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The basic reproduction number R0 is arguably the most important quantity in infectious dis-
ease epidemiology. The next-generation matrix (NGM) is the natural basis for the definition
and calculation of R0 where finitely many different categories of individuals are recognized.
We clear up confusion that has been around in the literature concerning the construction of
this matrix, specifically for the most frequently used so-called compartmental models. We
present a detailed easy recipe for the construction of the NGM from basic ingredients derived
directly from the specifications of the model. We show that two related matrices exist which
we define to be the NGM with large domain and the NGM with small domain. The three
matrices together ref lect the range of possibilities encountered in the literature for the charac-
terization of R0. We show how they are connected and how their construction follows from
the basic model ingredients, and establish that they have the same non-zero eigenvalues,
the largest of which is the basic reproduction number R0. Although we present formal recipes
based on linear algebra, we encourage the construction of the NGM by way of direct epide-
miological reasoning, using the clear interpretation of the elements of the NGM and of the
model ingredients. We present a selection of examples as a practical guide to our methods.
In the appendix we present an elementary but complete proof that R0 defined as the
dominant eigenvalue of the NGM for compartmental systems and the Malthusian parameter
r, the real-time exponential growth rate in the early phase of an outbreak, are connected
by the properties that R0 . 1 if and only if r . 0, and R0 ¼ 1 if and only if r ¼ 0.

Keywords: basic reproduction number; next-generation matrix;
epidemiological model
1. INTRODUCTION

The basic reproduction numberR0 is arguably the most
important quantity in infectious disease epidemiology.
It is among the quantities most urgently estimated for
emerging infectious diseases in outbreak situations,
and its value provides insight when designing control
interventions for established infections. From a theor-
etical point of view R0 plays a vital role in the
analysis of, and consequent insight from, infectious dis-
ease models. There is hardly a paper on dynamic
epidemiological models in the literature where R0 does
not play a role. R0 is defined as the average number
of new cases of an infection caused by one typical
infected individual, in a population consisting of
susceptibles only.1
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It has been shown that R0 is mathematically
charactrized by regarding infection transmission as a
‘demographic process’, where producing offspring is
not seen as giving birth in the demographic sense, but
as causing a new infection through transmission (we
will refer to this as an ‘epidemiological birth’). In a
natural way this leads to viewing the infection process
in terms of consecutive ‘generations of infected individ-
uals’, in complete analogy to demographic generations.
Subsequent generations growing in size then indicate a
growing population (i.e. an epidemic), and the growth
factor per generation indicates the potential for
growth. In a natural way this growth factor is then
the mathematical characterization of R0 (Diekmann
et al. 1990).

As a rule, several traits of individuals are epidemio-
logically relevant in an infectious agent/host system:
for example age, sex, species. We will only regard the
case where these traits divide the population into a
finite number of discrete categories. One can then define
This journal is q 2009 The Royal Society
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a matrix that relates the numbers of newly infected
individuals in the various categories in consecutive gen-
erations. This matrix, usually denoted by K, is called
the next-generation matrix (NGM); it was introduced
in Diekmann et al. (1990) who proposed to define R0

as the dominant eigenvalue of K. In this paper, we
show how to construct the NGM for any such system.
We relate the structure of the NGM to its epidemiologi-
cal interpretation, and use this interpretation to extract
relevant information from the matrix in a systematic
manner.

Compartmental models are the most frequently used
type of epidemic model. In this class of models, individ-
uals can be in a finite number of discrete states. Some of
these states are simply labels that specify the various
traits of individuals. Of these, some will be changing
with time, such as age class, and others will be fixed,
such as sex or species. Other states indicate the progress
of an infection: for example, an individual can upon
becoming infected, typically first enter a state of latency,
then progress to a state of infectiousness, and then lose
infected status to progress to a recovered/immune state.
With each state one can associate the subpopulation of
individuals who are in that particular state at the given
time (e.g. a female in a latent state of infection). Often
the same symbol is used as a label for a state and to
denote the corresponding subpopulation size, either as a
fraction or as a number (e.g. I or Y for individuals in an
infectious state). The dynamics are generated by a
system of nonlinear ordinary differential equations
(ODEs) that describes the change with time for all sub-
population sizes. For the computation of R0 we only
regard the states that apply to infected individuals.

