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Abstract
Anomaly detection methods can be very useful in identifying unusual or interesting patterns in data.
A recently proposed conditional anomaly detection framework extends anomaly detection to the
problem of identifying anomalous patterns on a subset of attributes in the data. The anomaly always
depends (is conditioned) on the value of remaining attributes. The work presented in this paper
focuses on instance–based methods for detecting conditional anomalies. The methods depend heavily
on the distance metric that lets us identify examples in the dataset that are most critical for detecting
the anomaly. To optimize the performance of the anomaly detection methods we explore and study
metric learning methods. We evaluate the quality of our methods on the Pneumonia PORT dataset
by detecting unusual admission decisions for patients with the community–acquired pneumonia. The
results of our metric learning methods show an improved detection performance over standard
distance metrics, which is very promising for building automated anomaly detection systems for
variety of intelligent monitoring applications.

Introduction
Anomaly detection methods can be very useful in identifying interesting or concerning events.
Typical anomaly detection attempts to identify unusual data instances that deviate from the
majority of examples in the dataset. Such instances indicate anomalous (out of ordinary)
circumstances, for example, a network attack (Eskin 2000) or a disease outbreak (Wong et
al. 2003). In this work, we study conditional anomaly detection framework that extends
standard anomaly detection by identifying partial patterns in data instances that are anomalous
with respect to the remaining data features. Such a framework has been successfully applied
to identify unusual patient–management decisions made for patients suffering from different
conditions (Hauskrecht et al. 2007).

Data attributes (features) in the conditional anomaly detection are divided into two disjoint
groups: context (or condition) attributes C and target attributes A. The conditional anomaly
methods then attempt to identify anomalies in target attributes A with respect to context C. The
conditional aspect allows us to identify patterns that are typical in one context but anomalous
in the other. To illustrate the potential of the method assume two patients with different
conditions are given the same drug. In one of these conditions the administration of the drug
is normal, but for the other one it is unusual. The conditional anomaly detection methods with
target variables corresponding to the treatment should be able to identify the anomaly in the
treatment.

The conditional anomaly detection method evaluates and identifies anomalies one data
example at the time. To make an anomaly call for a data instance x, (Hauskrecht et al. 2007)
proposed a probabilistic predictive model M that aims to capture stochastic dependencies
among the target and context attributes. The predictive model defines a conditional probability
distribution p(A|C) of target attributes given the values of context variables. Given the
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predictive model, the anomaly call for a data instance x is made if the probability of the target
attributes observed in x is small.

A predictive probabilistic model used for detection purposes can be built in different ways. In
this paper, we focus on instance–based approaches. The instance–based methods do not try to
learn a universal predictive model for all possible instances at the same time, instead the model
is optimized for every data instance x individually. The instance–specific model Mx may
provide a better option if the predictive model is less complex and the dataset is small.

Instance–specific models often rely on a distance metric that aims to pick examples most
relevant for the prediction of x. However, the question of what is the best distance metric to
reflect the relevancy of the example to the prediction is the most challenging part of the task.
Standard metrics such as Euclidean or Mahalanobis metrics are not the best for the anomaly
detection task since they may be biased by feature duplicates or features that are irrelevant for
predicting target attributes. Thus, instead of choosing one of the standard distance metrics we
investigate and test metric–learning methods that let us adapt predictive models to specifics of
the currently evaluated example x.

We explore two metric–learning methods that were originally used for building non–parametric
classification models. The first method is NCA (Goldberger et al. 2004). The method adjusts
the parameters of the generalized distance metric so that the accuracy of the associated nearest
neighbor classifier is optimized. The second method, RCA (Bar-Hillel et al. 2005), optimizes
mutual information between the distribution in the original and the transformed space with
restriction that distances between same class cases do not exceed a fixed threshold.

To evaluate the quality of metric learning methods in anomaly detection we apply them to the
problem of identification of unusual patient–management decisions, more specifically, to the
problem of detection of unusual hospitalization patterns for patients with the community
acquired pneumonia. We show that on this problem metric learning approaches outperform
standard distance metrics.

