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Paris, France

3INSERM, U821, Brain Dynamics and Cognition Laboratory, University Lyon 1,
Lyon, France

4CNRS, UPR 640-LENA, Cognitive Neuroscience and Brain Imaging Laboratory, Paris, France

r r

Abstract: We describe a method to detect brain activation in cortically constrained maps of current
density computed from magnetoencephalography (MEG) data using multivariate statistical inference.
We apply time–frequency (wavelet) analysis to individual epochs to produce dynamic images of brain
signal power on the cerebral cortex in multiple time–frequency bands. We form vector observations by
concatenating the power in each frequency band, and fit them into separate multivariate linear models
for each time band and cortical location with experimental conditions as predictor variables. The
resulting Roy’s maximum root statistic maps are thresholded for significance using permutation tests
and the maximum statistic approach. A source is considered significant if it exceeds a statistical thresh-
old, which is chosen to control the familywise error rate, or the probability of at least one false posi-
tive, across the cortical surface. We compare and evaluate the multivariate approach with existing
univariate approaches to time–frequency MEG signal analysis, both on simulated data and experimen-
tal data from an MEG visuomotor task study. Our results indicate that the multivariate method is
more powerful than the univariate approach in detecting experimental effects when correlations exist
between power across frequency bands. We further describe protected F-tests and linear discriminant
analysis to identify individual frequencies that contribute significantly to experimental effects. Hum
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INTRODUCTION

Statistical inference in magnetoencephalography (MEG)
distributed activation maps typically uses the general lin-
ear modeling (GLM) framework [Kiebel, 2003], which is
considered a standard in functional magnetic resonance
imaging (fMRI) [Friston et al., 1995] and positron-emission
tomography (PET) [Worsley et al., 1992] neuroimaging
studies. However, there are important differences between
MEG and the other neuroimaging modalities related to
how observations are fitted in general linear models, as
well as how subsequent statistical inference is performed.
The investigation of stimulus-locked event-related compo-
nents typically involves a mass univariate approach where
separate analysis of variance (ANOVA) models are fitted
at each spatial location [Barnes and Hillebrand, 2003;
Brookes et al., 2004; Park et al., 2002], or each spatial–tem-
poral location [Pantazis et al., 2003, 2005a; Sekihara et al.,
2005]. Recently, there has also been a great deal of interest
in the analysis of the induced response, which corresponds
to stimulus-related variations in power in different oscilla-
tory bands as a function of time. This allows us to detect
experimental oscillatory effects corresponding to modula-
tions in power in specific frequency bands, even though
the oscillations themselves are not phase-locked to the
stimulus or response. Induced effects are typically investi-
gated using a time–frequency decomposition such as the
Morlet wavelet transform [Tallon-Baudry and Bertrand,
1999; Teolis, 1998]. Examples of the use of ANOVA mod-
els to analyze the induced response include Durka et al.
[2004]; Kiebel et al. [2005]; Pantazis et al. [2005b, 2009];
and Singh et al. [2003].

This paper presents a method for the detection of task-
based changes in brain activity from MEG data, which
analyzes signals in the time–frequency domain based on a
multivariate statistical approach. The statistic used to mea-
sure group separation is Roy’s maximum root, which can
be thought of as a generalization of the conventional F-sta-
tistic for higher-dimensional problems. The significance of
each source is estimated based on the familywise error
rate (FWER), or the probability of at least one false posi-
tive under the null hypothesis of no changes in brain acti-
vation. The FWER is related to the probability distribution
of the maximum statistic across all sources and resampling
methods are used to estimate this distribution [Nichols
and Hayasaka, 2003]. The performance of our method is
compared with that achieved with univariate approaches,
using simulations and real data obtained from a visuomo-
tor MEG study [Jerbi et al., 2007]. Although the emphasis
here is on MEG, our method readily applies to EEG signal
analysis, and even to combined EEG/MEG acquisitions.

Our motivation for the application of multivariate analy-
sis of variance (MANOVA) to MEG comes from findings
both in neuroscience and in statistical inference: studies in
which changes in brain activity were found across several
frequency bands [Bas�ar et al., 2001; Kilner et al., 2005; Pan-
tazis et al., 2005b] have been reported; in such cases, deal-

ing simultaneously with all frequency bands of interest in
a multivariate model might be advantageous over apply-
ing univariate approaches to each frequency band sepa-
rately, especially because the improved detection of event-
related modulations provided by the former in the pres-
ence of correlated variables has been shown [Cole et al.,
1994; Field, 2005]. MANOVA has been applied success-
fully to medical imaging studies, such as the analysis of
deformation-based morphometry using structural MRI
[Worsley et al., 2004; Taylor and Worsley, 2008]; in EEG/
MEG, applications include the creation of multivariate
observations in the spatial dimension [Carbonell et al.,
2004] or in the spatial–temporal dimension where entire
trials were used to form observations [Friston et al., 1996].
However, in contrast to these studies, here we use the
time–frequency information in the MEG signals, after
inverse mapping to the cortical surface, as the observations
for our multivariate model.