To calculate R0 one begins with those equations of
the ODE system that describe the production of new
infections and changes in state among infected individ-
uals. We will refer to the set of such equations as the
infected subsystem. The first step is to linearize the
infected subsystem of nonlinear ODEs about the infec-
tion-free steady state that, as a rule, exists.
Epidemiologically the linearization ref lects that R0

characterizes the potential for initial spread of an infec-
tious agent when it is introduced into a fully susceptible
population, and that we assume that the change in the
susceptible population is negligible during the initial
spread. This linearized infected subsystem is the
starting point of our calculations.

Any linear system of ODEs is described by a matrix,
usually called the Jacobian matrix when derived by lin-
earization of the original nonlinear ODE system. Our
aim is to relate the structure of this matrix to the epide-
miological interpretation. In particular, we explain how
one can determine R0 by first decomposing the matrix
as T þ S, where T is the transmission part, describing
the production of new infections, and S is the transition
part, describing changes in state (including removal by
death or the acquisition of immunity). We next com-
pute the dominant eigenvalue, or more precisely the
spectral radius r, of the matrix 2TS21 (note the
minus sign in front of T). This decomposition into T
and S was first described in Diekmann & Heesterbeek
(2000, pp. 105–107) and later in Van den Driessche &
Watmough (2002), but does not typically lead to the
J. R. Soc. Interface (2010)
NGM as introduced in Diekmann et al. (1990; and ela-
borated in Diekmann & Heesterbeek (2000, ch. 5)),
which is the basis for the definition of R0. This is
because the decomposition relates to the expected off-
spring of individuals of any state and not just
epidemiological newborns (i.e. new infections). For
example, a latency state and a consecutive infectious
state are both infected states, but the change from
latency to infectiousness does not involve a new infec-
tion occurring, but rather an already established
infection moving to a different infection stage. This
has led to confusion as others have tried to reconcile
the appealing linear algebra approach with the original
NGM K and its interpretation. To make the distinction
clear and remove confusion, we will call the matrix
KL U 2TS21 the NGM with Large domain (hence
the subscript ‘L’). We will show that r(KL) ¼ r(K).

We will show how one can easily find the NGM K
from the NGM with large domain KL. This is important
because very often (indeed almost always) K has a
dimension which is lower than that of KL, making the
computation of R0 from K easier and increasing the
possibility of obtaining an explicit expression. The
reason for this is that there are usually but a few
states that can be entered through epidemiological
birth among the total number of states in the system.
The NGM with large domain typically uses the
dynamics of (many) more states than the NGM to
describe the evolution of infection generations. Because
the epidemiological births represent states that individ-
uals can have immediately following their infection, we
will call these states-at-infection.2 Only the states-
at-infection are involved in the action of K, and hence
in the computation of R0. By regarding the matrix T
we show how one can easily determine the states-at-
infection; a simple matrix calculation using T and S

then leads to K.
In some situations a further reduction in dimension is

possible. This is the case when det K ¼ 0. Typically this
is when the incidences corresponding to two or more
different states-at-infection occur in a fixed (i.e. time
independent) ratio. We call the lower-dimensional
matrix the NGM with Small domain, and denote it by
KS. We will show how to compute the smaller matrix
from the basic ingredients in T and S, and that the
spectral radius of KS is equal to that of K.

Experienced modellers can often jump directly from
the model specification to the NGM, without going
through the formalities of the linear algebra involved.
Even though the construction of KL is an easy exercise
from the linear algebra perspective, and K may be
derived from KL via a linear transformation, the con-
struction of K is even easier if one is guided by the
epidemiological interpretation. This is possible because
of the clear biological meaning of the elements of K.
The element Kij is the expected number of new cases
with state-at-infection i, generated by one individual
who has just been born (epidemiologically speaking)
in state-at-infection j. Throughout this paper we will
emphasize this intuitive approach for all examples
used, in the hope that less experienced modellers are
able to gain insight into deriving the NGM in this
systematic and rigorous, yet biological, manner.
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The reduction process sketched above often leads to
an explicit formula for R0 or, at least, to an eigenvalue
problem with lowest possible dimension (given the
specified biology of the system). This is one of the
reasons why researchers compute R0 and not the intrin-
sic rate of natural increase (Malthusian parameter) r,
which would otherwise serve equally well to characterize
the potential for initial spread. In general, there is no
explicit relation between the value of R0 and the
value of r, in the sense that, for example, infections
with a high R0 do not automatically lead to fast
exponential increase of incidence.

