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Abstract

Background: SEDLIN, a 140 amino acid subunit of the Transport Protein Particle (TRAPP) complex, is ubiquitously expressed
and interacts with the transcription factors c-myc promoter-binding protein 1 (MBP1), pituitary homeobox 1 (PITX1) and
steroidogenic factor 1 (SF1). SEDLIN mutations cause X-linked spondyloepiphyseal dysplasia tarda (SEDT).

Methodology/Principal Findings: We investigated the effects of 4 missense (Asp47Tyr, Ser73Leu, Phe83Ser and Val130Asp)
and the most C-terminal nonsense (Gln131Stop) SEDT-associated mutations on interactions with MBP1, PITX1 and SF1 by
expression in COS7 cells. Wild-type SEDLIN was present in the cytoplasm and nucleus and interacted with MBP1, PITX1 and
SF1; the SEDLIN mutations did not alter these subcellular localizations or the interactions. However, SEDLIN was found to
homodimerize, and the formation of dimers between wild-type and mutant SEDLIN would mask a loss in these interactions.
A mammalian SEDLIN null cell-line is not available, and the interactions between SEDLIN and the transcription factors were
therefore investigated in yeast, which does not endogenously express SEDLIN. This revealed that all the SEDT mutations,
except Asp47Tyr, lead to a loss of interaction with MBP1, PITX1 and SF1. Three-dimensional modelling studies of SEDLIN
revealed that Asp47 resides on the surface whereas all the other mutant residues lie within the hydrophobic core of the
protein, and hence are likely to affect the correct folding of SEDLIN and thereby disrupt protein-protein interactions.

Conclusions/Significance: Our studies demonstrate that SEDLIN is present in the nucleus, forms homodimers and that
SEDT-associated mutations cause a loss of interaction with the transcription factors MBP1, PITX1 and SF1.
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Introduction

SEDLIN, which is one of the subunits of the Transport Protein

Particle (TRAPP) complex, is involved in the targeting and fusion

of endoplasmic reticulum (ER)-derived transport vesicles to the

Golgi acceptor compartment [1]. SEDLIN, which is encoded by

the spondyloepiphyseal dysplasia late (SEDL) gene (Figure 1) is a

highly conserved 140 amino acid protein with a .95% identity

amongst vertebrate orthologues and a .30% identity to the yeast

Trs20p [2]. The crystal structure of mouse Sedlin shows it to have

a single domain structure (Figure 2) that contains 20 solvent-

accessible apolar residues [2]. Four of these apolar residues

constitute the hydrophobic pocket (Pro16) and the hydrophobic

groove (Phe40, Leu48 and Phe67), both of which may act as

protein-binding sites [2]. Indeed, SEDLIN has been reported to

interact with proteins that are not part of the TRAPP complex,

but are either transcription factors, such as the c-myc promoter-

binding protein 1 (MBP1), pituitary homeobox 1 (PITX1) and

steroidogenic factor 1 (SF1) [3,4], or the intracellular chloride

channels, CLIC1 and CLIC2 [5]. Interestingly, SEDLIN has been

reported to localize to the perinuclear structures [6], although the

reported interactions with the transcription factors MBP1, PITX1

and SF1, would also suggest a role for SEDLIN in the nucleus.

Mutations of SEDLIN have been reported in patients with

spondyloepiphyseal dysplasia tarda (SEDT), an X-linked osteo-

chondrodysplasia that is characterised by short stature, a

disproportionate short trunk, barrel-shaped chest, narrowing of

the intervertebral disc spaces, platyspondyly, a shortened femoral

neck, and early onset secondary osteoarthritis which may require

hip replacement before the age of 40 years [7]. The forty-four

disease-causing SEDL mutations, which had been reported at the

commencement of these studies, consisted of 40 that resulted in
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premature truncations and 4 that were missense mutations

(Asp47Tyr, Ser73Leu, Phe83Ser and Val130Asp) (Figure 1).

However, the functional consequences of these SEDL mutations

at the cellular level remain unidentified and we hypothesised that

these may involve a loss of interactions with MBP1, PITX1 and

SF1, particularly as PITX1 and MBP1, which is also referred to as

enolase1, have been reported to have roles in endochondral

ossification and maintenance of adult bone [8,9]. Moreover,

PITX1 expression has been reported to be significantly reduced in

osteoarthritic cartilage [9], and citrullinated enolase1, which is a

known rheumatoid arthritis autoantigen, is expressed at high levels

in rheumatoid joints [8]. We therefore undertook studies that

aimed to explore the nuclear expression of SEDLIN, which would

be consistent with its interactions with the transcription factors

MBP1, PITX1 and SF1, and to determine the functional

consequences of disease-associated SEDLIN mutations on the

subcellular localization and interactions with PITX1, MBP1 and

SF1. We focused on the 4 SEDT-associated missense mutations

(Figure 1) as these were predicted to yield a full-length protein and

were not likely to affect the tertiary structure of SEDLIN

substantially, as well as the most C-terminal nonsense

(Gln131Stop) mutation, which if translated, is predicted to result

in the loss of the last ten amino acids.

