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Investigations of the molecular mechanisms underlying
responses to nerve injury have highlighted the importance
of axonal transport systems. To obtain a comprehensive
view of the protein ensembles associated with axonal
transport in injured axons, we analyzed the protein com-
positions of axoplasm concentrated at ligatures following
crush injury of rat sciatic nerve. LC-MS/MS analyses of
iTRAQ-labeled peptides from axoplasm distal and proxi-
mal to the ligation sites revealed protein ensembles trans-
ported in both anterograde and retrograde directions.
Variability of replicates did not allow straightforward as-
signment of proteins to functional transport categories;
hence, we performed principal component analysis and
factor analysis with subsequent clustering to determine
the most prominent injury-related transported proteins.
This strategy circumvented experimental variability and
allowed the extraction of biologically meaningful informa-
tion from the quantitative neuroproteomics experiments.
299 proteins were highlighted by principal component
analysis and factor analysis, 145 of which correlate with
retrograde and 154 of which correlate with anterograde
transport after injury. The analyses reveal extensive
changes in both anterograde and retrograde transport
proteomes in injured peripheral axons and emphasize the
importance of RNA binding and translational machineries
in the axonal response to injury. Molecular & Cellular
Proteomics 9:976–987, 2010.

Peripheral nerve injuries elicit a cascade of axonal re-
sponses that are required for a successful regenerative re-
sponse. The lesioned axons must signal retrogradely to their
cell bodies to activate intrinsic neurite outgrowth mechanisms
(1–3) and then overcome physical barriers and inhibitory cues
in the extracellular environment to achieve functional regen-
eration (4, 5). The first indications of a breach in axonal integ-
rity upon injury are most likely abnormal generation of action
potentials and/or waves of calcium propagating from the le-

sion site toward the intact portions of the cell (6, 7). At a later
stage, signals carried by motor-driven transport systems start
to affect the cell body. This phase includes both an interrup-
tion of the normal supply of retrogradely transported mole-
cules such as trophic factor signals (8) and arrival of new
signals elicited at the injury site (3, 9). The latter interact with
a variety of dynein-associated carriers including importins (10,
11) and kinase family scaffolds (12, 13).

In mammalian neurons, the distances between axonal le-
sion sites and the nucleus can reach many centimeters (up to
1 m in humans); hence, retrograde signaling events within
the first few hours after injury must be independent of new
transcription in the cell body. Proteolysis, local protein syn-
thesis, and post-translational signaling modifications such as
phosphorylation have all been implicated in generation of the
retrograde signaling ensemble (1). This prominent role for
post-transcriptional processes suggests that comprehensive
characterization of retrograde signaling will require proteom-
ics approaches. In a previous study we used two-dimensional
PAGE and mass spectrometry to analyze retrogradely con-
centrated axoplasm from injured mollusc nerve, identifying a
vesicular ensemble blocked by the lesion and an up-regulated
ensemble highly enriched in calpain cleavage products of an
intermediate filament (14, 15). Follow-up studies in rodent
sciatic nerve showed that the mammalian intermediate fila-
ment vimentin is produced by local translation of axonal
mRNA upon axonal injury and then undergoes calpain-medi-
ated proteolysis, generating a cleavage product that interacts
with importins bound to dynein and enables protected retro-
grade transport of phosphorylated forms of the mitogen-ac-
tivated protein kinases Erk1 and Erk2 (16, 17). Here, we
extend our efforts to determine the components of the retro-
grade injury signaling ensemble in lesioned nerve by using
LC-MS/MS coupled with iTRAQTM1 labeling to directly ana-
lyze mammalian axoplasm samples after nerve injury. The
analyses reveal extensive changes in both anterograde and
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retrograde transport proteomes in injured peripheral axons
and highlight the importance of RNA binding and translational
machinery in the axonal response to injury.

EXPERIMENTAL PROCEDURES

Sample Preparation—8–12-week-old Wistar rats were subjected to
crush lesion in the distal part of the sciatic nerve, and ligatures were
applied 1 cm distally to the femoral joint. 24 h later animals were
sacrificed, and nerve segments distal and proximal to the ligature
site were processed separately for axoplasm extraction (18). Briefly,
nerve segments were manually dissected to remove connective tis-
sue, incubated for 2 h in 0.2� PBS to lyse glia, washed, and then
extracted in 1� PBS (300 �l/five sciatic nerves) for 40 min at room
temperature with subsequent centrifugation at 21,800 � g for 10 min
at 4 °C. All solutions were supplemented with protease and phospha-
tase inhibitors (protease inhibitors (Roche Applied Science, catalog
number 14696200; two tablets/50 ml of 1� and 0.2� PBS solutions),
1 mM sodium fluoride, 1 mM sodium vanadate, 1 mM sodium molyb-
date, 1 mM sodium tartrate, 100 �M fenvalerate, 250 nM okadaic acid,
and 1 nM calyculin A) and lyophilized. Dried samples were resus-
pended in 6 M guanidine hydrochloride in 25 mM ammonium hydro-
carbonate with 2.1 mM tris(2-carboxyethyl)phosphine hydrochloride
and incubated at 57 °C for 1 h after which iodoacetamide was added
to 4.2 mM for an additional 45-min incubation at room temperature in
darkness. The reduced and alkylated samples were diluted to 1 M

