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Summary
A new computational technique, the matched interface and boundary (MIB) method, is presented to
model the photon propagation in biological tissue for the optical molecular imaging. Optical
properties have significant differences in different organs of small animals, resulting in discontinuous
coefficients in the diffusion equation model. Complex organ shape of small animal induces
singularities of the geometric model as well. The MIB method is designed as a dimension splitting
approach to decompose a multidimensional interface problem into one-dimensional ones. The
methodology simplifies the topological relation near an interface and is able to handle discontinuous
coefficients and complex interfaces with geometric singularities. In the present MIB method, both
the interface jump condition and the photon flux jump conditions are rigorously enforced at the
interface location by using only the lowest-order jump conditions. This solution near the interface is
smoothly extended across the interface so that central finite difference schemes can be employed
without the loss of accuracy. A wide range of numerical experiments are carried out to validate the
proposed MIB method. The second-order convergence is maintained in all benchmark problems. The
fourth-order convergence is also demonstrated for some three-dimensional problems. The robustness
of the proposed method over the variable strength of the linear term of the diffusion equation is also
examined. The performance of the present approach is compared with that of the standard finite
element method. The numerical study indicates that the proposed method is a potentially efficient
and robust approach for the optical molecular imaging.
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1. Introduction
Being able to study biological features and processes in vivo at the cellular and genetic levels,
molecular imaging has embraced as an essential tool for molecular-based drug research and
development. It can non-invasively differentiate and quantify normal and diseased conditions
and identify variations in disease expression and therapeutic responsiveness for better clinical
decision-making. The imaging of gene transcription, signal transduction, and biological
pathways allows early diagnosis and individualized therapies, leading to the development of
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the molecular medicine [1–3]. Molecular imaging has for years fueled innovations and
discoveries in biology and medicine. Today, researchers are applying its strengths and
wrestling with its challenges in an effort to shed light on molecular secrets deep within living
tissues and cells. Among molecular imaging modalities, optical imaging, fluorescent and
bioluminescent imaging techniques, in particular, have attracted a remarkable attention for
their unique advantages, especially performance and cost-effectiveness. Driving progresses in
optical molecular imaging are the development of biocompatible fluorescent and
bioluminescent markers, advances in imaging technology, such as temperature-modulated
bioluminescent tomography [4], and refinements in the mathematical models. These advances
are helping researchers secure the future of optical molecular imaging: improvement of light
penetration and detection, image reconstruction and resolution, and disease localization and
quantification.

Among various optical molecular imaging techniques [3,5–8], bioluminescence tomography
(BLT) invented by Wang and coworkers in 2002 is an emerging and promising bioluminescent
imaging approach [9–12]. The introduction of BLT relative to planar bioluminescent imaging
can be, in a substantial sense, compared with the development of X-ray CT based on
radiography. Without BLT, bioluminescent imaging is primarily qualitative. However, with
BLT, quantitative and localized analysis on a bioluminescent source distribution becomes
feasible in a mouse model. BLT is of paramount importance because of the availability of
genetically homogeneous inbred strains of mice and the creation of various transgenic strains
such as those carrying activated and inducible forms of oncogenes or knockouts of tumor
suppressive genes. It is, therefore, part of our endeavor to develop efficient computational
algorithms for the reconstruction of BLT. Theoretically, BLT is an inverse source problem
involving light propagation through heterogeneous media. Because optical properties are
significantly different in different organs of small animal, the physical process is often modeled
by a diffusion equation with discontinuous coefficients and singular sources.