Results

Subcellular Localization of SEDLIN
SEDLIN has been postulated to play a role in ER-Golgi

vesicular transport and has been reported to localize to perinuclear

structures [6]. However, its interaction with the transcription

factors MBP1, PITX1 and SF1 suggested a possible nuclear

localization. We explored this possibility by confocal immunoflu-

orescence studies of COS7 cells that were transiently transfected

with cMyc- or HA-tagged constructs of wild-type (WT) SEDLIN,

mutant SEDLIN, wild-type MBP1, PITX1 or SF1. We specifically

chose to generate the tagged constructs using cMyc- and HA-tags

as these are small proteins (,1.5 kDa) [10,11] unlike a green

fluorescence protein (GFP)-tag (,27 kDa) [12], and hence less

likely to affect the biochemical and biophysical properties of

SEDLIN, which is itself only 16 kDa in size. Wild-type cMyc-

SEDLIN expression was observed in the nucleus and cytoplasm

(Figure 3A), and the SEDT-associated mutations (Asp47Tyr,

Ser73Leu, Phe83Ser, Val130Asp and Gln131Stop) were found to

have a similar cytoplasmic and nuclear localization, and not to

affect this subcellular localization (data not shown). MBP1, PITX1

and SF1 were also expressed in the nucleus and cytoplasm, but

PITX1 and SF1 co-localized with SEDLIN in the nucleus only,

whereas MBP1 co-localized with SEDLIN in the nucleus and

cytoplasm (Figure 3B). These results were confirmed by Western

blot analysis of subcellular fractions, which demonstrated the

presence of wild-type and mutant SEDLINs in both the

cytoplasmic and nuclear fractions (Figure 3C). This presence of

wild-type and mutant SEDLINs with the transcription factors

MBP1, PITX1 and SF1 in the nucleus and cytoplasm (Figures 3B

and C) suggested that the effects of the SEDT-associated

mutations on the interactions between SEDLIN and these

transcription factors may occur in either compartment, and these

effects were therefore assessed for in total cell lysates.

Interaction of wild-type and mutant SEDLINs with MBP1,
PITX1 and SF1 is masked by formation of SEDLIN dimers
in mammalian cells

Interactions in mammalian cells between wild-type (WT) and

mutant (Asp47Tyr, Ser73Leu, Phe83Ser, Val130Asp and

Gln131Stop) SEDLINs and the transcription factors MBP1,

PITX1 and SF1 were investigated by co-transfecting COS7 cells

with full-length wild-type SEDLIN or mutant SEDLIN constructs

that were tagged with an HA epitope, and full-length wild-type

MBP1, PITX1 and SF1 constructs that were tagged with a cMyc

Figure 1. Schematic representation of genomic organization of the SEDL gene, illustrating the 44 identified mutations. The human
SEDL gene consists of six exons that span approximately 22 Kb of genomic DNA and encode a 140 amino acid protein. The 420bp coding region
(open boxes) is organised into 4 exons (exon 3 to exon 6) and 3 introns (indicated by a line, not to scale). Non-coding exons (filled boxes) consist of
exons 1 and 2, the 59 portion of exon 3 and the 39 portion of exon 6. The sizes of the exons, and the translation Start (ATG) and Stop (TGA) codons in
exon 3 and 6, respectively, are indicated. The locations of the 44 mutations are indicated, and these consist of: 7 nonsense, 4 missense, 10 splice site,
1 insertion, 15 intraexonic deletions, and 7 deletions that encompassed introns and exons. The four missense mutations (Asp47Tyr, Ser73Leu,
Phe83Ser and Val130Asp) and one nonsense mutation (Gln131Stop) were selected for further functional studies (Figures 3, 4, 6 and 7).
doi:10.1371/journal.pone.0010646.g001

Effects of SEDLIN Mutations

PLoS ONE | www.plosone.org 2 May 2010 | Volume 5 | Issue 5 | e10646



epitope. The cMyc empty vector was used as a negative control.