guanidine hydrochloride, and side chain-protected trypsin (Promega,
Madison, WI) was added at 1:50 (trypsin:protein sample) for digestion
to a final concentration of about 2–2.5 � 10�7 M. The pH was adjusted
to 8 with 1 M ammonium bicarbonate, and digestion was allowed to
proceed at 37 °C overnight. Digests were then acidified by addition of
0.1% trifluoroacetic acid and desalted with C18 Sep-Pak cartridges
(Waters, Milford, MA). Quadruplex iTRAQ (Applied Biosystems, cata-
log number 4352135) derivatization was performed for quantitative
analysis according to the vendor’s protocol. Mass tags were assigned
to samples as follows: m/z 114 for non-injured distal (NID), m/z 115 for
injured distal (IND), m/z 116 for non-injured proximal (NIP), and m/z
117 for injured proximal (INP). Derivatized samples were concentrated
to about 10 �l of solution/tube and then fractionated by strong cation
exchange chromatography (Polysulfoethyl A, 200 � 2.1 mm, 5-�m
bead, 200-Å pores (PolyLC) on an ÄKTA HPLC system (GE Health-
care). Peptides were eluted in a gradient of 0–350 mM KCl in 5 mM

KH2PO4, 30% acetonitrile; concentrated by SpeedVac (Thermo Elec-
tron, San Jose, CA); desalted over a C18 macrotrap peptide reverse
phase column (Michrom Bioresources, Inc., Auburn, CA); dried; and
redissolved in 10 �l of 0.1% HCOOH/fraction.

LC-MS/MS—Reverse phase separation of each strong cation ex-
change fraction was carried out on a nanobore 75-�m � 15-cm C18

column at a flow rate 350 nl/min, developing a gradient of 5–50%
acetonitrile in 0.1% HCOOH over 60 min. The HPLC system (Agilent
1100, Agilent Technologies, Palo Alto, CA) was connected on line to
a quadrupole-orthogonal acceleration-TOF (QSTAR Pulsar or Elite,
Applied Biosystems, Foster City, CA) or a linear ion trap-Orbitrap
(LTQ-Orbitrap, Thermo Fisher Scientific Inc., Waltham, MA) mass
spectrometer. Data were acquired in an information-dependent fash-
ion. For the QSTAR, MS acquisitions (1 s) were followed by CID
experiments. The two most abundant multiply charged ions were
selected for subsequent CID. First, a regular CID acquisition was
performed where the collision energy was automatically adjusted
according to the peptide charge and m/z value. Then, with a high
resolution precursor ion selection and preset collision energy, only the
reporter ion region was monitored. Precursor ions already analyzed
were excluded from the selection process for 1 min.

LC-MS analysis on the LTQ-Orbitrap consisted of MS survey scans
that were followed by higher energy collision dissociation scans on

the three most abundant multiply charged ions in the survey scan.
Both precursor ions and higher energy collision dissociation frag-
ments were measured in the Orbitrap. Dynamic exclusion was en-
abled. Peak lists were generated with Analyst software using
Mascot.dll version 1.6b20 and Mascot Distiller version 2.1.0.0 with
the QSTAR and the Orbitrap data, respectively.

Initial automated analysis of the obtained spectra was carried out
with ProteinProspector 5.0, searching against the UniProt.2007.
12.04.random.concat database (152,718 of 10,725,064 entries
searched). Only tryptic peptides were considered, and up to two
miscleavages were allowed. Fixed modifications were carbamido-
methylation of Cys residues and iTRAQ 4-plex modification of Lys
side chains and N termini. Variable modifications considered in the
analysis included N-terminal acetylation of proteins, cyclization of
N-terminal Gln residues, methionine oxidation, and serine/threonine/
tyrosine phosphorylation. Three variable modifications per peptide
were permitted. Mass tolerance was set to 300 and 100 ppm for the
fragment ions and precursor ions, respectively, in the QSTAR exper-
iments and to 0.8 Da and 25 ppm, respectively, for the Orbitrap
experiments. Acceptance criteria were as follows: E-value was set to
0.01, minimal peptide score was 15, and protein score was 25.