METHODS

In this section, we describe the use of MANOVA models
to detect task-based changes in oscillatory brain activity.
Observations for several frequency bands are constructed
using complex Morlet wavelet time–frequency decomposi-
tion and are fitted to separate MANOVA models at each
source location. The resulting Roy’s maximum root maps
are tested for significance using permutation tests, and fol-
low-up protected F-tests and linear discriminant analysis
allow us to identify individual frequencies that contribute
significantly to experimental effects.

Model

Our MEG data set consists of J stimulus-locked event-
related trials, one per stimulus repetition. Each trial is an
array of data M (nsensors � ntimepoints) representing the
measured magnetic field at each sensor and each time
instant. Brain activation Z (nsources � ntimepoints) is modeled
as being linearly related to the measurements, according
to the expression:

M ¼ GZþN; (1)

where G (nchannels � nsources) is the forward operator, also
called lead field matrix, and N represents noise in the
measurements. G depends on the shape and conductivity
of the head and can be estimated with simplified spherical
head models or, more precisely, with boundary or finite
element methods, accounting for the true head shape and
conductivity [Baillet et al., 2001, 2004; Huang et al., 1999;
Mosher et al., 1999]. An estimate of the spatiotemporal ac-
tivity Z can be produced by applying a Tikhonov regular-
ized minimum-norm inverse method [Okada, 2003;
Tikhonov and Arsenin, 1977]:

r Multivariate Statistical Analysis of MEG Data r

r 1923 r



Ẑ ¼ ðG0GþkIÞ�1G0M: (2)

The reconstructed time series at each source location s
are then given by Zst, where t is the time index. Even
though we use cortically constrained regularized mini-
mum-norm, our method can be used with any inverse so-
lution, surface or volume based.

Our goal is to detect event-related modulations of brain
activity over time, space, and frequency, and for that we
need an estimate of neural activation energy at specific
time–frequency instances [Pantazis et al., 2009]. This esti-
mate is given by:

ystf ¼ jCstf j2; (3)

where Cstf ¼ Zst * wtf are the complex wavelet coefficients
obtained from convolving each source time series Zst with
a continuous-time Morlet wavelet kernel wtf [Teolis, 1998].
To improve the signal-to-noise ratio and increase the sta-
tistical power by minimizing the total number of statistics
that need to be tested for significance, we may choose to
summarize the observations over spatial regions of interest
S, time bands T ¼ [t1,t2], and frequency bands F ¼ [f1,f2]:

ySTF ¼
Z Z Z

ðstf Þ2ðSTFÞ
jCstf j2ds dt df : (4)

Multivariate Analysis of Variance

Each trial provides us energy observations ySTF in sev-
eral spatial–temporal-spectral bands STF. We introduce
new indices to identify the observations: i[{1,2, : : : }
denotes the condition (e.g., 1 for the main task of interest
and 2 for the baseline or rest condition), and j denotes the
trials acquired from each condition i. With these indices,
the observations can be arranged into general linear mod-
els. The methodology used here expands the statistical
parametric mapping approach [Friston, 1996] to include in
the analysis the multivariate data now available at each
source location [Worsley et al., 2004].

Consider the ANOVA model:

ySTFij ¼ bSTFi þ uSTFij ; (5)

where bSTFi are the activation parameters for each condi-
tion and uSTFij is the model error term, assumed to be zero-
mean Gaussian. ANOVA is used in situations in which
there is one dependent variable (or observation) and so it
is known as a univariate test. The superscripts STF indi-
cate that we fit the same model at all spatial–temporal
spectral bands. Since a separate but identical GLM is fitted
at each band, this approach is typically referred to as mass
univariate analysis.