The numerical solution of the diffusion equation with discontinuous coefficients and singular
sources is a challenging topic in applied mathematics and scientific computing that has attracted
much attention in the past decade [13–36]. The discontinuous coefficients induced by
heterogeneous media and the possible singular sources lead to the reduction of regularity in
the solution. Consequently, ordinary numerical algorithms, such as finite difference methods,
finite element methods, and spectral methods, cannot maintain the designed order of
convergence and even diverge in the worst scenario. Mathematical treatments of discontinuous
coefficients usually involve local modifications of numerical schemes. Therefore, global
spectral methods are usually not convenient except for special cases. This class of interface
problems have a wide variety of applications to fluid dynamics [37–41], electrodynamics
[42–44], material science [20,45], bioengineering [46], and biomolecular systems [47–49].
Pioneer work in this field was due to Peskin in 1977 [50], who proposed immersed boundary
method (IBM) [50–54]. Apart from Peskin's IBM [50–54], a number of other elegant methods
have been developed in the literature. Among them, the ghost fluid method proposed by Osher
and coworkers [55,56] is a relatively simple and easy to use sharp interface approach and is
often coupled with the level set method. Finite element formulations [46,57–59] are more
suitable for weak solutions. Cai and Deng proposed an upwinding embedded boundary method
[60] for dielectric media. Oevermann and Klein proposed a second-order finite-volume-based
interface method [61], which uses bilinear ansatz functions on Cartesian grids and compact
stencils. A relevant, while quite distinct, approach is the integral equation method for
embedding complex geometry [62–64]. A major advance in the field was made by LeVeque
and Li [65], who introduced a remarkable second-order sharp interface scheme, the immersed
interface method (IIM). Their method has been improved over the past decade [32,66–69] and
widely applied to practical problems.
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Owing to the low regularity in the solution and complex geometry, it is very difficult to
construct high-order numerical schemes that are particularly desirable for problems involving
both heterogeneous media and short waves where conventional local adaptive refinement
approaches do not work well. Typical examples are turbulence, combustion, acoustic
fluctuation, and high-frequency wave propagation in inhomogeneous media. Cartesian grids
are often preferred in these situations because of the bypass of the mesh generation, better
temporal stability, and the availability of fast algebraic solvers. Technically, it is possible to
construct high-order numerical schemes by properly enforcing interface continuity conditions
in the solution and its derivatives [18,63,70–72]. In particular, a systematic higher-order
method, the matched interface and boundary (MIB) method, was proposed for treating
electromagnetic wave propagation and scattering in dielectric media [70]. One unique feature
of this approach is that it does not use high-order jump conditions, which require large stencils
and are numerically unstable in higher-order schemes. Another feature of the MIB method is
that it is a dimension splitting approach, i.e. it splits a multidimensional problem into one-
dimensional (1D) ones. It was found that by repeatedly using only the lowest-order jump
conditions, an arbitrarily higher-order interface scheme can be constructed in principle [70].
This approach was tested in the fourth-order beam equation with free boundary conditions
[73]. Recently, the earlier MIB method has been generalized for solving two-dimensional (2D)
elliptic equations with curved interfaces [71,72]. Simple Cartesian grids, standard finite
difference schemes, and lowest-order physical jump conditions are utilized in the MIB method.
An important feature of the MIB method is that the physical jump conditions are enforced at
each intersecting point of the interface and the mesh lines. In this sense, the MIB method is a
sub-grid scheme that is able to overcome the staircase phenomena of the finite difference
approximation for complex geometry and delivers arbitrarily higher-order accuracy. Three-
dimensional (3D) second-order [49] and 3D high-order MIB schemes [74] have been
constructed for complex interfaces.

For practical applications, it is important to deal with elliptic equations with non-smooth
interfaces, which are ubiquitous in scientific and engineering, such as wave-guide analysis
[75], electromagnetic wave scattering and propagation [76–78], friction modeling [79],
plasma-surface interaction [80], and turbulent-flow [81]. In solving differential equations, non-
smooth interfaces are referred to as geometric singularities. For a simple two-domain problem,
geometric singularities are due to sharp-edged, sharp-wedged, and sharp-tipped interfaces.
However, for complex multidomain geometries, the close contact of two smooth domains leads
to geometric singularities, which are referred to as contact geometric singularities. This
typically happens in mouse models where different organs contact each other. Technically, it
is very challenging to construct efficient numerical methods for this class of problems due to
the lack of regularity not only in the solution but also in the interface. Commonly used interface
methods might not maintain the designed accuracy for this class of problems. Local adaptive
approaches [75,78] exhibit reduced convergence rates and require dramatic mesh refinements
in the vicinity of geometric singularities [82]. These approaches fail to work if the solution is
highly oscillatory in case of pollution effect [83]. A remarkable result, due to Hou and Liu
[19], was only of 0.8th-order convergence obtained with a 2D finite element method
formulation for elliptic interface problems with geometric singularities. Recently, we have
developed a second-order MIB treatment of sharp-edged and sharp-tipped interfaces in 2D
[84] and 3D [74] geometries. The proposed MIB algorithm, particularly with its treatment of
singularities, provides the crucial technical foundation to a new generation of Poisson-
Boltzmann equation solvers for the electrostatic analysis of biomolecules [48].

The objective of the present work is to explore the utility and usefulness of the MIB method
for the diffusion approximation model in optical molecular imaging. In such a technique, the
anatomical structures of a small animal and the associated optical properties are normally
obtained using a CT/MRI scanner or some alternative methods. Segmentation techniques are
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used to separate the anatomy of the animal into its major components, such as heart, lungs,
liver, stomach, bones, etc. Optical parameters (absorption, reduced scattering), i.e. coefficients
of the underpinning optical diffusion equation, are determined by using diffuse reflectance
measurements from the biological tissues for various components of the animal. These
coefficients may vary continuously over an organ and discontinuously across organs. Although
the geometric boundary of each organ is typically smooth, the contact geometric singularities,
i.e. singularities caused by the contact of two or more smooth domains, commonly occur. A
main task of the present work is to examine the performance of the proposed MIB method for
this problem. Another problem of the optical diffusion equation is caused by the amplitude of
linear term, which may result in an unstable inversion matrix. This issue is also studied.

The remainder of this paper is organized as follows. In the following section, the theoretical
formulation and computational algorithms are given to the optical imaging and the MIB
method. Section 3 is devoted to numerical experiments. The proposed MIB method is used to
solve the optical diffusion equation, an elliptic equation with various discontinuous coefficients
in 2D and 3D settings. Numerical results are compared with those of the finite element analysis,
which is a main working horse for our BLT reconstructed at present. This paper ends with a
conclusion to summarize the main points.