When wild-type or mutant HA-SEDLIN was immunoprecipitated

with anti-HA antibody, the immunoreactive bands of cMyc-

MBP1, cMyc-PITX1 and cMyc-SF1 (Figures 4A–C) were

detected in the immunoprecipitate. Wild-type and mutant HA-

SEDLINs were reciprocally co-immunoprecipitated with cMyc-

MBP1, cMyc-PITX1 and cMyc-SF1 using anti-cMyc antibody

(Figures 4A–C). The co-immunoprecipitation of MBP1, PITX1

and SF1 with wild-type and mutant SEDLIN was specific as the

HA tag alone did not co-immunoprecipitate these proteins

(Figure 4D). These results demonstrate that wild-type SEDLIN

interacts with MBP1, PITX1 and SF1; however, they also suggest

that the SEDT-associated mutations do not affect the interactions

between the mutant SEDLINs and the transcription factors

MBP1, PITX1 or SF1 (Figures 4A–C). This was a surprising

result, and the apparent lack of any effect on these interactions by

the SEDT-associated mutations was further explored. One

possibility for not observing any effects of the mutant SEDLINs

on the interactions with the transcription factors in the transfected

cells is that SEDLIN forms dimers (Figure 5A). Thus, the

formation of dimers between the endogenously expressed wild-

type SEDLIN and the transfected mutant SEDLIN would mask

the loss of any interaction between the mutant SEDLIN and the

transcription factor, as the endogenously expressed wild-type

SEDLIN would bind to the transcription factor. COS7 cells were

found to endogenously express wild-type SEDLIN, consistent with

this possibility (Figure 5B) of homodimerization, which was

investigated further by non-denaturing gel electrophoresis and

co-immunoprecipitation (Figure 6). Western blot analysis of

nuclear and cytoplasmic fractions obtained from COS7 cells

transfected with wild-type cMyc-SEDLIN, and resolved by non-

denaturing gel electrophoresis, revealed the presence of a 36 kDa

band which is consistent with the formation of SEDLIN dimers in

both compartments (Figure 6A). In addition, co-immunoprecipi-

tation studies using Western blot analysis of lysates of COS7 cells

that were co-transfected with wild-type cMyc-SEDLIN and wild-

type or mutant HA-SEDLINs, demonstrated that wild-type cMyc-

SEDLIN was able to co-immunoprecipitate wild-type and mutant

HA-SEDLINs (Figure 6B), thereby revealing that mutant SEDLIN

interacts with wild-type SEDLIN. Thus, SEDLIN forms homodi-

mers, including dimers between wild-type and mutant SEDLINs,

as postulated by our proposed model (Figure 5A) to explain the

apparent lack of observable effects of SEDLIN mutations on the

interactions with the transcription factors MBP1, PITX1 and SF1.

However, it is important to note that affected SEDT males are

hemizygous, and their cells would express only the mutant

SEDLIN, and that the situation of homodimer formation between

wild-type and mutant SEDLIN would only occur in carrier

females as the SEDL gene escapes X-chromosome inactivation

[13]. This indicates that to study the effects of the transfected

SEDLIN mutants on interactions with MBP1, PITX1 and SF1,

and simulate the situation in the hemizygous affected SEDT

males, one requires a cell line that does not express endogenous

wild-type SEDLIN. An assessment of 3 other mammalian cell lines

(COS1, HEK293 and HK2) revealed all of them to express

SEDLIN (Figure 5B), and as SEDLIN-null cell lines are not

available from SEDT patients or a mouse model, we further

explored the effects of mutant SEDLINs on the interaction with

the transcription factors MBP1, PITX1 and SF1, in yeast cells.

SEDLIN interactions with transcription factors MBP1,
PITX1 and SF1 in yeast cells

Yeast cells express Trs20p, which is a SEDLIN homologue that

is located in the ER and Golgi membranes [1,14]. Trs20p has

,40% identity at the amino acid level to mammalian SEDLIN

[2], thereby reducing the likelihood that it may form dimers with

the transfected human SEDLIN and interfere with the interaction

between mutant SEDLINs and the transcription factors. We

therefore used a yeast two-hybrid assay to assess for interactions

between wild-type and mutant SEDLINs and the transcription

factors MBP1, PITX1 and SF1. The results demonstrated that

wild-type SEDLIN interacted with wild-type SEDLIN (Figure 7A),

consistent with the findings of dimer formation in mammalian

COS7 cells (Figure 6A). Wild-type SEDLIN was also found to

interact with each of the SEDLIN mutants (Figure 7A), and hence

consistent with the results of the co-immunoprecipitation studies in

mammalian COS7 (Figure 6B). In addition, wild-type SEDLIN

Figure 2. Three-dimensional model of SEDLIN showing loca-
tions of residues involved in the mutations studied. The model is
based on a published model of mouse Sedlin [2]. (A) A ribbon model of
Sedlin showing the alpha helices in red, beta strands in blue and the
residues involved in the missense mutations (Asp47Tyr, Ser73Leu,
Phe83Ser, and Val130Asp) in yellow. The bold line indicates the 10 C-
terminal amino acids that would be deleted by the nonsense SEDLIN
mutation (Gln131Stop) shown in yellow. The dashed circle indicates the
hydrophobic core of Sedlin. The Ser119 and Ser124 residues that were
predicted to be phosphorylation sites (NetPhos2.0, MotifScan and ELM
databases) are indicated in green. (B) An ,45u rotated view of the
ribbon model of Sedlin showing the SEDT-associated mutated residues
Asp47 and Ser73 (yellow), in SEDT, which together with the residues
Tyr60, Thr63, His67 and Gln91 (light blue) aid in forming the
hydrophobic groove (indicated by dotted bar line). The alpha helices
are shown in red, beta strands in blue, and the linker region in grey.
doi:10.1371/journal.pone.0010646.g002