The threshold set was supported by two methods used for false
positive detection rate (FPR) and false discovery rate (FDR) estima-
tion. FPR was calculated based on the hits detected in the decoy
database versus the total number of peptide hits, whereas FDR was
calculated via estimation of the ratio of the number of true null
hypotheses (H0) from the total number of tests (19). For these param-
eters, average FPR was 1.64% (range, 0.51–4.70%), whereas aver-
age FDR was 0.72% (range, 0.34–2.25%).

These criteria led to the identification of 10,632 peptides in all
biological replicates. Application of a stricter setting of 25 for the
peptide score threshold decreased the accepted number of peptides
to 9267. After removal of duplicate and redundant entries, the number
was further reduced to 4954 unique peptides.

Data Analysis and Quantification—Quantitative data for each pep-
tide were obtained from iTRAQ labels at 114.1-, 115.1-, 116.1-, and
117.1-amu peaks by assessment of area under the peak curve for
QSTAR-based data or by assessment of peak intensity for Orbitrap-
generated spectra. Proteins were reconstituted from multiple pep-
tides data. Accession numbers of identified proteins were mapped
onto the corresponding UniGene entries using the Uniref90 clustering
database. Peptides that corresponded to proteins from more than
one UniProt entry or with multiple UniProt entries were not used for
quantification. Redundant entries were condensed as single proteins
for quantification and identification purposes if they matched to the
same UniGene/UniProt record. Proteins were used for further analy-
ses only if they were identified in at least two of three biological
replicates. In cases of protein identifications based on two biological
replicates, the requirement was that the protein should appear in both
analytical replicates of the sample. The UniProt filters focused atten-
tion to 4754 quantifiable peptides from three biological replicates.

To handle analytical and biological variability, we produced box-
whisker plots for each multipeptide reconstituted protein in each
analytical replica. Box upper and lower values corresponded to the
S.E.; a range within the S.D. was considered as non-outlying. The
outlier range was defined as

OVU � (UBV)*OC*(UBV-LBV)

OVL � (LBV)*OC*(UBV-LBV)

where OVU is the outlier value from the upper limit and OVL is the
outlier value from the lower limit. UBV and LBV (upper and lower box
values, respectively) were calculated as mean � S.E. The outlier
coefficient (OC) was defined as 1.5. Extreme values were calculated
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using the same equation except the outlier coefficient was set to 3
(StatSoft). Additional outlier analyses were carried out using Mahal-
anobis distance assessment. Data obtained by the two methods were
compared, and proteins with extreme values according to both anal-
ysis methods were excluded.

Clustering—Hierarchic and non-hierarchic cluster analyses were
performed on the data. Data standardization for hierarchic clustering
utilized Euclidean metrics for distance assessment and Ward mini-
mum variance for linkage (20, 21). Amalgamation curves were used to
estimate cluster number and to supervise reclustering. Data were
validated using the root mean square deviation of the cluster at each
step in hierarchic clustering and pseudo-F ratio, pseudo-T-square
estimation, and Dunn’s cluster separation maximum group assess-
ment methods. Non-hierarchic clustering was carried out using k-
mean and expectation maximization approaches (21). Euclidean dis-
tance was used for metrics, and k-values were seeded randomly.
Silhouette plot estimation was used for cluster number determination.
Multiple replication of clustering was used to avoid local minima. The
minimum increase of log likelihood was set to 0.001 for the expecta-
tion maximization algorithm. For cluster number validation purpose,
the v-fold cross-validation method was used (21).

Principal Component and Factor Analyses—Correlation matrixes
were used to find correlations between six variables generated from
the iTRAQ data. The number of components was defined based on
eigenvalue estimation on scree plots (22). Two extraction methods
were used for factor analysis: principal component and then maxi-
mum likelihood factor method for validation. Correlations between
factor loading and variables higher than 0.7 were considered as
significant. Communality analysis was used to estimate the contribu-
tion of factors to variance of variables. Quartimax proved to be the
best fitting orthogonal rotation method. In addition, oblique rotation
was used to exclude secondary factors (23). Factor score data were
used to compare per protein covariances of the protein level changes
in accordance to factors. We examined the factor score distribution
for each protein for data extraction, using multiple comparisons to
exclude proteins with higher absolute value scores for factors not
affecting the analyzed variable. For example, if factor 2 correlates with
the variable IND/NID, proteins assigned to the factor 2 grouping
should have factor 2 scores with higher absolute values than their
scores for factors 1 and 3. Because the partitions thus obtained were
not normally distributed, we applied Kruskal-Wallis one-way analysis
of variance on ranks with Dunn’s post hoc analysis, and the p value
cutoff was set to 0.001. Proteins that met the statistical criteria were
assigned to corresponding factors for further clustering. For further
details on factor analysis as applied here, please see the
supplemental material.