2. Theoretical Models and Computational Algorithms
2.1. Model of photon propagation

Photon propagation in biological tissue is commonly described by the radiative transfer
equation [85,86]:

(1)

where S2 is the unit sphere in ℝ3, q is a light source function, U (x, θ) is the radiance in θ∈
S2 at x, μt = μa + μs with μa and μs being absorption and scattering coefficients, respectively,
and the scattering kernel η satisfies the normalization condition ∫S2 η(θθ′) dθ′ = 1. Because the
radiative transfer equation is a five-dimensional problem, it involves huge computationally
cost. With the dominance of scattering over absorption in the optical molecular imaging, the
diffusion approximation model is an alternative and provides a quite accurate description of
photon propagation [87,88]:

(2)

We also introduce the region boundary Γ as an interface in the numerical problem Γ ⊂ Ω. Here,
u = ∫S2U (x, θ) dθ is the photon fluency rate, gin is the incoming flux on the boundary ∂Ω, β =
1/[3(μa + μ̄s)], μ̄s = (1− η ̄)μs, η ̄ = ∫S2 θθ′ η(θθ′)dθ′, and ∂u/∂n denotes the normal derivative at
∂Ω. The source term q could involve singular functions such as Dirac delta functions; in
practice, they could be some point light sources with very small supports compared with the
computational domain, which would bring discretization difficulties. Owing to the
discontinuity of coefficients and singularity of the interface, the regularity of the solution u :
Ω → ℝ. is inevitably reduced, especially near the interface. To make the numerical solution
unique, the jump conditions are to be prescribed by different practical problems [89]:
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(3)

(4)

where u± and β± represent the restrictions of the solutions and coefficients on the edge of each
subdomain Ω±, and  denotes limiting values of the normal derivatives along the interface on
each side. ϕ and φ are inherent known functions along the interface Γ with necessary
smoothness. Reference [89] has proved the existence and uniqueness of this elliptic interface
problem. Different organs can have different optical properties; the coefficients β(x) and μa are
discontinuous across the organs. Thus, the inner domain of Ω is further divided into n
subdomains  by n − 1 interfaces .

2.2. MIB method
In this section, the MIB method is discussed in general ℝd dimensional space. Without loss of
generality, assume that the computational domain is a compact rectangle [a1, b1] × [a2, b2] ×
⋯ × [ad, bd] and uniformly discretized with grid spacing h for simplicity. Then for j ∈ {1, 2,
…, d}, Nj = (bj − aj)/h is the number of gird points along the xj direction. Since the MIB is a

dimension splitting method for approximating the differential operator ,
only the discretization of a specific direction, say xj*, is illustrated for simplicity.
Discretizations of other directions can be easily derived in a similar manner.

Let e1 = (1, 0, 0, …, 0) and ej = (0, …, 0, 1, 0, …, 0) be, respectively, the 1st and jth standard
coordinate vectors of ℝd space and the d-tuple E = (c1, c2, …, cd) be the index of a specific
grid point. We denote a non-boundary grid point as XE (i.e. cj ∈ {2, 3, …, Nj − 1}), and its
function value as uE = u(XE). If XE is near the interface, its discretization scheme depends
whether it is a regular point or an irregular point according to the designed convergence order
[72]. At a regular point where the discretization scheme does not involve any grid point across
the interface, the approximation for the differential operator is the standard central finite
difference scheme:

(5)

The MIB scheme at an irregular point where the discretization scheme involves at least one
grid point across the interface is described in the following three subsections.

2.2.1. Dimension splitting—The MIB method takes the dimension splitting approach,
which reduces a multidimensional interface problem into 1D ones. Therefore, unlike the IIM,
the MIB method does not use multidimensional interpolation or multidimensional Taylor
expansion. Consequently, the MIB method simplifies the local topological relation near an
interface, which is crucial for 3D problems with complex interface geometries. The MIB
method provides special schemes around each intersecting point of the given interface and
prescribed meshlines. Therefore, at each intersecting point that is not a grid point, there is one
meshline, say xj*, that is a primary direction. In a second-order MIB scheme, if the interface
Γ passes between two grid points XE and XE+ej*, then XE and XE+ej* are a pair of irregular
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points. Figure 1 gives a 1D projection of the local computational domain and interface in the
primary direction, i.e. xj* direction. For simplicity, we denote the consecutive grid points
XE+kej* (k ∈ {…, −1, 0, 1, …}) on the xj* axis as i+k and function values u(XE+kej*) on these
grid points as ui+k.

Figure 1 shows how fictitious values f1 and f2 are constructed as smoothly extended function
values of u+ and u− on both sides of the interface along the xj* direction. The fictitious value
f1 is the extension of the solution in the left domain to the grid point i + 1, and f2 is the extension
of the solution in the right domain to the grid point i, while the vertical line indicates the
interface location. Unlike the original function value u that might be discontinuous, both u+

(left) and u− (right) are well behaved across the interface. With the assistance of fictitious
values, u± are matched by the jump conditions at the interface by uniform interpolation.

Assume that X0 ∈ ℝd is the position where the interface intersects the mesh line. We discretize
the interface jump conditions as follows:

(6)

where

(7)

and

(8)

Here  (l ∈ {0, 1}, k ∈ {−1, 0, 1}) are interpolation weights, which can be easily calculated
from Reference [90]. The superscripts ± present the two subdomains, and 0, 1 are for the
interpolation and the first-order derivative, respectively, and the set of subscripts −1, 0, 1 is
the index of grid points.