Effects of SEDLIN Mutations
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Figure 3. Subcellular co-localization of wild-type and mutant SEDLINs, MBP1, PITX1 and SF1. (A) COS7 cells were transfected with wild-
type or mutant (Asp47Tyr, Ser73Leu, Phe83Ser, Val130Asp and Gln131Stop) cMyc-SEDLIN constructs and visualised by immunofluorescence. The
wild-type cMyc-SEDLIN (green) and mutant forms (data not shown) were found to localize to the nucleus and cytoplasm. DAPI, which stains nuclei
(shown as red), colocalized with SEDLIN (yellow in merged image). (B) Wild-type or mutant HA-SEDLINs (red) were co-transfected with cMyc-MBP1,
cMyc-PITX1 or cMyc-SF1 constructs and visualized by immunofluorescence (green). Wild-type SEDLIN and mutant SEDLINs (data not shown) co-
localized (yellow) to the nucleus with the three transcription factors and to punctate structures within the cytoplasm with MBP1. (C) Western blot
analysis of subcellular fractions (N - nuclear, C–cytoplasmic) from COS7 cells transiently co-transfected with wild-type (WT) or one of the 5 mutant HA-
SEDLIN constructs, and cMyc-MBP1, cMyc-PITX1 or cMyc-SF1 constructs. Use of anti-HA antibody detected the expected 18 kDa wild-type and
mutant SEDLIN proteins, and anti-cMyc antibody detected the expected 36 kDa, 36 kDa and 54 kDa MBP1, PITX1 and SF1 proteins, respectively,

Effects of SEDLIN Mutations
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was demonstrated to interact with MBP1, PITX1 and SF1

(Figure 7B), yielding results that were similar to those obtained

from the mammalian COS7 cells (Figure 4). However, the

SEDLIN missense mutations Ser73Leu, Phe83Ser, Val130Asp

and the nonsense mutation Gln131Stop lead to a loss of

interaction with MBP1, PITX1 and SF1 (Figure 7B), although

the Asp47Tyr mutation, which involves a highly conserved residue

did not lead to a loss of interaction with any of these transcription

factors. Co-expression of these proteins was confirmed by Western

blot analysis of yeast protein extracts from each clone (data not

shown). These results from a yeast two-hybrid assay demonstrate

that 3 of the SEDT-associated missense mutations (Ser73Leu,

Phe83Ser, Val130Asp) and the most C-terminal nonsense

mutation (Gln131Stop) result in a loss of direct interaction with

the transcription factors MBP1, PITX1 and SF1. In addition,

these results confirm the direct interactions that lead to the

formation of dimers between human wild-type SEDLIN and

mutant SEDLINs.

Structural effects of SEDLIN mutants
An analysis of the three-dimensional structure of SEDLIN revealed

that the SEDLIN mutants (Ser73Leu, Phe83Ser, Val130Asp and

Gln131Stop) that lead to a loss of interaction with the MBP1, PITX1

and SF1, are buried within the hydrophobic core domain of SEDLIN

Figure 4. Interactions between SEDLIN, and MBP1, PITX1 and SF1. Co-immunoprecipitation studies using COS7 cells demonstrated interactions
between wild-type SEDLIN, mutant SEDLINs (Asp47Tyr, Ser73Leu, Phe83Ser, Val130Asp and Gln131Stop, only data from Ser73Leu SEDLIN shown) and
MBP1, PITX1 and SF1. (A) cMyc-MBP1 co-transfected with wild-type or mutant HA-SEDLIN; (B) cMyc-PITX1 co-transfected with wild-type or mutant HA-
SEDLIN; (C) cMyc-SF1 co-transfected with wild-type or mutant HA-SEDLIN; and (D) empty cMyc vector co-transfected with HA-SEDLIN or empty HA vector
co-transfected with cMyc-MBP1, cMyc-PITX1 or cMyc-SF1 constructs. Lysates were incubated with either anti-cMyc polyclonal antibody (M) or anti-HA
polyclonal antibody (H), or without any antibody as a negative control (2) and immunoprecipitated with Protein G-Sepharose beads. Protein complexes
were eluted and resolved on SDS-PAGE followed by Western blot analysis using an antibody to the cMyc epitope for MBP1, PITX1 and SF1, and to the HA
epitope for SEDLIN. Five percent of the lysate (input (I)) that was used for the immunoprecipitation was electrophoresed in parallel with the
immunoprecipitated lysates. Wild-type SEDLIN co-immunoprecipitated MBP1, PITX1 and SF1 and the SEDLIN mutations (Asp47Tyr, Ser73Leu, Phe83Ser,
Val130Asp and Gln131Stop) did not disrupt these interactions (representative data for mutant Ser73Leu SEDLIN shown).
doi:10.1371/journal.pone.0010646.g004