MANOVA is designed to look at several dependent var-
iables (observations) simultaneously and so it is a multi-

variate test. We convert the univariate model described
above to a MANOVA model by reorganizing all the varia-
bles into row vectors, whose elements consist of observa-
tions over different frequency bands F. For example, row
vector ySTij contains the values of the scalars ySTFij for all F.
Thus, the MANOVA model becomes:

ySTij ¼ bSTi þ uST
ij : (6)

Since we fit a separate but identical MANOVA at each
spatial–temporal band, it is appropriate to call this approach
mass multivariate analysis, with mass referring to the spa-
tial and temporal dimensions, and multivariate to the fre-
quency dimension. Note that we could have equivalently
formed multivariate observations over other dimensions,
provided that the multivariate dimension is small enough to
allow for stable estimation of the covariance matrices
involved in the calculation of test statistics, as described in
the next section. We chose the frequency dimension because
multiple studies have reported simultaneous changes in
brain activity across several frequency bands [Bas�ar et al.,
2001; Kilner et al., 2005; Pantazis et al., 2005b].

The main reason for preferring MANOVA over ANOVA
design is the increased sensitivity offered by the former
when an experimental effect appears in multiple fre-
quencies. If separate ANOVAs are conducted on each
frequency variable, then any relationship between frequen-
cies is ignored. As such, we lose information about any
correlations that might exist between frequencies. MAN-
OVA, by including all frequency observations in the same
model, takes into account the relationship between differ-
ent frequencies. Consequently, MANOVA has greater
power to detect an effect, because it can detect whether ex-
perimental conditions differ along a combination of varia-
bles (frequencies), whereas ANOVA can detect only if
they differ along a single variable.

GLM theory assumes normal distributions, which is rea-
sonable for averaged evoked responses due to the central
limit theorem. However, power time–frequency decompo-
sitions ySTFij of single trial data have a chi-square distribu-
tion. Fortunately, Kiebel et al. [2005] have shown that,
under most circumstances, one can appeal to the central
limit theorem or apply a log or square-root transform on
the MEG power estimates to make the error terms normal,
and thus GLM theory is still appropriate. Furthermore,
when nonparametric thresholding schemes are used, as in
this paper, parametric assumptions are not necessary and
any deviations from Gaussianity will affect the sensitivity
of detecting an experimental effect, but not error control.

We can equivalently write the MANOVA model in ma-
trix form, where we ‘‘stack’’ all row vectors described
above to form matrices:

YST ¼ XSTBST þUST; (7)

where YST (nobservations � nvariables) is the matrix of all
observations, BST (nconditions � nvariables) is the parameter
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matrix with the parameter activation vectors for all condi-
tions, UST (nobservations � nvariables) is the error matrix, and
XST (nobservations � nconditions) is the design matrix relating
each observation to one of the conditions and whose ele-
ments are either 0 or 1.

Test Statistics

Even though Y1 gives us information about the dynam-
ics of brain activity for a given task, it is necessary to ver-
ify the statistical significance of the observed effects. Based
on the linear model shown in Eq. (7) [Seber, 1984], we
write in matrix form the null hypothesis we are interested
in testing:

AB ¼ C; (8)

where the dimension of A is ncontrasts � nconditions and the
dimension of C is ncontrasts � nvariables. For instance, if there
are two conditions in our study and we want to test for
differences in brain activity between them (a single-con-
trast case), we use A ¼ [1 � 1] and C ¼ 0 in Eq. (8), so
that the null hypothesis of no activation changes becomes
H0 : b1 ¼ b2.

The statistic used in our hypothesis testing is a multivar-
iate equivalent of the F-statistic, which is the ratio of the
between-group to the within-group variances. Here, this
ratio is represented by the multivariate F matrix E�1H,
where H (nvariables � nvariables) and E (nvariables � nvariables)
are the between-group and within-group variance matri-
ces, respectively, and are given by:

H ¼ C�AB̂
� �0

A X0Xð ÞyA0
h i�1

C�AB̂
� �

E ¼ Y� XB̂
� �0

Y� XB̂
� �

;

(9)

where B̂ is the least-squares estimate of the parameter ma-
trix, and (X0X)y indicates the pseudo-inverse of (X0X).
Again, in the case where we test the difference between
two conditions, the matrices of Eq. (9) become:

H ¼ 1

n1
þ 1

n2

� ��1

ðb̂1 � b̂2Þ0ðb̂1 � b̂2Þ

E ¼
Xn1
j¼1

½ðy1j � b̂1Þ0ðy1j � b̂1Þ� þ
Xn2
j¼1

½ðy2j � b̂2Þ0ðy2j � b̂2Þ�

(10)

where n1 and n2 are the number of trials for condition 1
and 2, respectively, and each b̂i; i 2 f1; 2g; is given by the

mean of all trials that belong to condition i, such that
B̂ ¼ ½b̂10 b̂2

0�0:
A number of statistics reduce the matrices described

above into scalar values to test for statistical signifi-
cance, including Roy’s maximum root, Wilks’ likelihood
ratio, Lawley-Hotelling trace, and Pillai’s V [Seber,
1984]. They are all functions of the eigenvalues of
E�1H, and differ in terms of power and robustness to
violations of multivariate normality, homogeneity of the
covariance matrix, and unequal sample sizes. In this
work, we use Roy’s maximum root R, which is given
by the maximum eigenvalue of E�1H, because it is
most powerful when the conditions are mainly sepa-
rated by one discriminant function [Bray and Maxwell,
1985; Field, 2005]. Furthermore, an analytical solution
exists to threshold Roy’s maximum root statistical maps
with random field theory [Worsley et al., 2004], even
though we use a permutation approach in this study.
In the single-contrast case shown in Eq. (10) there is
only one nonzero eigenvalue and all the above statis-
tics, including R, are equivalent to the Hotelling’s T2

[Taylor and Worsley, 2008; Worsley et al., 2004].
For each spatial and temporal location where we fit a

MANOVA model, the null hypothesis is rejected with
level of confidence (1�a) if the statistic R exceeds a thresh-
old Ra; this threshold is based on a measure that provides
control of the number of false positives. The standard
approach [Nichols and Hayasaka, 2003] is to control the
FWER, or the probability of at least one false positive
under the null hypothesis. For MANOVA, this measure
can be controlled over space; for ANOVA computed at
different frequency bands, it can be controlled over space
(therefore, allowing multiple comparison errors over fre-
quencies), or alternatively, simultaneously over space and
frequency.

The FWER is directly related to the global maximum
distribution of the statistic: one or more voxels will
exceed the threshold Ra under H0 only if the maximum
statistic exceeds Ra. The distribution of the maximum sta-
tistic can be estimated empirically with nonparametric
permutation methods [Nichols and Holmes, 2001; Panta-
zis et al., 2005a], since they are exact, computationally
feasible, and require very few assumptions about the
data (most importantly, exchangeability under H0). The
permutation samples are created by randomly exchanging
the 0’s and 1’s at the rows of the design matrix X, recom-
puting the R-statistic map for the permuted data, and
getting its maximum. Repeating this procedure several
times and building a histogram from the resulting sam-
ples gives us the empirical distribution. To preserve the
spatial correlation of the data in the permutation samples,
the same randomization of X is applied to each spatial
location when computing the permuted R-map. The same
is true for the ANOVA case, with the exception that
when controlling FWER over space and frequency, the
same randomization scheme is used over space and
frequency.

1For ease of notation, we will drop the indices ST from now on, since
it is assumed that the model will be fitted at all sources S and all time
points T.
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Post-hoc Analysis

After detecting significant sources in the brain using the
method described above, one might be interested in find-
ing which variable, or set of variables, is responsible for
the significance of that source. In the present work, we use
two approaches: protected F-tests and linear discriminant
analysis [Rencher and Scott, 1990].

Protected F-tests

This technique consists of fitting a univariate ANOVA
model at each of the variables individually, with FWER
correction over space and frequency, but only on those
sources that were previously considered significant accord-
ing to the MANOVA method; in other words, the map of
significant activity points is used as a ‘‘mask’’, on whose
sources each variable is tested for significance. The use of
this ‘‘mask’’ is what makes the protected tests different
from the ‘‘unprotected’’ ones, which are simply F-tests
computed at every spatial location and every frequency
band of interest, with FWER corrected over space and
frequency.

Linear discriminant analysis

Discriminant analysis is a popular technique in pattern
classification, with a wide range of applications that also
includes MEG [Besserve et al., 2007]. Here, we are more
interested in its use as a descriptive tool.

Discriminant functions are linear combinations of varia-
bles that best separate groups. Given our observations yij,
a linear combination transforms them into scalars:

zij ¼ ha; yiji ¼
X
k

akyijk: (11)

The vector a that provides the best group separation is
the one that maximizes the differences between the mean
values of the zij’s for each group ð�ziÞ, divided by their
covariances. In the two-condition case, this standardized
difference is given by [Rencher, 1995]:

a ¼ argmax
ð�z1 � �z2Þ2

s2z
¼ argmax

½ha; �y1 � �y2i�2
a0Sa

; (12)

where S is the sample covariance. Using the relationships
between S and E, and between ð�y1 � �y2Þ0ð�y1 � �y2Þ and H,
shown in Eq. (10), we get:

a ¼ argmax
a0Ha

a0Ea
: (13)

Thus the a that maximizes k ¼ a0Ha/a0Ea is the discrim-
inant function coefficient vector. The solution to Eq. (13) is
given by the eigenvector corresponding to the maximum
eigenvalue k of the generalized eigenvalue problem:

Ha ¼kEa; (14)

or equivalently the eigenvector a corresponding to the
largest eigenvalue of E�1H. Since the highest l is, by defi-
nition, Roy’s maximum root, finding R gives us a
automatically.