However, the magnitude of R0 does reveal the sign
of r because the following holds: R0 . 1 if and only
if r . 0, and R0 ¼ 1 if and only if r ¼ 0 (and
hence one also has R0 , 1 if and only if r , 0). In
the appendix we provide an elementary but detailed
proof of this correspondence. The proof originally
given in Diekmann & Heesterbeek (2000) is incom-
plete, as pointed out in Thieme (2009; H. R. Thieme
2009, personal communication). It is this sign equival-
ence that validates the use of the generation-based
approach to characterize R0 and hence the theory of
the NGM. This relation with r establishes that
R0 . 1 implies instability of the infection-free steady
state of the ODE system, and R0 , 1 implies stab-
ility. This is helpful because, in a model setting, it
is often possible to derive a formula for R0, whereas
r is only implicitly defined.
2. MOTIVATING EXAMPLES

To illustrate the various NGMs that were introduced in
§1, we construct two connected examples for pedagogi-
cal purposes only. In §3 we present formal recipes to
derive the various NGMs in general. In the present
motivational section we explain the foundations for
the steps in the recipes in the context of the examples.
Both examples relate to a compartmental SEI model
where there are two categories of individuals in the
population. For the first example the only epidemiologi-
cal difference between the categories is the time that the
individuals spend in the latent phase following exposure
to infection. The second example is an extension of this
model where the two categories respond differently to
infection throughout their life (susceptibility, latency,
infectivity).

2.1. An SEI model with two latent categories

Consider a system with the following states: S suscep-
tible; E1 latently infected of category 1; E2 latently
infected of category 2; I infectious; and R recovered/
removed/immune. As usual, the letters for the states
also indicate the size of the subpopulation in that
state, where ‘size’ in our case is the number of individ-
uals in that state. The idea behind this system might
be that categories 1 and 2 represent individuals who,
once infected, progress to infectiousness at different
rates. For this model, we assume that the trait that
causes this difference in disease progression does not
manifest itself as a difference in susceptibility, so there
is only one S state. We assume that there is a fixed
J. R. Soc. Interface (2010)
ratio of the two categories in the population, p : 1 2 p,
hence susceptibles enter the E1 and E2 states in that
fixed ratio following exposure to infection. Let b be
the transmission rate, m the per capita birth and
death rates, n1 and n2 the rates of leaving the respective
latency states, and g the rate of leaving the infectious
state. The equations are

_S ¼ mN � b
SI
N
� mS ; ð2:1Þ

_E1 ¼ pb
SI
N
� n1 þ mð ÞE1; ð2:2Þ

_E2 ¼ 1� pð Þb SI
N
� n2 þ mð ÞE2; ð2:3Þ

_I ¼ n1E1 þ n2E2 � gþ mð ÞI ð2:4Þ
and _R ¼ gI � mR; ð2:5Þ

with N ¼ S þ E1 þ E2 þ I þ R. This system has three
infected states, E1, E2, and I; and two uninfected
states, S and R. Although there are five states in
the model, it is four-dimensional as the total popu-
lation size is constant. At the infection-free steady
state E1 ¼ E2 ¼ I ¼ R ¼ 0, hence S ¼ N. The only
occurrence of the variable S in equations (2.2)–
(2.5), either directly or implicitly via N, is through
the term bSI/N in equations (2.2) and (2.3) which
becomes bI when we set S ¼ N. Hence the lineariza-
tion of equations (2.2)–(2.4) is closed, in that it
does not involve the deviation of S from its steady-
state value. Also, R does not appear in equations
(2.2)–(2.4), and for small (E1, E2, I) we have the
linear system

_E1 ¼ pbI � n1 þ mð ÞE1; ð2:6Þ
_E2 ¼ 1� pð ÞbI � n2 þ mð ÞE2 ð2:7Þ

and _I ¼ n1E1 þ n2E2 � gþ mð ÞI : ð2:8Þ

We will refer to the ODEs (2.6)–(2.8) as the linear-
ized infection subsystem, as it only describes the
production of new infecteds and changes in the
states of already existing infecteds.