which were seen in the nuclear and cytoplasmic fractions, thereby confirming the immunofluorescence results. Western blots with anti-a-Tubulin and
anti-Lamin A/C antibodies confirmed that the nuclear and cytoplasmic fractions were free from detectable amounts of cytoplasmic and nuclear
fractions, respectively. Untransfected (UT) cells-not transfected with HA-SEDLIN. Wild-type and mutant SEDLINs were found in the nuclear and
cytoplasmic fractions, and the SEDLIN mutants did not lead to an altered subcellular localization of MBP1, PITX1 and SF1. Scale bars, 10 mm.
doi:10.1371/journal.pone.0010646.g003

Effects of SEDLIN Mutations

PLoS ONE | www.plosone.org 5 May 2010 | Volume 5 | Issue 5 | e10646



and these may affect the structural integrity of SEDLIN, as well as the

surfaces that are involved in interactions with these proteins (Figure 2).

For example, mutation of polar Ser73 to Leu73 would result in the

loss of hydrogen bonding with the side chain of Tyr60 and His87, and

with the backbone nitrogen atoms of Thr63 and Gln91 and the

disruption of a hydrophobic groove between a1 and b3 [2]. Similarly,

the Phe83 and Val130 residues are in the hydrophobic region within

the interior of the protein, and mutations of these apolar residues to

polar residues (serine and aspartic acid, respectively) will likely disrupt

the interactions within the hydrophobic core (Figure 2), leading to a

misfolding of SEDLIN that will disrupt protein-protein interactions.

The loss of interactions between the truncated Gln131Stop mutant

protein, which comprises .90% of the full-length 140 amino acid

SEDLIN protein, and MBP1, PITX1 and SF1, also indicate that

protein misfolding rather than a lack of protein is the most likely

explanation for a loss of interaction with the transcription factors. The

Asp47Tyr SEDLIN mutation did not lead to a loss of interaction with

MBP1, PITX1 and SF1. This mutation of the Asp47 residue, which is

exposed on the surface of SEDLIN, is unlikely to cause aberrant

protein folding and this is a likely explanation for a lack of disruption

in the interactions with MBP1, PITX1 and SF1.

Discussion

Our results show that SEDLIN forms homodimers (Figures 6

and 7), is localized to the cytoplasm and nucleus (Figure 3), and

that wild-type SEDLIN co-localizes and interacts with the

transcription factors MBP1, PITX1 and SF1 (Figures 3, 4 and

7). In addition, our results show that SEDT-associated SEDLIN

mutations do not result in abnormalities of subcellular localization

(Figure 3), but those involving residues within the hydrophobic

core (Figure 2) do lead to a loss of interactions with the

transcription factors MBP1, PITX1 and SF1 (Figure 7). The

relevance and further insights provided by these findings may help

to elucidate the role of SEDLIN in cellular functions.

The dimerization of SEDLIN and its nuclear localization points

to additional roles for mammalian SEDLIN, which with its yeast

orthologue Trs20p, have previously been reported to be present as

monomers in the TRAPP complex, where SEDLIN is involved in

tethering vesicles [1]. However, the formation of SEDLIN dimers

(Figures 6 and 7) and their nuclear localization (Figures 3 and 6)