In jump condition (8), the first derivatives for all directions and from the two domains are all

involved due to the . Among them,  can be easily obtained by
interpolation with function values and fictitious values:

(9)
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The evaluation of  by the interpolation formulation for all j = 1, 2, …, d and j ≠ j* is presented
in Section 2.2.3.

Symbolically, we assume that  are solved and the fictitious values f1 and f2 can totally
determined by Equations (6)–(8). Once fictitious values f1 and f2 are determined, modified
discretizations for ∂/∂xj*(β∂u+/∂xj*) at grid points ui and ui+1 are given as

(10)

and

(11)

Methods for the determination of f1 and f2 are described in the following two subsections.

Remarks
i. As presented in Figure 1, grid points i − 1 and i are required to be in the same

subdomain and so are i + 1 and i + 2. The assumption can always be satisfied by
refining the grid mesh for a smooth interface. For sharp-edged interfaces, the grid
refinement might not work. A special MIB scheme has been developed to deal with
interface singularities in [84].

ii. From the discussion above, the second-order MIB scheme can be generalized to
higher-order ones (fourth and sixth order) by extending the solution to more fictitious
values near the interface. In the MIB method, this is done by repeatedly using lowest-
order jump conditions instead of creating higher-order derivatives.

iii. In Reference [72], the fictitious values f1 and f2 have been shown to be of O(h3), which
guarantees the first-order local truncation error and the global second-order
convergence of the MIB scheme.

2.2.2. Derivative elimination—In general, at every intersecting point of the interface and
mesh lines, there are two original interface conditions and d − 1 additional first-order interface
conditions for an elliptic interface in ℝd. These d + 1 interface conditions involve 2d first-order
derivatives. In the MIB method, we simultaneously determine as fewer fictitious values around
an intersecting point as possible so that we have the maximal flexibility in avoiding the
determination of many first-order derivatives, which are often difficult to evaluate due to
geometric constraints. Nevertheless, we have to determine at least two fictitious values so that
both of the original two interface conditions can be implemented at least indirectly.
Consequently, we determine only two fictitious values around an intersecting point and, thus,
use d − 1 interface conditions to eliminate d − 1 first-order derivatives. The remaining d + 1
derivatives are to be approximated using appropriate grid function values near the intersecting
point.

Specifically, jump conditions (3) and (4) are employed to determine two fictitious values f1
and f2. Among them, Equation (3) can be easily discretized as in Equation (6). However, the
first-order derivatives along all directions on each subdomain are involved in Equation (8).
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Two derivatives along the primary direction xj* can be approximated by Equation (9). For 2d
− 2 derivatives along other directions, i.e.  (j = 1, 2, …, d, j ≠ j*), d − 1 interface conditions,
which are obtained by differentiating Equation (3) along tangential directions, are used together
with Equation (4) to eliminate d − 1 derivatives. There are flexibilities in the selection of d −
1 derivatives from 2d − 2 derivatives. A general principle is to avoid evaluating those
derivatives that are difficult to compute due to local geometric constraint and to optimize the
resulting matrix of linear algebraic equations. In most cases, we normally evaluate one of ,
either  or .

A closed interface Γ in ℝd can be considered as a ℝd−1 manifold embedded in a ℝd space.
Consider a map Φ from ℝd−1 to ℝd:

12

where I is a hyperface function. The tangent space of Φ is given as

(13)

where xk̃ (∀k ∈ {1, 2, …, d − 1}) are manifold parameters, and Φx̃k are derivatives of Φ with
respect to xk̃. The tangent vectors tk are not necessarily orthonormal to each other. However,
in 2D and 3D practices, these tangent vectors can be orthonormal with appropriate
parametrization of the manifold. From Equation (6), the gradient jump at the interface can be
decomposed into d − 1 tangential jump conditions:

(14)

With the jump condition (4), a d × 2d system results in

(15)

where

(16)
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In Equation (15), only one of each remaining  is to be approximated. Therefore, d − 1
variables need to be eliminated and it is always possible to eliminate d − 1 variables from d-
independent equations. Since the tangent vectors and the normal vector are linearly
independent, there is a well-defined equation after the elimination. Without loss of generality,
assume that  is to be eliminated from the system and the equation left from the elimination
is

(17)

where cj and cj̃ are coefficients after the elimination. Finally, Equations (6) and (17) are used
to determine the two fictitious values f1 and f2.

2.2.3. Derivative evaluation—After the elimination of d − 1 derivatives, we have to
evaluate d − 1 derivatives. This is a difficult task for complex interfaces and is a challenging
task for interfaces with geometric singularities. The evaluations are pursued along xj (j = 1, 2,
…, d, j ≠ j*) direction but in general not along any xj axis. In 2D, the evaluation must compute
in the xj*− xj plane. In higher dimensions, the evaluation can be pursued with more flexibilities.
In general, we evaluate a derivative in a specific xj − xi plane so that the resulting matrix is
relatively diagonal and symmetric with respect to the given geometric constraint. Let us assume
that xj* − xj be such a choice and denote the consecutive grid points XE+mej*+nej along the xj*
axis and xj axis as (i+m, j+n), and the function values u(XE+mej*+nej) as ui+m,j+n, where m, n∈
{…, −2, −1, 0, 1, 2, …}; see Figure 2. Figures 2(a) and (b) illustrate situations where irregular
points are off the interface and right on the interface, respectively. The curve is the local
geometry of the interface, dots are grid points, and red ones are the pair of irregular points
corresponding to the target point (i, j) where the fictitious values locate.