Bioinformatics and Statistics—Factor-assigned protein lists were
subjected to gene ontology (GO) and tissue distribution analyses
using the Database for Annotation, Visualization and Integrated Dis-
covery (DAVID) (24) with the Expression Analysis Systematic Explorer
(EASE) score set to 0.05 and threshold of protein per category set to
3. Data were analyzed against Rattus rattus, Rattus norvegicus, and
Mus musculus databases. Settings for functional annotation cluster-
ing were as follows: classification stringency, high; similarity gene
overlap, 3; similarity threshold for � statistics, 0.85; initial and final
group membership, 3; multiple linkage threshold, 0.5; and FDR
threshold, 0.5. Software packages used included Matlab 2008a, Sys-
tat 12, Systat SigmaPlot, R, and Excel.

RESULTS

Data Collection—Nerve ligatures provide a physical obsta-
cle allowing for accumulation of retrogradely and antero-
gradely transported components in axons distal and proximal

to the ligature, respectively. We ligated rat sciatic nerves
concomitantly with or without crush lesions 2–2.5 cm distal to
the ligature and extracted axoplasm from proximal and distal
sides of the ligature 24 h later (Fig. 1A), thus generating four
experimental sample types: IND, INP, NID, and NIP. 5-mg
axoplasm protein samples (corresponding to 100 animals
each) were subjected to reduction, alkylation, and tryptic di-
gestion followed by iTRAQ labeling, fractionation by strong
cation exchange, and LC-MS/MS analysis. Three indepen-
dent biological experiments (3 � 100 animals) were interro-
gated on the QSTAR, and two of these samples were also
analyzed using the LTQ-Orbitrap instrument, generating a
data set of more than 150,000 spectra overall. After removal
of false positives by filtering against the UniProt decoy data-
base, these spectra corresponded to 4754 unique peptides
from 1173 unique proteins in all experimental groups from the
three experiments, averaging 4.05 peptides per identified pro-
tein. The average overlap between two biological replicates
was about 65%, whereas overlap of all three biological repli-
cates was much lower (Fig. 1B). Peptide per protein distribu-
tion was fairly uniform for all replicates (Fig. 1B).

To reduce noise contribution to the quantitative data, we
assessed the coefficient of variation (CV) of peptide distribu-
tion per corresponding proteins at different threshold levels of
reporter ion areas corresponding to 5, 10, 15, and 30 inte-
grated counts (henceforth referred to as counts). This analysis
did not show any significant differences between the thresh-
olds tested, although data kurtosis was lower for thresholds
above 10 counts (Fig. 1, C and D, and supplemental Fig. S1A).
We therefore set the threshold to 10, discarding signal values
below this for peak area (QSTAR) or peak intensity (Orbitrap),
thus further narrowing down the data set to 3940 unique
peptides corresponding to 972 unique proteins (supplemental
Fig. S1B). All comparisons revealed positive correlations be-
tween the data sets, albeit with significant variability in distri-
butions with correlation coefficients ranging from 0.3 to 0.95
(supplemental Fig. S2). The number of proteins identified in
different replicas for QSTAR-based experiments were within a
20% difference. The difference was even lower for LTQ-Orbi-
trap experiments, although the number of proteins identified
from LTQ-Orbitrap data was lower than from QSTAR-based
experiments. The average standardized Cronbach � value (25)
for subsets of two or more biological replicas was �0.68,
indicating high data reliability (data not shown).

Data Set Complexity—We tried to use hierarchic and non-
hierarchic clustering analyses to look for covariance in the
data. Hierarchic clustering was based on the assumption that
changes in protein level will correlate with the directional
transport processes occurring in the nerve; thus for example,
proteins clustering closest to dynein retrograde motor com-
ponents should be those involved in retrograde signaling.
However, the resulting clusters did not fit such simple as-
sumptions (Fig. 2, A and B), and increasing the number of
variables only complicated the picture. We then attempted to
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use non-hierarchic cluster models, based on distributions of
protein level change, to reveal protein subsets showing similar
patterns of change in all three experiments. Both k-mean and
generalized expectation maximization clustering did not allow
for useful resolution of these data, and furthermore v-fold-
based cross-validation analyses did not converge to the
same number of clusters in different experiments (Fig. 2C).
This suggested that retrograde axonal transport and anter-
ograde axonal transport are not the sole and dominant
processes affecting the data set. A number of additional
influences might have to be taken into account, including
local effects on the ligature itself, leakage through the liga-
tion to the other side, and tissue inflammation. Principle
component analysis (PCA) provides an approach for deter-
mining the number of independent parameters (called prin-
cipal components) that can account for the vast majority of
variance in a complex data set.