If we set x ¼ (E1, E2, I)0, where the prime denotes
transpose, we now want to write the linearized infection
subsystem in the form

ẋ ¼ Tþ Sð Þx: ð2:9Þ

The matrix T corresponds to transmissions and the
matrix S to transitions. In this paper, we include
death in the transition matrix to keep the notation
simple (contrast with Diekmann & Heesterbeek 2000).
Hence, all epidemiological events that lead to new
infections are incorporated in the model via T, and
all other events via S. Progress to either death or
immunity guarantees that S is invertible.

Our example, described by the subsystem
(2.6)–(2.8), is three-dimensional and hence the trans-
mission and transition matrices in the corresponding
description (2.9) are also three-dimensional. They are
obtained from system (2.6)–(2.8) by separating the
transmission events from other events. If we refer to
the infected states with indices i and j, with i,j [ 1, 2,
3, then the entry Tij is the rate at which individuals
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in infected state j give rise to individuals in infected state i,
in the linearized system. So Tij¼ 0 when no new cases
produced by an individual in infected state j can be in
infected state i immediately after infection. Regarding
the linearized subsystem (2.6)–(2.8) we obtain

T ¼
0 0 pb
0 0 1� pð Þb
0 0 0

0
@

1
A

and

S ¼
� n1 þ mð Þ 0 0

0 � n2 þ mð Þ 0
n1 n2 � gþ mð Þ

0
@

1
A:

Hence the NGM with large domain KL is
three-dimensional and given by (note the essential
minus sign)

KL ¼ �TS
�1 ¼

0 0 pb

0 0 1� pð Þb
0 0 0

0
B@

1
CA

�

1
n1 þm

0 0

0
1

n2 þm
0

n1

n1 þmð Þ gþmð Þ
n2

n2 þmð Þ gþmð Þ
1

gþm

0
BBBBBB@

1
CCCCCCA

¼

pbn1

n1 þmð Þ gþmð Þ
pbn2

n2 þmð Þ gþmð Þ
pb

gþm

1� pð Þbn1

n1 þmð Þ gþmð Þ
1� pð Þbn2

n2 þmð Þ gþmð Þ
1� pð Þb
gþm

0 0 0

0
BBBB@

1
CCCCA:

As we will show formally in §3, the dominant eigenvalue
of this matrix is equal toR0, where

R0 ¼
pn1

n1 þ m
þ 1� pð Þn2

n2 þ m

� �
b

gþ m
: ð2:10Þ

Interlude: From a computational point of view, it
is easy to use a mathematical software package to
compute KL from T and S. We remark, however,
that the only cumbersome step, i.e. computing the
inverse of S, can be easily performed using the bio-
logical interpretation of 2S21. In, for example,
Diekmann & Heesterbeek (2000, p. 35) it is shown
that the element (2S21)ij is the expected time that
an individual who presently has state j will spend
in state i during its entire future ‘life’ (in the epide-
miological sense). In the above example this works
out as follows. Individuals who are presently in
state Ei will spend, on average, an amount of time
1/(ni þ m) in that state. The same individuals will
spend on average an amount of time (ni/(ni þ m))
� (1/(g þ m)) in state I, where the first factor is
the probability that an individual actually changes
its state from Ei to I, instead of leaving state Ei by
dying, and the second factor is the average amount
of time an individual who enters state I spends in
state I.3 The individuals in state Ei will spend no
time at all in state Ej, with j = i, leading to zeros
J. R. Soc. Interface (2010)
for the appropriate elements. Finally, individuals
who are presently in state I will spend no time at
all in states E1 and E2, and will, on average, spend
an amount of time 1/(g þ m) in state I. This leads
to a full specification of 2S21.