When the irregular points are off the interface, three auxiliary function values uo,E, uo,1, and
uo,2 along the auxiliary line xj* = xo are needed to approximate , where xo is the j* component
of Xo. Hence,  is approximated by the first-order derivative scheme:

(18)

where p1, p2, and p3 are derivative weights.

Unfortunately, uo,E, uo,1, and uo,2 are not available since they do not locate on any grid point.
Therefore, they are to be obtained from function values on other nearby grid points on the
corresponding mesh lines.

The auxiliary value uo,E locates between the irregular points (i, j) and (i + 1, j), which can be
obtained with fictitious values:

(19)

However, the auxiliary values uo,1 and uo,2 have to be interpolated by other nearby values:
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(20)

Note that all the grid points used in interpolating the auxiliary points have to be in the same
subdomain. For the example showed in Figure 2(a), by the assumption that after eliminating
the  and approximating , all the gird points used to interpolate uo,1 and uo,2 should be in
the Ω− domain (there is no restriction for uo,E since fictitious values are involved). Therefore,
the grid points (i, j + 2), (i + 1, j + 2), and (i + 2, j + 2) are the closest grid points to interpolate
uo,2. However, for uo,1, the gird point (i, j + 1) is in the Ω+ domain, and the closest grid points
for uo,1 are (i + 1, j + 1), (i + 2, j + 1), and (i + 3, j + 1). Therefore, the final expression for

 is

From the above equation, we can see that  is actually a linear combination of some unknown
function values on grid points around the irregular point ui,j. By repeating the same procedure
to other coupled xj*−xj planes, all similarly structured  can be determined. Together with
jump condition (17), two unknown fictitious values f1 and f2 can be determined.

If the target irregular point is right on the interface, as showed in Figure 2(b), the calculation
of fictitious values is similar.

At the end of this paper, applications of the MIB scheme are given. The 2D MIB scheme is
useful to interface problems in plastic membrane, electromagnetic wave propagation, etc.
When d = 2, the following normal vector and tangential vector are usually implemented as

(21)

where θ is the angle between the positive direction of the x-axis and the normal vector of the
interface. It is easy to show that n and t are orthonormal.

For the MIB scheme used in the implicit solvent model for electrostatics analysis in molecular
biology or in biomedical image computation, we consider a 3D MIB scheme. The normal vector
and tangential vectors can be chosen as
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(22)

where θ and ψ are the azimuth and zenith angles with respect to the normal direction. The
explicit expressions of the fictitious values are referred to References [71, 84].

3. Numerical Results and Discussions
In this section, the performance of the MIB scheme for solving the optical diffusion equation
(2) is examined in 2D and 3D cases with various interfaces. The results of the finite element
method (FEM) are also presented for a comparison in many cases with smooth interfaces. The
FEM discretizes the solution u(x) directly and handles complex computational domains very
well since the discretization of the computational domain does not have to be uniform. The
second-order convergence of the FEM used for elliptic interface problems in 2D cases is proved
in [89].

The solutions are prescribed as continuous but non-differentiable along the interfaces in Case
1, Case 2, and Case 6 in order to compare the accuracy and convergence of the FEM and the
MIB. In Case 3, Case 4, and Case 5, interfaces are considerably more complex with geometric
singularities. For these problems, it is difficult to design analytical solutions that are continuous
across the interface. Although the present FEM does not handle problems with discontinuous
solutions, the MIB method is robust for problems with discontinuous solutions. Meanwhile,
large contrast in diffusion coefficients across the interface is also studied. In Case 6, 3D
interfaces are considered to examine the proposed MIB and to compare with the FEM. In Case
7, a mouse model is employed to explore the feasibility of the MIB scheme in BLT analysis.
The strength of the linear term is varied to examine the robustness of the proposed MIB method.

3.1. 2D cases
Through this subsection, the computational domains are defined as the square [−1, 1] × [−1,
1] for simplicity. The error between the numerical solution and the analytic solution is measured
in the L∞ norm.

Case 1—The computational domains are defined as the square [−1, 1] × [−1, 1] including a

circular  as the interface. The diffusion coefficient is

(23)

the absorption coefficient is

(24)
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and the source term is

(25)

The analytic solution is given by

(26)

Figure 3 provides the plot of numerical solution (left) and the L∞ error from the MIB scheme
(right). It is seen from the graph that the solution is continuous with moderately sharp jump in
the directives.

The jump conditions are [u] = 0 and [βun] = 0.75. Table I presents the numerical solutions from
the second-order MIB scheme and the FEM. In this case, since the interface is relatively simple,
the MIB method achieves its second-order convergence as expected. Owing to the non-uniform
mesh, the accuracy of the FEM is similar to that of the MIB under a comparable coarse mesh
and gets better at finer meshes. Its convergence is approximately third-order.