PCA and Factor Analyses Enable Extraction of Relevant
Proteins—Fig. 3A shows a model of the putative contributions
to transport ensembles before and after injury. To extract the
contributions of the different experimental groups to the pro-
cesses shown in the model, we carried out PCA on all four
iTRAQ label ratios in six different combinations: IND/NID,
INP/NIP, IND/NIP, IND/INP, NID/NIP, and INP/NID. This anal-
ysis revealed three eigenvalues with values higher than 1,
indicating three principal components that appeared to suf-
fice to account for the complete data set in all three experi-

ments. Eigenvalue scree plots showed similar contributions of
each individual principal component in all three independent
experiments with small deviations (Fig. 3, B–D). Averaging
these contributions indicated an �50% contribution of the
first component and about 30 and 20% for the second and
the third components, respectively (Fig. 3E). We then sought
to refine the approach by applying factor analysis.

The principal component-based extraction method re-
vealed three statistically significant factors with eigenvalues
similar to PCA (Fig. 4). Quartimax rotation optimally stabilized
factor loading onto variables with only IND/NIP (Fig. 4, green)
and IND/NID (Fig. 4, yellow) being unequivocally loaded by a
distinct and dominant factor in all experiments (Fig. 4, A and
B). For example, Fig. 4A shows two-dimensional plots of
relative loading of the different variables on two factors in
each plot. Variables with higher absolute values for a specific
factor have stronger correlation with that factor. For IND/NID,
the left panel in Fig. 4A shows a value of close to 1 on the
factor 2 axis compared with a value close to 0 on the factor 1
axis, indicating strong correlation with factor 2 and very weak
correlation with factor 1. The middle panel shows weak cor-
relation of IND/NID with both factors 1 and 3, and the right
panel again shows strong correlation of IND/NID with factor 2
and weak correlation with factor 3. Hence, IND/NID is very
strongly correlated with factor 2 but nonetheless is also
weakly influenced by other factors. The model of Fig. 3A
shows that IND/NID should define the injury-regulated retro-

FIG. 1. Preprocessing of iTRAQ-
based peptide quantification data. A,
experimental model used for this study.
B, Venn diagram presenting overlap of
unique proteins in three biological repli-
cates. Bold fonts represent the total
number of proteins in the group. Italics
denote the number of shared proteins
between the indicated replicates. Regu-
lar fonts detail the peptide per protein
distribution for a specific replicate. C,
distribution of CV values (%) for peptides
per protein based on the iTRAQ label
area (QSTAR) or intensity (Orbitrap)
threshold. The graph depicts the fraction
of CV values over the entire peptide per
protein distribution. Proteins with at least
three available peptide identifications
were used for S.D. calculations. D, de-
scriptive statistics parameters for pep-
tide distribution per protein at the desig-
nated thresholds. S.D., S.E., skewness,
and kurtosis are shown. Neither skew-
ness nor S.E. were affected by intensity
threshold change.
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grade ensemble; thus, proteins strongly correlating with
factor 2 should fit this category. Communalities for IND/NID
reached 0.96 with a very narrow range of distribution,
whereas the median of communalities for IND/NIP reached
0.8 with a wider distribution. Communalities of both IND/
NID and IND/NIP lacked outliers or extreme values over all
the experiments (Fig. 4C).

Fig. 3A shows that the IND/NID variable primarily repre-
sents the ratio of injured to uninjured retrograde transport-
related components; thus, proteins extracted by factor scores
for this variable should be involved in injury-regulated retro-
grade transport. Comparison of all three experiments by fac-
tor scores (Fig. 5A and supplemental Fig. S3) revealed that 30
proteins belonging to this category were common to all bio-
logical replicates of the injury experiment, whereas a less
stringent cutoff taking proteins found in two of the three
replicates resulted in a total of 144 proteins correlated posi-
tively (71 proteins) or negatively (73 proteins) to the retrograde
transport ensemble (Fig. 5B; supplemental Tables S1, S3, and
S5; and supplemental supporting spectra). The main posi-
tively correlating proteins included dynein heavy chain 1 and
dynactin subunit 2, both core components of the retrograde
transport machinery (Fig. 5C). The ensemble could be hierar-
chically subdivided into two distinct and coherent clusters
with significant distance between clusters of positively and
negatively correlating proteins, thus validating the outcome of

the factor analysis (Fig. 5B). The hierarchic clustering pattern
was also supported by k-mean clustering analysis (supple-
mental Fig. S4).