Methodology
Conditional anomaly detection

In anomaly detection, we are interested in detecting an unusual data pattern the occurrence of
which deviates from patterns seen for other examples. In the conditional anomaly, a partial
data pattern is evaluated in context of other data variables and their values. Briefly, the data
attributes (features) are divided into two disjoint groups: context (or condition) attributes C
and the target attributes A. The objective of conditional anomaly detection methods is to
identify anomalies in target attributes A with respect to context attributes C.

Let E = {x1, x2, …, xn} be a set of examples in the dataset and let x be an example we want to
analyze and determine if it is conditionally anomalous with respect to examples in E. The
context of the example x is defined by the projection of x to context attributes C, which we
denote by C(x). Similarly, A(x) denotes the projection of x to target attributes.

Our goal is to identify the anomaly in x with respect to examples in the dataset E. The examples
and their relation to x can be captured indirectly by an auxiliary probabilistic predictive model
M. This approach was proposed recently by (Hauskrecht et al. 2007). The predictive model
M defines a conditional probability distribution of target variables given the value of context
variables: p(A|C) and it is induced (learned) from examples in E. Given M we say the case x
is anomalous in target attributes A, if the probability p(A(x)|C(x)) for the model is small and
falls below some threshold. In summary, stochastic relations in between the context and target
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attributes observed in examples E are incorporated into a probabilistic model M, which is in
turn applied to example x. The anomaly is detected by evaluating the probability of target
variable values for the x given the values of its context variables C(x) in model M.

To build a working anomaly detection algorithm, we need to provide methods for building a
probabilistic model M from the dataset and methods for detecting the anomaly using the model.

Building a probabilistic model
Our conditional anomaly framework builds upon the existence of an underlying probabilistic
model M that describes stochastic relations among context and target data attributes. We
consider two types of models to achieve this task: (1) parametric and (2) non–parametric
models.

Parametric predictive models—In the parametric approach we assume a predictive model
p(A|C) is defined using a small set of parameters Θ that reflect accurately the stochastic relation
among the context and target attributes expressed in data E. Examples of parametric models
are: a Bayesian belief network (Pearl 1988), a Naive Bayes model (Domingos & Pazzani
1997), Linear discriminant analysis (Hastie, Tibshirani, & Friedman 2001)or a logistic
regression model (Hastie, Tibshirani, & Friedman 2001). In this work we focus on the Naive
Bayes model that is used frequently in classification tasks. We adopt the Bayesian framework
to learn the parameters of the model from data E and to support probabilistic inferences. In
such a case the parameters M of the model are treated as random variables and are described
in terms of a density function p(θM). The probability of an event is obtained by averaging over
all possible parameter settings of the model M.

To incorporate the effect of examples E, p(θM) corresponds to the posterior p(θM |E). The
posterior is obtained via Bayes theorem:

where p(θM) defines the prior for parameters θM. To simplify the calculations we assume
(Heckerman 1995) (1) parameter independence and (2) conjugate priors. In such a case, the
posterior follows the same distribution as the prior and updating reduces to updates of sufficient
statistics. Similarly, many probabilistic calculations can be performed in the closed form.

Instance–specific models—In general, a predictive probabilistic model used for anomaly
detection purposes can be of different complexity. However, if the dataset used to learn the
model is relatively small, a more complex model may become hard to learn reliably. In such
a case a simpler parametric model of P(A|C) with a smaller number of parameters may be
preferred. Unfortunately, a simpler model may sacrifice some flexibility and its predictions
may become biased towards the population of examples that occurs with a higher prior
probability. To make accurate predictions for any instance we use instance–specific predictive
methods and models (Visweswaran & Cooper 2005; Aha, Kibler, & Albert 1991).

Briefly, instance–based methods do not try to learn a universal predictive model for all possible
instances, instead the model is optimized for every data instance x individually. To reflect this,
we denote the predictive model for x as Mx. The benefit of instance–based parametric models
is that they can be fit more accurately to any data instance; the limitation is that the models
must be trained only on the data that are relevant for x. Choosing the examples that are most
relevant for training the instance–specific model is the bottleneck of the method. We discuss
methods to achieve this later on.
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Non–parametric predictive models—Non–parametric predictive models do not assume
any compact parametrization of P(A|C). Instead, the model is defined directly on the dataset
of examples E. A classic example of a non–parametric model is the k Nearest Neighbor (k–
NN) classifier in which the predicted class of the instance is the majority vote of the classes of
its k nearest neighbors.