together with the interactions with MBP1, PITX1 and SF1

(Figures 4 and 7) indicate a role in modulating transcription and

the situation may be analogous to that observed with the c-Jun N-

terminal kinase (JNK)-interacting protein 1 (JIP-1). The mono-

meric form of JIP-1 is a cytoplasmic scaffold protein that is

essential for the organization of the JNK signalling pathway, while

the dimeric form is predominantly located in the nucleus, where it

likely mediates transcription control of pathways involved in

prevention of neuronal death [15]. The dimerization of JIP-1

involves post-translation modification and is dependent on

phosphorylation [15], and it is interesting to note that SEDLIN

has predicted phosphorylation sites at Ser119 and Ser124

(NetPhos2.0, MotifScan and ELM databases) (Figure 2A). The

mechanisms that transport SEDLIN into the nucleus remain to be

defined, as SEDLIN does not have a nuclear localization signal

(NLS). It seems likely that SEDLIN may be co-transported with

the interacting proteins that contain NLSs, thereby enabling it to

Figure 5. Schematic model for SEDLIN homodimerization and SEDL expression in common cell lines. (A) Homodimers that have formed
between the transfected mutant cMyc-SEDLIN and the endogenously expressed wild-type SEDLIN could mask the loss of interaction between mutant
SEDLINs and MBP1, PITX1 and SF1 in transfected COS7 cells. Thus, although the mutant SEDLIN may not directly interact with MBP1, PITX1 or SF1, the
endogenously expressed SEDLIN will interact with these transcription factors, and hence the resultant homodimers will overall be seen to interact
with the transcription factors. This proposed model provides an explanation for the observed results in the transfected cells. However, it is important
to note that this situation of homodimers consisting of a wild-type and mutant SEDLIN would not normally occur in males affected with SEDT, as they
are hemizygous and their cells would normally express the mutant SEDLIN; however this situation would occur in SEDT heterozygous carrier females
because the SEDL gene escapes X-chromosome inactivation [13] and hence their cells would express both the wild-type and mutant SEDLINs. (B) RT-
PCR analysis was used to detect the endogenous expression of SEDL in COS7, COS1, HEK293 and HK2 kidney cells, as a reliable SEDLIN antibody is not
available. Detection of Calmodulin expression was used as an internal control for RNA quality and concentration; (+) with RTase, (2) without RTase.
doi:10.1371/journal.pone.0010646.g005

Effects of SEDLIN Mutations
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enter the nucleus [16]. Within the nucleus SEDLIN, given its

interaction with the transcription factors MBP1, PITX1 and SF1,

may act as either a co-repressor or co-activator of gene

transcription. For example, SEDLIN acts as a repressor molecule

by binding to PITX1 and SF1 and inhibiting transactivation [4],

as well as an activator by binding to repressor molecules such as

MBP1 that facilitate gene transcription [3]. The roles of these

interactions between SEDLIN and MBP1, PITX1 and SF1 in

skeletal biology remain to be elucidated. However, in vitro studies

have shown that SEDLIN inhibits MBP1 mediated repression of c-

myc transcription [3], and MBP1 has been reported to be

associated with two different cellular processes during endochon-

dral ossification; cell proliferation in the proliferative and upper

hypertrophic layers, and apoptosis in the lower hypertrophic layer

of the growth plate [17]. Thus, one possibility may be that the

mutant SEDLINs that are associated with SEDT and lead to a loss

of interaction with MBP1 may disrupt the tight control between

proliferation and apoptosis in endochondral ossification. In

addition, SEDLIN has been reported to inhibit the PITX1 and

SF1 mediated transactivation of the b-subunit of the luteinizing

hormone [4], and the effects of the loss of interaction, due to the

SEDLIN mutations, between SEDLIN and PITX1 and SF1 on

the pituitary-gonadal response and the delayed puberty observed

in some boys affected with SEDT [18] remain to be defined.

The Asp47Tyr SEDT-causing mutation, unlike the Ser73Leu,

Phe83Ser, Val130Asp and Gln131Stop mutants, did not result in

loss of interaction with MBP1, PITX1 and SF1 (Figure 7).

However, the Asp47 residue, which is conserved through to yeast,

has an important functional role, as in a yeast complementation

study, the mutant SEDLIN, Asp47Tyr, failed to rescue the lethal

trs20pD phenotype [1,2,19]. The basis of these major consequences

of the Asp47Tyr mutation remains to be defined. However, it is

interesting to note that the Asp47Tyr mutation involves a residue

on the surface of SEDLIN (Figure 2) that could possibly lead to

loss of postulated or known interactions with other proteins, such

as: the soluble N-ethylmaleimide-sensitive factor attachment

(SNARE) proteins [1], which are also involved in the vesicle

transport pathway [1]; or the intracellular chloride channels

CLIC1 and CLIC2 [5], respectively.

In summary, our results show that SEDLIN is a nuclear and

cytoplasmic protein that forms homodimers. Moreover, 3 of the

SEDLIN missense mutations (Ser73Leu, Phe83Ser and Va-

Figure 6. SEDLIN forms homodimers. (A) Western blot analysis, using a monoclonal anti-cMyc antibody, of cell lysates obtained from COS7 cells
transfected with cMyc-SEDLIN or cMyc vector alone, and resolved by continuous non-denaturing PAGE; lanes 1-3, cytoplasmic fractions; lanes 4–6, nuclear
fractions; lane 1 and 4, transfected with cMyc-SEDLIN wild-type (WT) construct; lanes 2 and 5, transfected with cMyc vector alone; and lanes 3 and 6,
untransfected (UT) cells. cMyc-SEDLIN, an 18 kDa protein (Figures 3 and 4) appeared as a 36 kDa protein on non-denaturing PAGE of cytoplasmic and
nuclear fractions obtained from COS7 cells transfected with the cMyc-SEDLIN wild-type (WT) construct, consistent with homodimerization of SEDLIN
protein. (B) Co-immunoprecipitation of wild-type (WT) cMyc-SEDLIN with wild-type or mutant HA-SEDLINs (data for mutant Ser73Leu, shown). Anti-cMyc
antibody co-immunoprecipitated wild-type HA-SEDLIN in the presence of cMyc-SEDLIN (lane M) and anti-HA antibody co-immunoprecipitated cMyc-
SEDLIN in the presence of HA-SEDLIN (lane H); in the absence of the anti-cMyc or anti-HA antibodies SEDLIN was not immunoprecipitated (lane -). Five
percent of the lysate (input (I)) that was used for the immunoprecipitation was electrophoresed in parallel with immunoprecipitated lysates. Similar results
were observed for the other SEDLIN mutants (Asp47Tyr, Phe83Ser, Val130Asp and Gln131Stop) (data not shown).
doi:10.1371/journal.pone.0010646.g006
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l130Asp) and 1 nonsense mutation (Gln131Stop) located within