If discriminant functions will be used to estimate the rel-
ative contribution of each variable to overall group separa-
tion, their coefficients must be standardized, because of
differences in their magnitudes and in their variances. One
way of doing this is by means of discriminant ratio coeffi-
cients (DRCs) [Thomas, 1992; Thomas and Zumbo, 1996],
which are given by the expression:

dk ¼ akðTaÞk
a0Ta

; (15)

where (.)k is the k-th row of (.), and T ¼ E þ H is the total
variance matrix. The value of dk is always positive, and
therefore indicates how much each variable contributes to
the experimental effect, but not whether that variable
increases or decreases for a given experimental condition.
This information can be retrieved from the estimated pa-
rameter matrix B̂ of the MANOVA model.

RESULTS

To assess the utility of the proposed MANOVA
approach, we compared its performance to that of the
ANOVA methods that we previously used in MEG analy-
sis [Pantazis et al., 2009], using both simulated and real
MEG data. In MANOVA, the FWER is controlled over
space, whereas in ANOVA, unless stated otherwise, the
FWER is controlled over space and frequency; the confi-
dence level in all tests is (1�a) ¼ 95%.

In this study, we configured the Morlet wavelet such
that at 10 Hz the temporal resolution is 300 msec and the
frequency resolution is 2.12 Hz. Furthermore, we used a
single time interval T, which covers the entire duration of
the experiment (1 sec for both simulated and real data),
and the following six frequency bands F: delta (2–4 Hz),
theta (5–8 Hz), alpha (8–12 Hz), beta (15–30 Hz), low-
gamma (30–60 Hz), and high-gamma (60–90 Hz). The
choice of these frequency bands is based on previous find-
ings that suggested distinct functional roles for these fre-
quencies in the sensorimotor cortex [Jerbi et al., 2004;
Crone et al., 1998; Salmelin et al., 1995; Waldert et al.,
2008]. Also, no integration over space was performed on
the wavelet coefficients, i.e., S ¼ s for every s.

Simulations

The simulated brain activation Z has the spatial profile
shown in Figure 1a, consisting of two active sources, one
in each hemisphere. The source in the left hemisphere is a
cosine signal with frequency 10 Hz (within the alpha
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frequency band); the energy of this signal for each trial is
sampled from a normal distribution, depending on the
trial condition:

ri;1 � Nðl1;rÞ
ri;2 � Nðl2;rÞ

; (16)

where ri;j; j 2 f1; 2g are the signal energies for each
trial and condition, l1 ¼ 10þ 2:5

ffiffiffi
3

p
, l2 ¼ 10� 2:5

ffiffiffi
3

p
, and

r ¼ 1. The source in the right hemisphere is a summation
of three cosine signals with frequencies 10, 22.5, and 45 Hz
(within the alpha, beta, and low-gamma frequency bands,
respectively); the energies of these signals are sampled
from a multivariate normal distribution:

ri;1 � Nðl1;KÞ
ri;2 � Nðl2;KÞ ; (17)

where r0i;j ¼ ½rai;j rbi;j r
cL
i;j �; j 2 f1; 2g are the signal energies for

each trial, condition and frequency, and the parameters of
the multivariate distribution are:

l1 ¼
12:5
12:5
12:5

2
4

3
5; l2 ¼

7:5
7:5
7:5

2
4

3
5; K ¼

1 0:9 0
0:9 1 0
0 0 0:1

2
4

3
5: (18)

The time profile of our simulated sources was inspired
by an activation pattern estimated with EEG during a
hand movement task [Pfurtscheller and Lopes da Silva,
1999].

Our simulated sources are then projected onto the sen-
sor space according to Eq. (1); zero-mean Gaussian noise
is added thereafter, such that the SNR is 1/200. We simu-
lated a total of 100 trials, or 50 trials per condition. Power
observations for the frequency bands mentioned above
were fitted to MANOVA models and R-maps were created
for the simulated data. We further performed separate
ANOVA tests for each frequency band. The threshold for
both cases was set to control 5% FWER, only in space for
the MANOVA model, and in space and frequency for the
ANOVA model.