Non–parametric models are instance specific by definition. For example, the k–NN classifier
for instance x executes by finding k examples closest to x first and making the prediction
afterwards. The problem of finding the k closest neighbors is the bottleneck of the method.
Non–parametric models depend on the choice of examples closest to x, and the quality of these
choices influences the quality of the model.

The anomaly detection approach applied in this work builds upon the model Mx which defines
the probability distribution P(A|C(x)) for x. But how to define a non-parametric predictive
model Mx? The key here is to define the probability with which a neighbor example predicts
the values of target attributes A for x. Intuitively, closer neighbors should contribute more and
hence their prediction should come with a higher probability. To reflect this intuition
(Goldberger et al. 2004) define the probability that a data example x′ predicts x using the
softmax model (Mc-cullagh & Nelder 1989). In this model, the probability with which x′

contributes to the prediction of x is proportional to:  where m is a distance
metric reflecting the similarity of the samples. The softmax model normalizes this quantities
so that their sum is 1.

The above definition of a non–parametric probabilistic predictive model expects a distance
metric defining the similarity among examples. We return to the problem of distance metrics
in the next section.

Anomaly detection
Multiple approaches can be used to make anomaly calls based on the probabilistic metric.
Typically, they rely on a variety of thresholds. These include: absolute, relative or the k standard
deviation thresholds. In our work, we build upon the absolute threshold test. In the absolute
threshold test, the example x is anomalous if p(A(x)|C(x), Mx) falls below some fixed
probability threshold pε. Intuitively, if the probability of the target attributes A(x) for x is low
with respect to the model Mx and its other attributes C(x), then the value of the target attribute
is anomalous. Note that the absolute threshold test relies only on the model Mx and there is no
direct comparison of predictive statistics for x and examples in E. However, if instance–based
methods are used the most important examples in E are used to construct the model Mx and
hence their effect is reflected in the statistic.

Defining the similarity metric
Parametric instance–based models are sensitive of examples used to train them. Similarly, the
instance–based non–parametric models are sensitive to examples incorporated into the model.
The key question is what examples from E should be used for training or defining the instance–
specific predictive model Mx.

Exact match
Clearly, the best examples are the ones that exactly match the attributes C(x), of the target case
x. However, it is very likely that in real–world databases none or only few past cases match
the target case exactly so there is no or very weak population support to draw any statistically
sound anomaly conclusion.
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Similarity–based match
One way to address the problem of insufficient population available through the exact match
is to define a distance metric on the space of attributes C(x) that let us select examples closest
to the target example x. The distance metric defines the proximity of any two cases in the
dataset, and the k closest matches to the target case define the best population of size k. Different
distance metrics are possible. An example is the generalized distance metric r2 defined:

(1)

where Γ−1 is a matrix that weights attributes of patient cases proportionally to their importance.
Different weights lead to a different distance metric. For example, if Γ is the identity matrix
I, the equation defines the Euclidean distance of xi relative to xj. The Mahalanobis distance
(Mahalanobis 1936) is obtained from 1 by choosing Γ to be the population covariance matrix
Σ which lets us incorporate the dependencies among the attributes.

The Euclidean and Mahalanobis metrics are standard off–shelf distance metrics often applied
in many learning tasks. However they come with many deficiencies. The Euclidean metric
ignores feature correlates which leads to ‘double–counting’ when defining the distance in
between the points. The Mahalanobis distance resolves this problem by reweighting the
attributes according to their covariances. Nevertherless, the major deficiency of both
Mahalanobis and Euclidean metrics is that they may not properly determine the relevance of
an attribute for predicting the target attributes.