the hydrophobic core and associated with SEDT in patients lead

to a loss of interactions with the transcription factors MBP1,

PITX1 and SF1.

Materials and Methods

Generation of SEDLIN, MBP1, PITX1 and SF1 constructs
Total RNA was isolated from HEK293 cells using Trizol

(Invitrogen Corporation) and 2 mg was utilised to generate first

strand cDNAs by reverse transcriptase (RT)-PCR using random

hexamers and 200 U/ml Avian Myeloblastosis virus (AMV)

RTase (Transgenomic Inc.) at 42uC for 45 min. The coding

regions of SEDL, MBP1 and PITX1 were amplified using gene-

specific primers (sequences available on request). These RT-PCR

products were cloned in-frame into the expression vector pGEMT

(Promega). The pGEMT-wild-type SEDLIN construct was used to

generate mutant SEDLIN constructs that harboured the four

missense mutations (Asp47Tyr, Ser73Leu, Phe83Ser and Va-

l130Asp) and the C-terminal nonsense mutation Gln131Stop

(Figure 1) [20–22] using site-directed mutagenesis (Quik-

ChangeHXL, Stratagene), as previously described [23]. The SF1

cDNA in the pCIneo vector [24] was used to subclone SF1 into

pGEMT. The wild-type and mutant SEDLINs, MBP1, PITX1

and SF1 were digested from the pGEMT vector, subcloned in-

frame into pCMV-cMyc, pCMV-HA, pGBKT7 and pGADT7

vectors (Clontech) and DNA sequences verified using methods

previously described [23].

Figure 7. Interactions between SEDLIN, MBP1, PITX1 and SF1 using the yeast two-hybrid assay. Yeast cells, which do not have
endogenous expression of SEDLIN, were used to investigate the interactions of wild-type or mutant SEDLIN (Asp47Tyr, Ser73Leu, Phe83Ser,
Val130Asp and Gln131Stop) with wild-type SEDLIN, MBP1, PITX1 or SF1. The yeast reporter strain AH109 was used, and p53 and the SV40 large T
antigen, which are known to interact [27], were used as a positive control. The yeasts were transformed with the vectors containing: (A) wild-type
SEDLIN in pGADT7-AD (AD-WT) and either wild-type or mutant SEDLINs in pGBKT7-BD (BD-WT, BD-Asp47Tyr, BD-Ser73Leu, BD-Phe83Ser, BD-
Val130Asp or BD-Gln131Stop). (B) wild-type and mutant AD-SEDLINs or BD-SEDLIN and each of the transcription factors BD-MBP1, AD-PITX1, AD-SF1.
Yeast growth was monitored for 48 hrs after spotting and incubation at 30uC using either double drop out, DDO (Leu-Trp-), media as a control or
quaternary drop out, QDO (Leu-Trp-Ade-His-), media in which the growth is dependent on the physical interaction between BD-SEDLIN and AD-
transcription factors, or AD-SEDLIN and the BD-transcription factor. The wild-type SEDLIN interacts with wild-type SEDLIN and all of the mutant
SEDLIN proteins, consistent with the proposed model for the formation of homodimers. However, the MBP1, PITX1 and SF1 fusion proteins, which
interact with the wild-type SEDLIN, interacted only with the mutant Asp47Tyr SEDLIN, but not with the mutant Ser73Leu, Phe83Ser, Val130Asp and
Gln131Stop SEDLINs.
doi:10.1371/journal.pone.0010646.g007
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Subcellular localization studies
COS7 cells, were transfected using Lipofectamine Plus