Figures 1b,c show the significant sources obtained with
both ANOVA and MANOVA approaches, respectively.
MANOVA was able to detect both single- and multiple-
frequency sources, as we see two activation regions, one
on each hemisphere, that reflect the spatial location of the
simulated signals. On the other hand, ANOVA was com-
pletely insensitive to the multiple-frequency source, since
only the activation region on the left hemisphere is pres-
ent, although this region is larger than its MANOVA
counterpart.

In Figure 2, the results of our post-hoc analysis methods
are presented. Here, we see the significant sources accord-
ing to the protected F-tests, and also the sources where the
value of DRC was greater than or equal to 1/6, a rule for
assessing the contribution of a variable suggested by

Thomas [1992]. These results are in agreement with the
simulated sources, i.e., they indicate that the detected ac-
tivity on the left hemisphere comes only from the alpha
frequency band, whereas that on the right hemisphere
comes from the alpha, beta and low-gamma bands.

In summary, we find that when compared with
ANOVA, MANOVA is able to detect induced activity with
higher sensitivity in cases where effects involving signals
with multiple, correlated frequencies are present. We also
find evidence that our post-hoc analysis methods are reli-
able tools for finding the frequency bands that cause the
separation among conditions.

Experimental Data

The data used in our work was acquired from a visuo-
motor task study [Jerbi et al., 2004, 2007]. Two conditions
for a single subject were tested: sustained visuomotor con-
trol (VM), in which the subject watched a randomly rotat-
ing cube in a screen in front of him and manipulated a
trackball to prevent the cube from rotating by minimizing
its angular deviation, and rest (R), in which the subject
looked at a still cube without performing any activity.

Figure 3a shows cortical maps with the values of the R-
statistic at each source, after thresholding for significance.
These maps indicate that the differences in brain activity
between the VM and R conditions appear in wide regions
across the cortical surface, mostly in the parietal lobes,
with highest values around the left sensorimotor cortex.
Also, as expected, the highest values of R predominantly
lie in the left hemisphere, which is in line with the fact
that the subject used his right hand to move the trackball.

A comparison of the performance of our MANOVA
method with that of ANOVA can be found in Figure 3b.
Besides the considerable amount of overlap between the
sources detected by both methods, an interesting feature
of these maps is that the extent of the cortical regions
showing experimental effects detected only by ANOVA is
smaller than of those detected only by MANOVA. We
may take a less conservative approach and perform the
ANOVA test with FWER correction only over space. Here,
in the worst case where the frequency bands are inde-
pendent, the achieved confidence level is not (1�a) ¼ 95%,
but (1 � a)6 ¼ 73.51%. Even in this case, MANOVA is still
able to detect sources that ANOVA is not, as Figure 3c
shows. (In fact, these images show that, in this study, the
difference between correction over space and frequency
and correction only over space is very small in ANOVA.)

Given the difference between the MANOVA and
ANOVA methods, it is important to find the frequency
band (or bands) responsible for the significance in the R
maps. As discussed above, protected F-tests and linear dis-
criminants are suitable methods for finding this informa-
tion, and the resulting cortical maps are shown in Figures
4 and 5, respectively. There are some differences between
these maps, for instance the active sources for the high-
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gamma band have very different spatial patterns, which
should be expected since each method performs a different
kind of analysis: protected F-tests look at each frequency
band without taking into account the other bands, whereas
linear discriminants look at all variables simultaneously.

However, it is clear from both maps that the beta fre-
quency band brings the greatest contribution to the overall
group separation, followed by the low-gamma band
but with considerably less influence in the activation
changes.

Figure 2.

Post-hoc analysis results on the simulated data, at the a, b, and cL frequency bands. Top row:

significant sources obtained from the protected F-test. Bottom row: sources where the discrimi-

nant ratio coefficient (DRC) was greater than or equal to 1/6. For the other frequency bands,

none of the methods found any active source.

Figure 1.

Simulation results. (a) The spatial profile of the two sources simulated on the brain surface; the signal

on the left hemisphere lies in the alpha band, whereas the signal on the right hemisphere lies in the

alpha, beta and low-gamma bands; (b) the significant activation regions obtained from the univariate

approach (ANOVA), with FWER controlled over space and frequency; (c) the significant activation

regions obtained from the multivariate approach (MANOVA), with FWER controlled over space.
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Figure 3.