The IND/NIP variable corresponds primarily to the ratio of
injured versus uninjured anterograde transport components.
We extracted the corresponding protein list by comparing
factor scores for each individual protein (Fig. 6A; supplemen-
tal Fig. S5; supplemental Tables S2, S4, and S5; and supple-
mental supporting spectra). Clustering of the data clearly
distinguished two groups (Fig. 6B and supplemental Fig. S6).
Kinesin heavy chain isoform 5C, one of the major neuronal
anterograde transport motor components, was detected in
only two of the three biological replicates in negative correla-
tion with factors related to the anterograde transport; thus, all
101 proteins showing similar factor scores were assigned to
the anterograde transport ensemble (supplemental Tables
S2 and S4). The non-kinesin-containing group was highly
enriched for inflammation-related proteins (supplemental
Tables S2 and S4), although the inflammation category was
assumed to cancel itself out when subtracting transport com-
ponents in the model of Fig. 3A. This result may indicate a
difference in inflammation levels in distal versus proximal
sides of the ligation, suggesting non-linear behavior in this
aspect of the system and likely increasing the chance of error
in linear decomposition-based factor analysis results. As
shown in supplemental Fig. S7, the increased error due to

FIG. 2. Cluster analyses of differentially represented proteins over complete data set. A, hierarchic clustering of proteins differentially
represented after injury in all three experiments. Hierarchic clusters were generated using Euclidean distance estimation together with Ward’s
linkage method. Even spacing was used for dendrogram scaling. Clustering metrics are depicted below. Clusters were validated using root
mean square deviation estimation, pseudo-F ratio, pseudo-T ratio, and Dunn’s tests. B, a hierarchic cluster example for a single experiment
(all procedures are as in A). C, probability density functions of non-hierarchic cluster analyses for variables IND/NIP, IND/NID, and INP/NIP in
all three experiments using k-mean and expectation maximization (EM) clustering methods. Initial numbers of clusters were calculated using
silhouette plot analysis. We used random seeding for k-calculation. To avoid local minima, we ran 50 replicas and chose the solution with the
lowest total sum of distances over all replicas. Matlab implementation of v-fold cross-validation was used to validate correct cluster numbers
with v-value set to 10.
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such non-linear behavior might call into question �7% of the
proteins assigned to the anterograde transport ensemble,
hence �10 proteins of the 150 listed.

Gene Ontology Analyses of Injury-regulated Retrograde and
Anterograde Transport Ensembles—We checked our data
against the GO databases for rat and mouse, combining
results from both databases to obtain functional insights on
the proteins we found. Analyses of all three GO parameter
categories, biological processes, cellular compartments, and
metabolic functions, revealed that most of the discovered
proteins are related to cytoskeleton components, macromo-
lecular complex formation, motor proteins, and biosynthesis
(Figs. 5C, 6C, and 7). The GO metabolic function classification
was the most useful for obtaining functional insights on these
transport ensembles. Proteins up-regulated in the retrograde
transport ensemble by injury were highly enriched for protein

binding functions (GO:0005515), mostly in the cytoskeletal
protein binding (GO:0008092) and microtubule binding (GO:
0003777) categories. Other significant groupings for this en-
semble included structural molecular activity (GO:0005198),
comprising general and microtubule motors (Fig. 7A). Proteins
that were less associated with retrograde transport after injury
included a significant representation for protein translation,
RNA binding, and ribosome machineries (GO:0003723, GO:
0003735, and GO:0019843) (Fig. 7B). Metabolic function anal-
ysis revealed fewer significant categories among proteins that
were more associated with anterograde transport after injury,
primarily structural molecular activity, ribosome constituent,
and RNA binding categories (GO:0005198, GO:0003735, and
GO:0003723) (Fig. 7C). The protein ensemble in reduced as-
sociation with anterograde transport after injury revealed sig-
nificant metabolic activity categories, including ATP and GTP

FIG. 3. PCA analysis for iTRAQ data.
A, schematic map of components con-
tributing to protein ensembles in differ-
ent compartments of the injury-ligation
model. NR, non-injured retrograde; IR,
injured retrograde; NA, non-injured an-
terograde; IA, injured anterograde; Inf,
inflammation. B–D, eigenvalues and cor-
responding component contribution for
ITRAQ ratio data for each experiment. All
six variables were used for PCA. Num-
bers above each eigenvalue coordinate
depict data variance accounted for by
that eigenvalue. E, averaged eigenvalues
over three biological experiments. Con-
tribution denotes average variance ac-
counted for by each component. Error
bars denote standard error of mean.
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binding activity (GO:0005524 and GO:0005525) and multiple
catalytic activities (GO:0003824) (Fig. 7D).