(Invitrogen Corporation) with: full-length SEDLIN wild-type or

mutant constructs prepared in pCMV-HA (HA-SEDLIN); and

MBP1, PITX1 and SF1 prepared in pCMV-cMyc (cMyc-MBP1,

cMyc-PITX1 and cMyc-SF1, respectively) as previously described

[23]. Twenty hours post-transfection, cells were stained using anti-

HA (Covance Inc.) and anti-cMyc (Santa Cruz Biotechnology,

Inc.) primary antibodies and AlexaFluorH594 donkey anti-mouse

and AlexaFluorH488 donkey anti-rabbit (Molecular Probes)

secondary antibodies and visualised using a laser scanning confocal

microscope (Confocal System LSM 510 META, Carl Zeiss), as

previously described [25]. For Western blot analysis, cells were

lysed and fractionated into nuclear and cytoplasmic extracts, and

biotin-conjugated anti-HA (Vector Laboratories, Inc.) and anti-

cMyc (Santa Cruz Biotechnology, Inc.) antibodies were used to

detect the presence of SEDLIN, MBP1, PITX1 and SF1 proteins

in the cell fractions as previously described [26]. Antibodies

against Lamin A/C and a-Tubulin (Santa Cruz Biotechnology,

Inc.) were used to assess the quality of the subcellular fraction

preparations. Nuclear and cytoplasmic fractions (40 mg of total

protein) were also analysed by 12% continuous non-denaturing

PAGE in 16 Tris/Glycine buffer, transferred onto nitrocellulose

membrane and hybridised with anti-cMyc antibody (Santa Cruz

Biotechnology, Inc.). Secondary antibodies, horseradish peroxi-

dase-conjugated donkey anti-goat (Santa Cruz Biotechnology,

Inc.) and goat anti-mouse (Bio-Rad), were used and detected using

an Enhanced Chemiluminescence (ECL) Kit (GE Healthcare).

Co-immunoprecipitation
COS7 cells were transiently co-transfected with full-length wild-

type or mutant HA-SEDLINs and cMyc-MBP1, cMyc-PITX1,

cMyc-SF1, cMyc-SEDLIN or cMyc vector alone using Lipofecta-

mine Plus (Invitrogen Corporation). After 48 hrs, cells were lysed

in RIPA buffer (150 mM NaCl, 50 mM Tris-HCl pH 7.5, 1%

NP-40, 0.1% SDS, 0.5% deoxycholate, 1 mM phenylmethylsul-

fonyl fluoride) supplemented with protease inhibitors (Complete

Mini, Roche), and briefly sonicated. Co-immunoprecipitation was

performed using anti-HA (1 mg, Abcam) or anti-cMyc antibodies

(1 mg, Santa Cruz Biotechnology, Inc.). Protein complexes were

captured with Protein G-Sepharose beads (GE Healthcare), eluted

with Laemmli sample buffer (Bio-Rad) containing 5% b-

mercaptoethanol and separated on a 15% discontinuous SDS-

PAGE, followed by immunoblotting with biotin-conjugated anti-

HA antibody (Vector Laboratories, Inc.) for the detection of HA-

SEDLIN, and with anti-cMyc antibody (Santa Cruz Biotechnol-

ogy, Inc.) for the detection of cMyc-MBP1, cMyc-PITX1, cMyc-

SF1, or cMyc-SEDLIN proteins. Horseradish peroxidase-conju-

gated donkey anti-goat (Santa Cruz Biotechnology, Inc.) and goat

anti-mouse (Bio-Rad), were used and detected using an Enhanced

Chemiluminescence (ECL) Kit (GE Healthcare).

Yeast two-hybrid assays
Yeast two-hybrid assays were performed as described previously

[23]. Briefly, the coding regions of SEDLIN, MBP1, PITX1 and

SF1 were cloned in-frame into the Gal4 activation domain

encoding plasmid, pGADT7 (AD-SEDLIN, AD-MBP1, AD-

PITX1 and AD-SF1), and into the Gal4 DNA-binding domain

encoding plasmid, pGBKT7 (BD-SEDLIN, BD-MBP1, BD-

PITX1 and BD-SF1). Mutant SEDLINs were also cloned in-

frame into pGADT7 and pGBKT7. AD-MBP1, BD-PITX1 and

BD-SF1 showed self-activation, whereas BD-MBP1, AD-PITX1

and AD-SF1 constructs did not self-activate, and thus these

constructs were used for the study. The pGBKT7-p53 and

pGADT7-Large T antigen plasmids were used as controls

(Clontech) [27]. Competent AH109 yeasts cells were transformed

sequentially with the appropriate wild-type and mutant SEDLIN

plasmid constructs and the MBP1, PITX1 and SF1 plasmid

constructs, using the LiAc/single-stranded DNA/polyethylene

glycol procedure, as described previously [23]. Expression of

SEDLIN, MBP1, PITX1 and SF1 fusion proteins were confirmed

in protein extracts prepared from each clone, by SDS-PAGE and

Western blot analysis, using anti-HA and anti-cMyc as described

above.

Computer modelling of SEDLIN structure
The three-dimensional structure of the mouse Sedlin has been

reported [2], and because the mouse and human SEDLINs are

97% identical, we modelled the position of the human SEDLIN

mutations on this framework. The Sedlin three-dimensional

structure is archived in the Protein Data Bank (PDB) with the

accession number 1H3Q [PDB] (available at www.rcsb.org/pdb/

cgi/explore.cgi?pdbId = 1H3Q) and was visualized using the

MacPyMOL programme (DeLano Scientific LLC).
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