We now proceed with our exposition. The first
thing to note is that T has a special structure: the
third row of T consists of zeros only. Individuals
can therefore not be in the third state (in this case
state I) immediately after infection. Hence the
system has only two states-at-infection: all individuals
start their infected life (i.e. are epidemiologically born)
in either E1 or E2. The NGM is therefore a
two-dimensional matrix.

The formal approach to obtaining K from KL is as
follows. We pre- and post-multiply KL by an auxiliary
matrix E that singles out the rows and columns relevant
for the reduced set of states. Specify E as consisting of
unit column vectors ei, for all i such that the ith row
of T is not identically zero.4 In other words, create a
matrix E whose columns consist of unit vectors relating
to non-zero rows of T only. In the above case this
leads to

E ¼
1 0
0 1
0 0

0
@

1
A:

To find the NGM we then perform the matrix
multiplication

K ¼ E0KLE ¼ �E0TS
�1E: ð2:11Þ

For the example above, we get for the product of E0T
and 2S21E

K ¼
0 0 pb

0 0 1� pð Þb

� �

�

1
n1 þ m

0

0
1

n2 þ m
n1

n1 þ mð Þ gþ mð Þ
n2

n2 þ mð Þ gþ mð Þ

0
BBBBBB@

1
CCCCCCA

¼

pbn1

n1 þ mð Þ gþ mð Þ
pbn2

n2 þ mð Þ gþ mð Þ
1� pð Þbn1

n1 þ mð Þ gþ mð Þ
1� pð Þbn2

n2 þ mð Þ gþ mð Þ

0
BB@

1
CCA:

Remember that for a 2 � 2 matrix the dominant
eigenvalue, and hence R0, can be obtained from the
trace and the determinant of the matrix as

R0 ¼ r Kð Þ

¼ 1
2

trace ðKÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trace ðKÞ2 � 4 detðKÞ

q� �
:

ð2:12Þ

Note that, in our example, det K ¼ 0, i.e. K is a
singular matrix. Because K is a 2 � 2 matrix we can
conclude right away that R0 ¼ trace K. The resulting
expression is as in equation (2.10) above.
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Apart from resulting in a simplified expression forR0

in the two-dimensional case, an NGM with the property
that det K ¼ 0 has the added feature that we can
achieve further reduction in dimension of the matrix.
We return to this below. First we show that, by epide-
miological reasoning directly from the specification of
the system, we can obtain the elements of K from
their interpretation without going through the linear
algebra. For initial training in this kind of argument
it helps to draw a diagram of the system one is studying.
For our example above the argument goes as follows.
For the element K11, we start with one individual
with state-at-infection 1 (i.e. an individual who has
just entered state E1), and determine, by following
that individual for the remainder of its infectious life,
how many new cases of state-at-infection 1 it is
expected to produce. Before the individual can infect,
it has to survive the E1 state and move to the I state.
This happens with probability n1/(n1 þ m). While in
the I state, the individual is expected to produce new
cases at a rate b, for an expected time 1/(g þ m).
A fraction p of these will be new cases with
state-at-infection 1. Multiplying these factors gives

K11 ¼
n1

n1 þ m
b

1
gþ m

p:

Analogous reasoning gives the expressions for K12, K21

and K22.
In this example we saw that det K ¼ 0. The special

feature of the model that causes this is that the
states-at-infection are necessarily produced in a fixed
proportion.5 One can then reduce the dimension of
the system even further than the reduction from the
three-dimensional KL to the two-dimensional K. In
this example, we need only one state to fully determine
R0, because there is only one state in which individuals
can produce new cases, i.e. state I. We will call a state
where individuals can produce new cases
state-of-infectiousness. This argument can be formal-
ized by defining an NGM with small domain KS for
such situations. To see whether the dimension of KS is
smaller than the dimension of K we can simply check
whether det K ¼ 0.