Results of the analysis with data from a visuomotor study. (a) Brain map of the R-statistic, after

thresholding for significance; (b) comparison between ANOVA (FWER corrected over space and

frequency) and MANOVA; (c) comparison between ANOVA (FWER corrected over space) and

MANOVA. In the last two maps, sources in red were detected by both methods, sources in yel-

low were detected by MANOVA only, and sources in blue were detected by ANOVA only.

Figure 4.

Thresholded protected F brain maps for each frequency band of interest.
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A closer look at the behavior of a few selected voxels is
provided by Figure 6. It shows the DRC values and the
mean power for each condition, normalized by the stand-
ard deviation, for the voxel with the highest value of the
R-statistic (Fig. 6a), a voxel detected by MANOVA but not
by ANOVA nor by any of the protected F-tests (Fig. 6b),
and a voxel not detected by MANOVA (Fig. 6c). In the
first case, the changes in activation are mostly caused by
the beta, low-, and high-gamma frequency bands. In the
second case, a combination of the delta, alpha, beta, and
high-gamma bands causes a significant discrimination, but
none of these frequencies is significant by itself. Finally, in
the third case, the changes between conditions are very
small for every band; even though some DRCs have large
values, this reflects the fact that they are standardized to
sum to 1, and should not be considered evidence of signif-
icant overall separation.

DISCUSSION

In this study, we have developed a multivariate method
for the detection of significant task-related modulations

of oscillatory activity in MEG data. By combining time–
frequency decomposition of the MEG signals and
multivariate statistical inference, we were able to reliably
detect task-related cortical activations where univariate
approaches were previously insensitive. The advantages
of the multivariate technique were shown with both simu-
lated data and MEG visuomotor recordings.

In both simulated and real data, despite the considerable
overlap between both MANOVA and ANOVA methods,
the number of statistically significant surface elements
obtained from MANOVA was higher than the number of
significant sources obtained from ANOVA. Also, MAN-
OVA was more sensitive to the activity of a number of sour-
ces even if less conservative ANOVA tests were performed.
The difference in performance between the two methods is
more evident in the simulation results, where MANOVA
was sensitive to both single-frequency and multiple-fre-
quency sources (i.e., to changes in a single variable as well
as to changes in multiple variables, respectively), whereas
ANOVA found sources only in the former.

A number of factors may have influenced our results,
such as the choice of a specific inverse operator to

Figure 5.

Brain maps of the DRCs greater than or equal to 1/6 for each frequency band of interest.
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reconstruct current density maps, or the selection of a vol-
umetric source space rather than cortical imaging. We
could have also used alternative ways to control false posi-
tives, for example multivariate random field methods [Car-
bonell et al., 2008; Taylor and Worsley, 2008] instead of
permutations to estimate the maximum distribution, or
even the use of false discovery rate [Benjamini and Hoch-
berg, 1995; Genovese et al., 2002] instead of the FWER.

Our findings are better understood if we look at the ba-
sic concepts behind Roy’s maximum root, and the opera-
tions this statistic performs on the multivariate data. The
key concept behind it is the union–intersection principle
[Roy, 1953; Seber, 1984; Worsley et al., 2004]: a multivari-
ate null hypothesis is the intersection of simpler univariate
null hypotheses, or conversely, the multivariate alternative
hypothesis is the union of univariate alternative hypothe-
ses. Based on this principle, R can be computed by creat-
ing a univariate model from the original multivariate
model through a linear combination on the observations,
computing the F-statistic for the new model, repeating this

procedure for all linear combinations, and taking the maxi-
mum F. Thus, Roy’s maximum root is a statistical test that
simultaneously considers all possible simpler hypothesis
F-tests derived by linearly combining the multivariate
observations (infinite in number). The combined null hy-
pothesis is the intersection of the simpler null hypotheses,
and therefore, to control the error rate among them, we
need to apply a higher threshold than the one we would
apply to control only a single univariate test. However, if
a correlation pattern causes a linear combination of the
observations to have a high F-statistic, then only MAN-
OVA will detect it because ANOVA does not test for arbi-
trary linear combinations of observations. ANOVA only
tests for the trivial linear combinations of observations that
assign 1 to the variable of interest, and 0 to all other fre-
quency bands.

Given the relationship between Roy’s maximum root
and the union–intersection principle, the work of Carbon-
ell et al. [2004] is in a sense a direct precursor of our
MANOVA method. In this paper, a one-dimensional

Figure 6.