DISCUSSION

The heterogeneity of cell types and complex morphology
and anatomy of neural tissues complicate proteomics studies
in the nervous system (26). Contaminations from other tissues
and cell types are a prevalent problem; for example, it has
been estimated that up to 80% of the proteins in human
cerebrospinal fluid are actually contributed by serum contam-
inations (27). Nerve injury studies must also contend with
variations in inflammatory and other responses in injured ver-
sus non-injured tissues. Previous studies of axonally trans-

ported complexes using proteomics used either affinity-
targeted investigations of purified organelles (28–30) or
gel-based differential screens (15, 31). Here, we sought to
obtain a more comprehensive view of axon transport ensem-
ble changes induced by nerve injury by interrogating ligature
axoplasm preparations with iTRAQ quantification and LC-MS/
MS. The resulting data set comprised over 1000 proteins, but
initial attempts at clustering the candidates showed a high
degree of experimental variation, necessitating the use of
mathematical and statistical filters.

The iTRAQ analysis provided quantification of a total of
1173 proteins changing upon injury over three trials in all
experimental groupings. Attempts to cluster the entire data

FIG. 4. Factor analysis of injury-related variables. A, representative quartimax rotated variable loading for factors retrieved from principal
component data (example for a single experiment). Each panel shows relative factor loading for two factors per variable as indicated. B, factor loadings
for variables in three experiments averaged over analytical replicas for each experiment. Loadings were calculated separately for each replica and
further averaged for each biological experiment. The threshold was set to 0.7. C, communality assessment for each variable over three
experiments (including analytical replicas). The boxes show the 25–75% range, and the inner square in each box is the median. Error bars
denote non outlier region. Triangles represent outliers. Communalities for variables were calculated as the sum of squared loadings for that

variable: hi � �
j�1

n

lij
2.
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FIG. 5. Injury-regulated retrograde transport components deduced from factor analysis. A, scatter plot of individual protein scores for
all three factors. Red and blue dots represent positive and negative factor scores, respectively, correlating with the IND/NID variable. Yellow
dots depict cases not correlating with IND/NID. Factor scores were obtained as a vector of data for the equation Y � � � Lfi � � where Y is
a value of the case, � is a population mean, L is a matrix of loadings, � is a specific error, and f is an estimated vector of factor scores. Statistical
significance was estimated with one-way Kruskal-Wallis test with post hoc Dunn’s analysis; the p value cutoff was set to 0.001. B, hierarchic
cluster analysis for proteins assigned to the injury-regulated retrograde transport ensemble. C, GO annotation functional category clustering
for proteins up-regulated in the retrograde transport ensemble after injury. Red indicates a positive relationship; black indicates no relationship.
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set were not successful in providing coherent groupings, and
in fact, even core components of the retrograde transport
machinery such as dynein heavy chain and intermediate
chains and dynactin were not clustered together in a repro-
ducible manner. Both biological and technical aspects can
influence data variability in iTRAQ experiments (32, 33), and a
variety of clustering approaches, including non-hierarchic,
k-mean, and expectation maximization clustering, did not
solve this problem (Fig. 3). Biological variation was shown to
be the principal source of variability in iTRAQ experiments
on unicellular organisms (32), and an in vivo multicellular
tissue such as the sciatic nerve presents vastly higher com-
plexity and potentially increased variation (34–36). Indeed,
there is increasing appreciation of the need for specific

approaches to deal with assorted sources of variation in
proteomics experiments (37).

In this case, despite pooling of extracts from 100 individual
animals per sample and analysis of three independent sam-
ples per treatment using two instrument systems, biological or
experimental variability did not allow straightforward identifi-
cation of co-regulated protein ensembles. We therefore re-
sorted to principal component and factor analyses to extract
biologically meaningful information because they enable eval-
uation of the number of factors affecting variance in a data set
in the absence of any knowledge or assumptions on the
nature of such factors (22). PCA and factor analyses enabled
sorting of the data and extraction of 299 proteins in consistent
groupings associated with retrograde or anterograde trans-

FIG. 6. Injury-related anterograde
transport components deduced from
factor analysis. A, scatter plot of indi-
vidual protein scores for all three factors.
Red and blue dots represent positive
and negative factor scores, respectively,
correlating with the IND/NIP variable. B,
hierarchic cluster analysis for proteins
assigned to the injury-regulated antero-
grade transport ensemble. C, GO anno-
tation functional category clustering for
the main anterograde transport proteins
responding to injury. Red indicates a
positive relationship; black indicates no
relationship.
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port. PCA and factor analyses fit well to a simple model
describing lesion effects on axonal transport as a combination
of anterograde and retrograde transport ensembles and in-
flammation processes. The ligation paradigm separates be-
tween anterograde and retrograde transport components ac-
cumulated at either side of the ligature (Fig. 3A). PCA
distinguished three components influencing the data set, and
their relative contribution was similar in all three experiments
(Fig. 3B). Factor analysis in different experiments showed
batch variability of factor contributions, apparently arising
from biological heterogeneity in the system. Based on factor
loadings, we could conclude that the IND/NID and IND/NIP
variables were affected by mutually exclusive factors through-
out all experiments (Fig. 4C). Comparison of the factor anal-
ysis output with the experimental model of Fig. 3A suggested
that the IND/NID variable is the most suited to evaluate injury-
related changes in retrograde signaling. If inflammation is at
equivalent levels throughout and ligature leakages are negli-
gible, retrograde signaling should be the major driver of
changes in IND/NID between non-injured and injured states of
the sciatic nerve. The high degrees of retrograde transport
factor loading for IND/NID and communality support this no-
tion. IND/NIP was the second variable to be unambiguously
affected by another factor, and similar considerations suggest
that it reflects mainly anterograde transport components. As
in the case of IND/NID, this is supported by a high degree of
factor loading and communality for IND/NIP in all experiments
(Figs. 4C and 6A). Thus, use of factor analysis allowed us to
reduce variable numbers from six to two for assessment of
injury-related transport, and moreover a single variable suf-
ficed for each type of transport. Importantly, factor analysis