The relevance of context attributes for anomaly detection is determined by their influence on
target attributes A. Intuitively, a context attribute is relevant for the predictive model if is able
to predict changes in values of target attributes A. To incorporate the relevance aspect of the
problem into the metric we adapt (learn) the parameters of the generalized distance metric with
the help of examples in the dataset E.

Metric–learning—The problem of distance metric learning in context of classification tasks
has been studied by (Goldberger et al. 2004) and (Bar-Hillel et al. 2005). We adapt these metric
learning methods to support probabilistic anomaly detection. In the following we briefly
summarize the two methods.

(Goldberger et al. 2004) explores the learning of the metric in context of the nearest neighbor
classification. They learn a generalized metric:

by directly learning its corresponding linear transformation A. They introduce a new
optimization criterion (NCA), that is, as argued by the authors, more suitable for the nearest–
neighbor classification purposes. The criterion is based on a new, probabilistic version of the
cost function for the leave–one–out classification error in the k–NN framework. Each point i
can now select any other point j with some probability pij defined as softmax function over
distances in the transformed space:
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A linear transformation A is then sought to maximize the expected number of correctly
classified cases (with k–NN):

where Ci is the set of cases that belong to the same class as i. Intuitively, the criterion aims to
learn a generalized distance metric by shrinking the distance between similar points to zero,
and expanding the distance between dissimilar points to infinity.

The algorithm and the metric it generates was shown to outperform other metrics for a number
of learning problems. The method climbs the gradient of g(A), which is (xij being xi − xj):

(Bar-Hillel et al. 2005) and (Shental et al. 2002) define a different optimization criterion based
on the mutual information. The advantage of their method (relevant component analysis –
RCA) is the existence of the closed form (efficient) solution. Briefly, under the mutual
information criterion, the class information is incorporated and optimized by computing the
averages of class covariance matrices. The resulting matrix is obtained by

(2)

where Σ̂i sample covariance matrix of class i and A is the resulting transformation for the data.
The disadvantage of the method is that it assumes Gaussian distribution for the classes.

Experimental evaluation
We study our metric–learning methods and compare them to alternative methods on the
problem of identification of anomalous patient–management decisions for patients with
community acquired pneumonia. The data used in the experiment come from the Pneumonia
PORT dataset (Kapoor 1996; Fine et al. 1997). The Pneumonia PORT dataset is based on the
study conducted from October 1991 to March 1994 on 2287 patients with community–acquired
pneumonia from three geographical locations at five medical institutions. The original PORT
data were analyzed by (Fine et al. 1997), who derived a prediction rule with 30–day hospital
mortality rate as the outcome. The authors developed a logistic regression model, which helped
to identify 20 attributes that contribute the most to the mortality rate of pneumonia. To explore
the anomaly detection methods, we have experimented with a simpler version of the PORT
dataset that records, for every patient, only the attributes identified by Fine’s study (Fine et
al. 1997). The attributes are summarized in Figure 1. All attributes are binary with true/false
(positive/negative) values.
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Our objective was to detect unusual admission decisions (treat the patient at home versus in
the hospital) which are captured by the variable ’Hospitalization’.

Study design
To study the performance of our anomaly detection methods, we used 100 patient cases (out
of a total of 2287 of cases). The cases picked for the study consisted of 21 cases that were found
anomalous according to a simple Naive Bayes detector (with detection threshold 0.05) that was
trained on all cases in the database. The remaining 79 cases were selected randomly from the
rest of the database. Each of the 100 cases was then evaluated independently by a panel of three
physicians. The physicians were asked whether they agree with the hospitalization decision or
not. Using panel’s answers, the admission decision was labeled as anomalous when (1) at least
two physicians disagreed with the actual admission decision that was taken for a given patient
case or (2) all three indicated they were unsure (gray area) about the appropriateness of the
management decision. Out of 100 cases, the panel judged 23 as anomalous hospitalization
decisions; 77 patient cases were labeled as not being anomalous. The assessment of 100 cases
by the panel represented the correct assessment of unusual hospitalization decisions.

