square sense
some quantity which describes the goodness of fit. It should
be noted that there are different ways to define the goodness
of fit, one can aim to minimize the cumulative shortest dis-
tance to the line or one can minimize the distances along the
�y direction between the points and line.

We offer here a succinct presentation of our algorithm for
fitting points to a plane. It is based on mathematical devel-
opments presented by Sharkarji.22 We also list a short MAT-

LAB program that computes the parameters of a plane that
best fits a set of points.

Given a set of points,

P = �x1 x2 x3. . .

y1 y2 y3. . .

z1 z2 z3. . .
� ,

there is a plane that best fits these points in the sense that
it minimizes an objective function consisting of the cumula-
tive shortest distances between these points and the plane
they define collectively

J = �
i=1

N 	Axi + Byi + Czi + D	

A2 + B2 + C2

.

For three points, the best-fit objective function will be
zero �always a perfect fit�; for fewer points there will be an
infinite number of solutions �underdetermined problem�; and
for more points, the optimized objective function will be
finite, if the points are not exactly coplanar. The least-square
solution that minimizes the sum of distances is a plane that
includes the centroid of the points �x0 ,y0 ,z0�. The optimiza-
tion problem can be solved for the “de-meaned” data �i.e.,
the points are shifted such that their centroid is now at the
origin� using the singular values decomposition. Conceptu-
ally this consists of finding a plane intersecting the origin
whose normal direction will optimize the objective function.
The singular values decomposition of P� �the de-meaned
points� returns U�S�VT=svd�P�� in which the matrix V

contains the plane parameters ABC, the normal vector. More
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precisely, the singular vector corresponding to the smallest
singular value contains the parameters of the least-square fit
plane solution to the optimization problem

V = �v1,1 v1,2 A

v2,1 v2,2 B

v3,1 v3,2 C
�

�assuming the SVD computation routine returns the sin-
gular vectors sorted from greatest to least as is done in MAT-

LAB�. The remaining parameter can be computed from the
one point that is known to be on the plane D=−�Ax0+By0

+Cz0�.
It is useful to note that if we define the vector Q

= �A B C D� and the matrix

P = �x1 x2 x3 . . .

y1 y2 y3 . . .

z1 z2 z3 . . .

1 1 1 . . .
� ,

then the quantity E=
�Q� P�� �Q� P�T is the root mean
squared distance between the set of points in P and the plane
expressed by Q.

Matlab code:

function �A B C D E�=points2plane�pts�
% This function computes the plane parameters that best
fit
% a set of points.
%
% input: pts= �X. . . ;Y. . . ;Z . . . ;1. . .� �one point per
column�
% outputs: �A B C D E� plane parameters: Ax+By+Cz
+D=0, and
% RMS error E.
%
% Alex Hartov, 9/19/07
% Compute the centroid of the points.
x=mean�pts�1, :��;
y=mean�pts�2, :��;
z=mean�pts�3, :��;
% M contains the “de-meaned” points coordinates.
M=pts�1, :��−x;
M= �M�pts�2, :��−y��;
M= �M�pts�3, :��−z��;
% Compute the plane parameters
�U,S,V�=svd�M�; % V contains the normal vector
�ABC�
A=V�1,3�; % Reference plane normal components
B=V�2,3�;
C=V�3,3�;
D=−�A�x+B�y+C�z�; % Last plane parameter
% Compute the error.
Q= �A B C D�;
E=sqrt��Q�Pts�� �Q�Pts���; % RMS fit error
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