based on per case factor scores enables comparison of the
contribution of each factor to changes in individual proteins,
allowing classification of proteins according to the IND/NID
variable for correlation with retrograde transport and accord-
ing to IND/NIP for correlation with anterograde transport. This
decomposition approach significantly reduced data complex-
ity by excluding proteins not clearly correlated with a specific
transport direction. Further cluster analysis on the data ex-
tracted by factor analysis unambiguously validated the two
subsets by forming two clearly distinct clusters (Figs. 5 and 6
and supplemental Figs. S1–S7).

Much of the research effort to date in nervous system
proteomics has focused on central nervous system prepa-
rations (26, 38), most prominently those related to synaptic
transmission (39, 40). Previous characterizations of periph-
eral nerve proteomes have not distinguished between ax-
onal and glial components of the tissue (36, 41–43) apart
from invertebrate preparation analyses from our groups (14,
15) and a very recent study from Cavalli and co-workers (30)
on purified Syd1-containing vesicles in sciatic nerve. The
transported protein ensembles delineated in this study pro-
vide a window on the soluble axoplasm proteome in periph-
eral neurons, revealing a significant degree of heterogeneity
and complexity in this compartment. In addition to providing
a basis for future functional analyses, the data already pro-
vide intriguing insights on the axonal response to injury.
Major categories of proteins associated with axonal trans-
port ensembles in this study include protein synthesis ma-
chinery, cytoskeletal and motor proteins, and metabolic
proteins (Figs. 5–7 and supplemental Tables S1 and S2).
Anterograde transport ensembles are enriched with as-

FIG. 7. Gene ontology analyses on
injury-regulated axonal transport en-
sembles. Retrogradely (A and B) and
anterogradely (C and D) correlating en-
sembles are shown. A and C, positively
correlating proteins. B and D, negatively
correlating proteins.
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sorted enzymatic activities indicative of changes in axonal
metabolism following injury. Although motor-, cytoskele-
ton-, and metabolism-associated proteins are predictable
components of axonal transport systems, the high prepon-
derance of protein synthetic machinery is striking. A previ-
ous study from Twiss and co-workers (31) used in vitro
compartmentalized cultures of sensory neurons to analyze
axon proteomes. That study, together with other non-pro-
teomics analyses (44–46), highlighted the importance of
localized protein translation mechanisms in supporting
nerve injury responses and neurite outgrowth (47). However,
the occurrence of protein translation machinery in periph-
eral axons in vivo has been a topic of vigorous debate (48).
Most of the reports of ribosomes in mammalian axons have
been based on microscopy on static preparations (49), and
the results have been open to different interpretations (for
reviews, see Refs. 48 and 50). Very recent work from Court
et al. (51) has used a combination of electron and fluores-
cence microscopy techniques to visualize ribosomes in sci-
atic nerve axons, and these authors suggested that some of
the axonal ribosomes translocate from Schwann cells after
injury. Our current data provide new support for the occur-
rence of protein synthetic machinery in axons in vivo be-
cause one of the most prominent categories of axonal trans-
port proteins regulated by injury is structural components of
ribosomes (Figs. 5 and 7 and supplemental Tables S1 and
S2). Both 40S and 60S ribosomal protein components are
down-regulated in the retrograde transport ensemble while
undergoing up-regulation in the anterograde ensemble after
injury along with associated RNA-binding and translation-
regulating proteins. This is consistent with dynamic traffick-
ing of ribosomes and associated complexes in axons and
suggests that one of the early responses to axonal injury is
mobilization of protein synthesis machinery toward the site
of the lesion. These data suggest that in contrast to the
“opposing camps” of axonal transport versus local transla-
tion adherents among human researchers peripheral nerve
axons coordinate these two mechanisms to ensure an ef-
fective injury response.
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