Experiments
All the experiments followed the leave–one–out scheme. That is, for each example in the
dataset of 100 patient cases evaluated by the panel, we first learn the metric. Next, we identified
the cases in E most similar to it with respect to that metric. The cases chosen were either the
closest 40 cases, or all the other cases (2286) in the dataset. We then learned the NB model
and calculated the posterior probability of the decision. Alternatively, we calculated the
probability of the decision using the softmax model and the learned metric.

The target example was declared anomalous if its posterior probability value fell below the
detection threshold. The anomaly calls made by our algorithms were compared to the
assessment of the panel and resulting statistics (sensitivity, specificity) were calculated. To
gain insight on the overall performance of each method we varied its detection threshold and
calculated corresponding receiver operating characteristic (ROC). For the hospital deployment
no all thresholds are acceptable. Consequently, for the evaluation we selected only that part of
the ROC curve, that corresponds to specificity equal or greater than 95% (see Figure 2). The
95% specificity limit means that at most 1 in 20 normal cases analyzed may yield a false alarm.

Results and Discussion
Table 1 shows the ROC statistics for the feasible detection range. For the softmax model, the
NCA metric outperformed all other methods, whether it was using all cases (patients) or just
the closest 40. We ascribe it to the fact, that NCA uses class information to weigh the features.
The only other method that used class information was RCA. However, RCA uses class
information only to consider (and average) covariance matrices for each class separately.
Therefore, it still treats all features within the class the same way as the Mahalanobis metric,
assuming the same relevance of all features. Comparing the global (all other patients) and local
(closest 40 patients), local did always better: Close patients let us fit better the predictive model
to the target patient, while taking all samples into the consideration biases the population. The
local methods were also better for the Naive Bayes model. They were also more robust with
respect to the metric. The intuition behind this result is that when using NB model, all cases
are treated the same way, the metric was only used to select them. On the other hand, in softmax
model, the distance from the case in hand does matter and the method treats closer patients
with a higher weight. Accordingly, it is more sensitive to the metric changes.
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Figure 2 shows the ROC curve for the best method in Table 1. The area of interest is bounded
by the values [0, 0.13], [0.03, 0.30], and [0.05, 0.33]. The point [0.05 0.33] corresponds to the
performance of 6.66 correct alarms in 10 alarms for 100 evaluated patients. However, we note
that the prior for the evaluation dataset was biased towards anomalies. A rough correction using
only anomalies that were randomly selected from the full database yields approximately 1
correct in 4 alarms, which is still very encouraging performance.

Conclusions
Summing up, our conditional anomaly detection is a very promising methodology for detecting
unusual events such as network attacks or medical errors. We have demonstrated its potential
by exploring and analyzing patient–management decisions for a dataset of patients suffering
from pneumonia. The advantage of the anomaly detection approach over knowledge–based
error detection approaches is that the method is evidence–based, and hence requires no or
minimum input from the domain expert.

Despite initial encouraging results, our current approach can be further refined and extended.
For example, instance–based (local) models tested in this paper always used a fixed number
of 40 closest patients (or more, if the distances were the same). However, the patient’s
neighborhood and its size depend on the patient and data available in the database. We plan to
address the problem by developing methods that are able to automatically identify and select
only patients that are close enough for the case in hand.
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Figure 1.
Attributes from the Pneumonia PORT dataset used in the anomaly detection study.
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Figure 2.
An example of the ROC curve for the method that performed the best on the pneumonia dataset.
The statistic of interest is the leftmost region of the ROC curve and its area.
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Table 1

Area under the ROC curve in the feasible range of 95%–100% specificity. Please note that the baseline value for
the random choice is 2.5%.

model selection

non–parametric global #cases area

NCA softmax 2286 18.0 %

Mahal softmax 2286 12.2 %

RCA softmax 2286 11.6 %

Euclidean softmax 2286 8.0 %

non–parametric local #cases area

NCA softmax 40 20.2 %

Mahalanobis softmax 40 15.0 %

RCA softmax 40 12.8 %

Euclidean softmax 40 8.0 %

parametric global #cases area

any NB 2286 11.6 %

parametric local #cases area

NCA NB 40 16.8 %

Mahalanobis NB 40 17.6 %

RCA NB 40 17.6 %

Euclidean NB 40 16.4 %
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