To determine KS from K, when a reduction is poss-
ible, we again examine the transmission matrix T, but
instead of only examining the rows we now also examine
the columns. For the example above we see that T has
two columns containing only zeros, and only one
column that is a non-zero vector. All three columns
are therefore multiples of the same vector C U
( p, 1 2 p, 0)0, the first two columns being zero times
this vector, the third column being b times this
vector. Similarly, the rows of T are all multiples of
one row vector R U (0, 0, b), the first row is p times
this vector, the second row is (1 2 p) times this
vector, and the third row is zero times this vector. Actu-
ally, R and C constitute a (multiplicative)
decomposition of the transmission matrix T, in the
sense that T ¼ CR, i.e. Tij ¼ CiRj. We define the
NGM with small domain by

KS ¼ �RS
�1C: ð2:13Þ
J. R. Soc. Interface (2010)
For this example

KS ¼ � 0 0 bð ÞS�1

p

1� p

0

0
B@

1
CA

¼ pbn1

n1 þ mð Þ gþ mð Þ þ
1� pð Þbn2

n2 þ mð Þ gþ mð Þ

� �
:

The dominant eigenvalue of this ‘matrix’ equals R0, as
given in equation (2.10).
2.2. An SEI model with two host categories

To illustrate the power of our approach, we now briefly
consider a similar system but allow the difference
between categories 1 and 2 in the population to mani-
fest itself in all states. We then distinguish eight
states S1, S2, E1, E2, I1, I2, R1 and R2, making the
system originally six-dimensional. (The sizes of the
subpopulations of those that belong to categories
1 and 2 are constant at pN and (1 2 p) N, respectively.)
The equations for this system are

_S1 ¼ pmN � b11
S1I1

N
� b12

S1I2

N
� mS1;

_S2 ¼ 1� pð ÞmN � b21
S2I1

N
� b22

S2I2

N
� mS2;

_E1 ¼ b11
S1I1

N
þ b12

S1I2

N
� n1 þ mð ÞE1;

_E2 ¼ b21
S2I1

N
þ b22

S2I2

N
� n2 þ mð ÞE2;

_I 1 ¼ n1E1 � g1 þ mð ÞI1;

_I 2 ¼ n2E2 � g2 þ mð ÞI2;

_R1 ¼ g1I1 � mR1

and _R2 ¼ g2I2 � mR2:

Reasoning as in §2.1, we see that there are four
infected states in this system, and we restrict ourselves
to a four-dimensional infected subsystem. The trans-
mission and transition matrices of the corresponding
linearized subsystem are four-dimensional, with

T ¼

0 0 pb11 pb12
0 0 1� pð Þb21 1� pð Þb22
0 0 0 0
0 0 0 0

0
BB@

1
CCA

and

S¼

� n1þmð Þ 0 0 0
0 � n2 þmð Þ 0 0
n1 0 � g1þmð Þ 0
0 n2 0 � g2þmð Þ

0
BB@

1
CCA:
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The NGM with large domain KL ¼ 2TS21 is
four-dimensional:

KL ¼ �TS
�1

¼

pb11n1

n1 þ mð Þ g1 þ mð Þ
pb12n2

n2 þ mð Þ g2 þ mð Þ
1� pð Þb21n1

n1 þ mð Þ g1 þ mð Þ
1� pð Þb22n2

n2 þ mð Þ g2 þ mð Þ
0 0

0 0

0
BBBBBBB@

pb11

g1 þ m

pb12

g2 þ m

1� pð Þb21

g1 þ m

1� pð Þb22

g2 þ m

0 0

0 0

1
CCCCCCCA
:

Of the four infected states, there are only two that
are states-at-infection. We know this from the model,
but we can also see this immediately by looking at T
and noting that two rows consist entirely of zeros.
The NGM K is therefore two-dimensional. The NGM
can be found by epidemiological reasoning from the
interpretation of its elements in exactly the same way
as in §2.1, but replacing the b by the appropriate bij

in Kij. If we use the formal linear algebra approach,
we again start by examining the transmission matrix
T. The two zero rows are rows 3 and 4. Therefore, the
auxiliary matrix E will have as its columns the first
two unit vectors (1, 0, 0, 0)0 and (0, 1, 0, 0)0:

E ¼

1 0
0 1
0 0
0 0

0
BB@

1
CCA

and

K ¼ �E0TS
�1E

¼

pb11n1

n1 þ mð Þ g1 þ mð Þ
pb12n2

n2 þ mð Þ g2 þ mð Þ
1� pð Þb21n1

n1 þ mð Þ g1 þ mð Þ
1� pð Þb22n2

n2 þ mð Þ g2 þ mð Þ

0
BB@

1
CCA:

We now investigate whether this example allows a
further reduction in dimension as in §2.1. We calculate
det K and establish that it is, in general, not equal to
zero. Therefore no further reduction in dimension is
possible, unless b11b22 ¼ b12b21. Due to the fact that
we have allowed bij to be different for all combinations,
we no longer have that the two states-at-infection occur
in a fixed ratio.

For ‘completeness’ we note that we can regain such a
fixed ratio, and the consequent reduction in dimension,
in the special case that bij ¼ aibj. Here ai relates to the
susceptibility and bj to the infectivity (so the idea is
that the properties of the two individuals involved in
a contact that can lead to transmission have an inde-
pendent influence). This assumption is called
separable mixing in Diekmann & Heesterbeek (2000).
It leads to det K ¼ 0, and hence to R0 ¼ trace K
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because K is two-dimensional. To proceed formally
with this special case via the NGM with small
domain, we would write

T ¼

0 0 pa1b1 pa1b2

0 0 1� pð Þa2b1 1� pð Þa2b2

0 0 0 0
0 0 0 0

0
BB@

1
CCA:

To find the NGM with small domain, KS, we observe
that the rows of matrix T are multiples of the vector
R ¼ (0, 0, b1, b2), and the columns are multiples of C ¼
(pa1, (1 2 p)a2, 0, 0)0. Note that T ¼CR. We then write

KS ¼ � 0 0 b1 b2ð ÞS�1

pa1

1� pð Þa2

0

0

0
BBB@

1
CCCA

¼ pa1b1n1

n1 þ mð Þ g1 þ mð Þ þ
1� pð Þa2b2n2

n2 þ mð Þ g2 þ mð Þ

� �

and we find

R0 ¼
pb11n1

n1 þ mð Þ g1 þ mð Þ þ
1� pð Þb22n2

n2 þ mð Þ g2 þ mð Þ :
3. RECIPES FOR NGMs

We have now introduced the main concepts of the next-
generation approach: the NGM with large domain, the
NGM and the NGM with small domain. All three can
be derived by simple linear algebra from the basic ingre-
dients T and S, or by using the epidemiological
interpretation of the NGM. In this section we provide
recipes for the construction of these matrices by forma-
lizing the steps we have taken in the examples of the
previous section. We show in general that K, KL and
KS have the same dominant eigenvalue.

3.1. The NGM with large domain

The NGM with large domain, KL, is always the matrix
with highest dimension. Our starting point is the ODE
system that describes the production of new cases and
the changes in infected states. We assume that this
set of ODEs, the infection subsystem, has been written
in linearized form. The recipe is as follows.

(i) Decompose6 the Jacobian matrix of the infection
subsystem as T þ S, where T is the transmission
matrix, and S the transition matrix:
— T contains the entries corresponding to trans-

mission events, where an epidemiological
birth occurs, and

— S contains the entries corresponding to all
other changes of state (including death).
(ii) Compute the NGM with large domain as
KL ¼2TS21.

The ijth entry of 2S21 can be interpreted as the
expected time that an individual who presently has
infected state j will spend in infected state i (see the
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interlude in §2.1). Because the ijth entry of T is the rate
at which an individual in infected state j produces indi-
viduals with infected state i, the ijth entry of
KL ¼ 2TS21 is the expected number of infected off-
spring with state i at infection produced throughout
its entire future infected life by an individual presently
in infected state j. If there are infected states which are
not states-at-infection, the matrix KL has one or more
zero rows. This implies that some of the information
contained in KL is redundant if we are only interested
in the growth or decline of the infected population as
we iterate KL. The NGM K is the restriction of KL to
the subset of states-at-infection. Thus this redundancy
is removed in K. The interpretation of the entry Kij

of K is the expected number of new infections with
state-at-infection i produced by one individual with
state-at-infection j.
3.2. The NGM