DRC and normalized mean power for both conditions at specific voxels. (a) Voxel with the high-

est value of the R-statistic; (b) voxel detected by MANOVA, but not by ANOVA nor by any of

the protected F-tests; (c) voxel not detected by MANOVA; (d) spatial location on the cortical

surface of each of the selected voxels.
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statistical map was formed over time by using a multivari-
ate statistic over space. The statistical map was thresh-
olded by means of random field theory, and once
significant time instances were identified, the union–inter-
section principle allowed further localization of the effect
in space. In our work, we form the statistical map in
space–time instead of just time, and threshold it using per-
mutation tests instead of random field theory. Further-
more, the union–intersection principle of Roy’s maximum
root would have allowed us to further localize the effect in
frequency, similarly to Carbonell et al. [2004] in space.
However, we implemented an alternative method based
on protected F-tests, whose significance was evaluated
with an additional permutation analysis to exactly control
the FWER on the locations in space–time where the null
hypothesis had already been rejected. We further eval-
uated the contribution of each frequency to the experimen-
tal effect with discriminant analysis, an approach not
included in Carbonell et al. [2004].

Going back to our results, it is reasonable to expect
sources sensitive only to ANOVA because, when a single
variable shows differences between conditions, MANOVA
is more conservative than ANOVA, since here the former
is equivalent to a univariate test at a level higher than
(1�a). On the other hand, it is also reasonable to expect
sources that can only be detected by MANOVA because
this might relate to variables that do not show an effect
when considered individually, but that contribute to group
separation when combined, especially if they are some-
what correlated.

As a follow-up method to our MANOVA technique, we
found that both protected F-tests and linear discriminants
are reliable ways to identify individual frequency bands
that contribute significantly to changes in brain activation.
This is demonstrated by our simulation results, since ei-
ther method was able to detect accurately the bands that
form the simulated time series on each source.

When applied to real data, our post-hoc analysis points
towards interesting results. One noteworthy finding is
how the sources detected by each technique differ; as men-
tioned before, this is evident for the high-gamma band
(among other cases), as the activation found by the pro-
tected F-test lies entirely on the left hemisphere, whereas
most of the sources with sufficiently high DRCs are on the
right hemisphere. If we assume that all the significant
results of our statistical tests faithfully describe the experi-
mental effects of the real data, then these seemingly con-
tradictory findings are in fact evidence of different
activation patterns in the brain, to which each of the meth-
ods here is sensitive. In particular, the significant F values
in the left hemisphere in Figure 4f indicate sources with a
high between-condition variation in high-gamma power.
However, these sources have small DRCs in the high-
gamma band, as seen in Figure 5f, because the beta fre-
quency contributes much more to the condition separation
than high-gamma. On the contrary, high DRCs on the
right hemisphere of Figure 5f denote sources where high-

gamma changes contribute strongly to the separation
between conditions, together with other bands, but high-
gamma itself is insufficient to separate the two conditions
with an F-test.

Figure 6b refers to a voxel in the right visual cortex that is
sensitive to MANOVA but not to ANOVA. In this voxel, no
frequency band is significantly active, according to the pro-
tected F-tests, but the DRC values and the differences in the
normalized mean power between conditions indicate that
the activity variation there comes mostly from the high-
gamma, alpha, delta, and beta bands. Thus, it is a situation
in which separation is caused not by a single variable but
by a combination of variables, and it demonstrates not only
the advantages of multivariate over univariate analysis, but
also the potential of MANOVA as a tool for studying fre-
quency interactions in the brain. An increasing number of
studies suggest that investigating the relationship between
power and phase modulations in multiple frequency bands
in various cortical structures might provide fundamental
insights into the network dynamics underlying various
aspects of neural processing [Canolty et al., 2006; Darvas
et al., 2009; Jensen and Colgin, 2007]. The multivariate
framework proposed here and its possible extensions may
provide a novel procedure to address the question of cross-
frequency coupling in the human brain.

Finally, even though we demonstrated the MANOVA
approach on a single-subject study, it can be similarly
applied to multi-subject studies. The easiest way would be
to use the summary statistics approach [Beckmann et al.,
2003; Holmes and Friston, 1998; Mumford and Nichols,
2006], where a first or lower level model fits the data for
each subject separately, and a second level combines the
different subjects. In this case, the first stage model could
estimate a multivariate contrast of interest, such as the dif-
ference in power between two conditions for each fre-
quency. The second stage model could then use the
multivariate contrasts from each subject as multivariate
observations in a MANOVA model.
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