Case 2—In this case, we consider a relatively complicated computational domain described

by polar equation . Here θ is the polar angle. The FEM is robust for a non-
rectangular computational domain. For the MIB scheme, we immerse the irregular domain into
a larger rectangle, then convert the problem into an interface one. The boundary of original
domain is treated as an interface with the prescribed boundary condition.

In the governing equation, the diffusion coefficients are

(27)

and absorption coefficients

(28)

The exact solution is

(29)
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The source term q can be derived accordingly. We set the parameter a = 1, then u is still
continuous but not differentiable at the interface. There are two cusps at the origin, see Figure
4(a), which could lead to computational difficulties in a uniform discretization. However, since
the solution decays near the cusps, this problem is not challenging. The comparison of
numerical solutions from the FEM and the MIB is given in Table II.

Figure 4(b) indicates that the solution has a relatively sharp jump along the normal direction
of the interface. From Table II, it can be seen that the MIB scheme maintains its second-order
convergence. The FEM shows more flavored accuracy due to its ability of dealing with complex
computational domains.

Case 3—The interface is designed as a cardioid whose equation in the polar coordinate is
given by r0 = a (1 − cos θ). Figure 5 presents the geometry. We have set the computational
domain very close to the geometric boundary to indicate that the proposed MIB method is not
sensitive to the setting.

The source term is

(30)

with diffusion coefficients

(31)

and absorption coefficients

(32)

The solution is discontinuous at the interface and is given by

(33)

It is seen from Figure 5(a) that there is a sharp corner at the origin, which leads to difficulties
in the computation. The present FEM does not apply to this problem due to the discontinuity
of the solution.

We set parameters a = 0.5 and k = 4. Figure 5(b) indicates that the solution has relatively sharp
jumps both in u and βun, and the numerical error and convergence order are provided in Table
III. The designed second-order convergence is obtained.
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Case 4—In this case the interface is designed to be . The solution is
designed as

(34)

The piecewise continuous diffusion coefficients are given as

(35)

The absorption coefficients are set to

(36)

The parameter k is set to k = 4 and the source term q can be derived accordingly.

Figure 6 shows the computational domain and numerical solution. The comparison with the
exact solution is provided in Table III. From the performance of the MIB for variable β and
large contrasting β, it can be concluded that the MIB scheme is not sensitive to the variations
in the diffusion coefficients.

Case 5—In the last 2D example, an interesting six-petal-flower-like interface is employed. It

can be easily described by a polar equation .

The analytic solution is given by

(37)

with diffusion coefficients

(38)

and absorption coefficients

(39)
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The source term q can be easily derived.

Figure 7 indicates sharp jump conditions. The MIB scheme works well when solutions present
totally different behaviors in two subdomains. The accuracy and convergence are very similar
to those in previous examples and are not listed. The computational domain and numerical
solution are presented in Figure 7.

3.2. 3D cases
For applications in biomedical imaging, it is necessary to examine the proposed MIB scheme
in 3D cases for numerical accuracy, rate of convergence, and CPU time. In this section, we
provide the results of the MIB scheme and the FEM for 3D cases. First, we use a simple
spherical interface and an ellipsoid interface, which is a good representative for smooth surfaces
so that higher-order MIB schemes can be applied. Following these tests we employ a mouse
model to illustrate applications in biomedical imaging. The kidney and heart embedded in
mouse's body are good examples of interface problems. Actually, it is a multi-domain problem
since the material coefficients in two organs can be different.

Case 6(a)—Consider a 3D version of Case 1. The 3D optical diffusion equation in the cube

domain [−1, 1] × [−1, 1] × [−1, 1] with a spherical interface . This is a case
where one can easily design a continuous solution across the interface so that the FEM can be
applied and compared. The source term is

(40)

The analytic solution is given by

(41)

The coefficients are the same as those in Case 1, while in a 3D form. Under these assumptions,
jump conditions are still [u] = 0 and [βun] = 0.75.

Table IV presents the numerical results obtained from the MIB scheme. It is seen that the MIB
maintains its second-order convergence when the grid points increase and its accuracy holds
as well as it does for the 2D problem. Results of high-order MIB schemes are omitted for this
problem. Table V presents the results generated from the FEM. For 3D computation, our
computer cannot afford too dense mesh grids for the FEM due to limited memory. Therefore,
only a few computational results for the FEM under affordable mesh sizes are provided. The
FEM for this case shows good accuracy in comparison with the MIB scheme at a very coarse
mesh. However, as discussed in [66], the FEM errors usually do not decrease monotonously
for interface problems. This phenomenon of the convergence oscillation is reflected in Tables
V and VII. In contrast, the MIB scheme demonstrates a consistent pattern of convergence.

Case 6(b)—Consider the 3D optical diffusion equation on the computational domain [−5, 5]
× [−5, 5] × [−5, 5] and the interface is given as an ellipsoid:
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(42)

The solution is designed as

(43)

with diffusion coefficients

(44)

and absorption coefficients

(45)

Table VI presents the second- and fourth-order MIB scheme. From the table we can see that
the designed convergence orders are realized. This is especially valuable for 3D problems.
When the computational domain is large, a high-order scheme offers the required accuracy at
a relatively coarse mesh.

Owing to limited computer memory, we can only evaluate this model with the FEM at most
with 36 221 elements. Table VII lists the numerical error, convergence order and CPU time
for the FEM. It is seen that the FEM has a good accuracy at a coarse mesh. However, it fails
to show convergence as the mesh is refined. The FEM also costs more CPU time than the MIB
does. The performance of the FEM depends heavily on the mesh quality. It is possible to obtain
better the FEM results by mesh optimization. However, because the possible presence of
interface singularities, such as cusps, sharp-edge wedges and sharp tips, it is difficult for the
FEM to demonstrate second-order convergence. To our knowledge, the best FEM results in
the literature were of 0.8th-order convergence obtained by Hou and Liu [19], for 2D interface
problems with geometric singularities.

Case 7(a)—As the last test we employ a real mouse geometric model to explore the utility
of the proposed MIB for the analysis of biomedical imaging, as shown in Figure 8. For
convenience, the mouse model is embedded in a rectangle domain with dimensions [−108,
113] × [−35, 53] × [−33, 33]. The mouse model itself has two domains, the muscle parts
(denoted as Ω2 region) and organ parts (heart and kidney, denoted as Ω3 region), plus the whole
computational region (denoted as Ω1 region) outside the mouse body. Therefore, this is actually
a multidomain problem. The parameters and jump conditions are prescribed for each region.

The exact solution is designed as
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(46)

with diffusion coefficients

(47)

The source term is given by

(48)

We first consider a case without the linear term, i.e. μa = 0. Owing to the large size of the
computation domain and numerous irregular points brought by the complicated interface, the
computation is carried out in a high-performance computer. The CPU time for each
computation is provided. Our results are presented in Table VIII, with w = 0.5. Second-order
convergence is obtained in these results. It is also seen that the accuracy, convergence, and
CUP time are similar to those in other test problems. Therefore, the proposed MIB method is
not sensitive to the complex geometry.

Case 7(b)—In the following, we consider this problem with non-vanishing μa values. Two
sets of μa values are employed. Let us denote the first set as large μa

(49)

and the second set as small μa

(50)

Here, u and beta are the same as the last case, and the source term g can be derived accordingly.

We set  in all these computations. Computational results are given in Table IX with
different coefficients μa. It can be concluded from Table IX that the MIB is robust for the multi-
interface elliptic problem. The larger the coefficients μa are, the better are the results for both
accuracy and CPU time. This is natural because larger coefficients means that the resulting
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computation matrix is more diagonally dominant. Therefore, the proposed MIB method works
well for the mouse model used in the optical molecular imaging.

4. Conclusion
This paper explores the usefulness and examines the accuracy of the matched interface and
boundary (MIB) method for solving diffusion equation for the optical molecular imaging. In
the media of high scattering, the governing radiative transfer equation is reduced to the optical
diffusion equation. In the context of biomedical imaging, the optical diffusion equation
involves complex geometries, discontinuous coefficients, and geometric singularities. This
kind of problems have been previous analyzed by the finite element method (FEM), which is
typically designed for smooth interfaces. Geometric singularities and coefficients discontinuity
give rise to computational challenges. The goal of the present work is to examine the
effectiveness of the proposed MIB method, which is designed for elliptic equations with
discontinuous coefficients and singular sources. For arbitrarily complex geometries with sharp-
edged and sharp-tipped interfaces, we have demonstrated the designed second-order
convergence of the MIB method. For smooth interfaces, fourth-order convergence is achieved.
The MIB method has also been tested against the variation of the strength of the linear term in
the governing optical diffusion equation. It is found that the MIB method converges faster
when the strength increases. For a comparison, the results of the FEM are also presented in
some 2D and 3D cases with smooth interfaces and continuous solutions. The FEM slightly
outperforms the MIB for continuous solutions and interfaces without geometric singularities
in 2D. The proposed MIB method exhibits better performance in 3D cases. In general, the
present FEM does not work for problems with discontinuous solutions and/or non-smooth
interfaces. In contrast, the proposed MIB works well for these problems in both 2D and 3D. A
new MIB scheme that works for general multidomain problems is under our consideration.
These problems can be very challenging due to the presence of contact singularities. To our
best knowledge, currently, no second-order or better convergent scheme has ever been reported
for these problems. On the basis of our promising numerical results, we believe that the
proposed method has great potential for biomedical optical imaging, including BLT,
fluorescence tomography, and other optical imaging applications.
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Figure 1.
Illustration of fictitious values in 1D: dots in solid lines: regular function values and dots in
dash lines: fictitious values.
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Figure 2.
(a) Off interface irregular point and (b) on interface irregular point.
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Figure 3.
Numerical solution (a) and L∞ error (b) for Case 1.
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Figure 4.
Computational domain (a) and numerical solution (b) for Case 2.
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Figure 5.
Computational domain (a) and numerical solution (b) for Case 3.
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Figure 6.
Computational domain (a) and numerical solution (b) for Case 4.
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Figure 7.
Computational domain (a) and numerical solution (b) for Case 5.
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Figure 8.
Mouse body with kidney and heart.
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Table IV

Errors of numerical solutions from the MIB for Case 6(a).

nx × ny L∞ norm Order CPU

20 × 20 × 20 3.900 (−4) 0.34

40 × 40 × 40 7.970 (−5) 2.3 6.9

80 × 80 × 80 1.968 (−5) 2.0 113

Commun Numer Methods Eng. Author manuscript; available in PMC 2010 May 17.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Chen et al. Page 35

Ta
bl

e 
V

Er
ro

rs
 o

f t
he

 F
EM

 re
su

lts
 fo

r C
as

e 
6(

a)
.

E
le

m
en

t n
um

be
r

80
3

30
35

98
77

18
 7

23
32

 0
40

33
 6

03

Er
ro

r
9.

90
 (−

3)
3.

50
 (−

3)
6.

70
 (−

3)
1.

00
 (−

3)
6.

80
 (−

3)
2.

00
 (−

3)

C
PU

 ti
m

e
0.

3
0.

8
4.

9
15

.6
21

9
23

5

O
rd

er
2.

3
−1

.6
8.

9
−1

1
77

Commun Numer Methods Eng. Author manuscript; available in PMC 2010 May 17.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Chen et al. Page 36

Ta
bl

e 
VI

Er
ro

rs
 o

f s
ec

on
d-

 a
nd

 fo
ur

th
-o

rd
er

 M
IB

 fo
r 3

D
 c

om
pu

ta
tio

n 
in

 C
as

e 
6(

b)
.

Se
co

nd
-o

rd
er

 M
IB

Fo
ur

th
-o

rd
er

 M
IB

n x
 ×

 n
y ×

 n
z

L ∞
 n

or
m

O
rd

er
C

PU
n x

 ×
 n

y ×
 n

z
L ∞

 n
or

m
O

rd
er

C
PU

20
 ×

 2
0 

× 
20

7.
52

5 
(−

1)
0.

5
25

 ×
 2

5 
× 

25
5.

16
0 

(−
1)

2.
7

40
 ×

 4
0 

× 
40

1.
49

3 
(−

1)
2.

3
6.

7
50

 ×
 5

0 
× 

50
1.

10
2 

(−
2)

5.
5

33
.9

80
 ×

 8
0 

× 
80

3.
59

6 
(−

2)
2.

0
13

1
10

0 
× 

10
0 

× 
10

0
4.

45
2 

(−
4)

4.
6

45
2

Commun Numer Methods Eng. Author manuscript; available in PMC 2010 May 17.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Chen et al. Page 37

Ta
bl

e 
VI

I

Er
ro

rs
 o

f t
he

 F
EM

 re
su

lts
 fo

r C
as

e 
6(

b)
.

E
le

m
en

t n
um

be
r

39
44

71
72

15
 1

36
18

 5
34

23
 2

18
36

 2
21

Er
ro

r
8.

29
7 

(−
1)

8.
37

0 
(−

1)
8.

53
5 

(−
1)

4.
22

0 
(−

1)
4.

58
4 

(−
1)

3.
86

1 
(−

1)

C
PU

 ti
m

e
1.

65
4.

48
27

.2
3

36
.4

61
.2

6
11

7.
54

O
rd

er
−0

.0
1

−0
.0

2
1.

2
−1

.2
0.

22

Commun Numer Methods Eng. Author manuscript; available in PMC 2010 May 17.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Chen et al. Page 38

Ta
bl

e 
VI

II

Er
ro

rs
 o

f M
IB

 so
lu

tio
ns

 fo
r t

he
 m

ou
se

 m
od

el
 in

 C
as

e 
7(

a)
.

ω
 =

 0
.2

ω
 =

 0
.1

M
es

h 
si

ze
L ∞

 n
or

m
O

rd
er

C
PU

M
es

h 
si

ze
L ∞

 n
or

m
O

rd
er

C
PU

4
9.

81
5 

(−
2)

4
4

1.
47

8 
(−

2)
3.

8

2
1.

91
7 

(−
2)

2.
4

20
2

2.
96

7 
(−

3)
2.

3
20

1
4.

70
0 

(−
3)

2.
0

15
7

1
5.

35
4 

(−
4)

2.
5

15
1

Commun Numer Methods Eng. Author manuscript; available in PMC 2010 May 17.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Chen et al. Page 39

Ta
bl

e 
IX

Er
ro

rs
 o

f t
he

 M
IB

 so
lu

tio
ns

 fo
r t

he
 m

ou
se

 m
od

el
 in

 C
as

e 
7(

b)
.

L
ar

ge
 μ

a
Sm

al
l μ

a

M
es

h 
si

ze
L ∞

 n
or

m
O

rd
er

C
PU

M
es

h 
si

ze
L ∞

 n
or

m
O

rd
er

C
PU

4
4.

96
9 

(−
2)

1.
5

4
8.

96
4 

(−
2)

2.
5

2
1.

04
0 

(−
3)

2.
3

9
2

2.
17

5 
(−

2)
2.

0
15

1
2.

62
0 

(−
4)

1.
9

63
1

4.
67

1 
(−

3)
2.

2
11

0

Commun Numer Methods Eng. Author manuscript; available in PMC 2010 May 17.