The NGM, K, has the advantage that it has both a rigor-
ous biological interpretation and excludes irrelevant
information. It is usually of lower dimension than KL.
Out of all infected states used for K we select only those
that an infected individual can be in immediately after
becoming infected. We call these the states-at-infection,
and K reflects the restriction of the analysis to the
states-at-infection. Essentially, as we showed in the
examples in §2 (and will also show for the examples in
§4) the interpretation allows one to ‘compute’ K in a rig-
orous, but biological, manner. Below, however, we present
two linear algebra recipes that allow programming. The
second recipe uses the computation of the entire matrix
2S21 and is the easiest when one uses mathematical soft-
ware to automate the process. The first recipe uses the
epidemiological interpretation and demonstrates that
one does not need all elements of 2S21 to compute K,
some elements will be multiplied by elements of T that
are zero and therefore do not contribute. In fact, the
second recipe is a programmable version of the first.

The first recipe is as follows.

(i) Identify, see §3.1, the transmission matrix T, and
the transition matrix S.

(ii) Identify the states-at-infection. State j is a state-
at-infection if and only if there is at least one
non-zero element in the jth row of matrix T.

(iii) Identify the states-of-infectiousness. State ‘ is a
state-of-infectiousness if and only if there is at
least one non-zero element in the ‘th column of T.

(iv) Compute an auxiliary matrix A which has
elements A‘j : ¼2 (S21)‘j for all ‘j combinations
where j is a state-at-infection and ‘ is a state-of-
infectiousness, and for which all other elements
are zero.

(v) Define Kij ¼ (TA)ij for all combinations with i
and j both states-at-infection.

The second recipe is as follows.

(i) Determine if the number of states-at-infection is
less than the dimension of the infection
subsystem.
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— If T has no rows consisting entirely of zeros,
then K ¼KL and proceed with step (ii) in §3.1.

— If T has one or more rows consisting entirely
of zeros, then K = KL and proceed as below.

(ii) Identify the auxiliary matrix E as follows:
— ThematrixEhas the same numberof rows asT.
— There is one column of E for each non-zero

row of T, and hence for each state-at-infec-
tion. That column of E has a one in the
row that corresponds to the non-zero row of
T (state-at-infection), and zeros elsewhere.

(iii) Compute the NGM, K ¼ 2E0 TS21 E.

By definition the basic reproduction number is the largest
eigenvalue of the NGM, R0 ¼ r(K). We now show that
the NGM and the NGM with large domain have the
same non-zero eigenvalues. Let v be an eigenvector of
K with corresponding eigenvalue l. Then Kv ¼
2E0TS21Ev¼ lv. Multiply this identity by E to get
2EE0TS21Ev ¼ lEv. ButEE0T ¼ T, soEv is an eigen-
vector of KL with corresponding eigenvalue l, and the
non-zero eigenvalues of K and KL are the same. (Note
that it is impossible that Ev ¼ 0 because this would
imply that lv ¼Kv ¼ 0, hence v ¼ 0 as l= 0.)

3.3. The NGM with small domain

The NGM with small domain, KS, has the lowest dimen-
sion of the three types of NGM discussed. In many cases,
however, it will be equal to K. If det K ¼ 0, the NGM
with small domain is different from K. This will certainly
be the case if there are fewer states-of-infectiousness than
states-at-infection, as in the example in §2.1 above (and
in the example in §4.2). Indeed, in that case it makes per-
fect sense to define a matrix KS with elements
KSij
¼ 2(TS21)ij, with both i and j restricted to states-

of-infectiousness. It simply means that we focus our
bookkeeping on individuals who have just entered a
state-of-infectiousness, and compute how many of their
epidemiological offspring will enter, on average, the var-
ious states-of-infectiousness. In other words, we base our
bookkeeping not on being born, but on the later phase in
the ‘epidemiological life’ where the individual starts to
reproduce.7

As the example presented in §2.2 shows, there may be
other reasons why det K ¼ 0. We now give a general
recipe to derive KS from K (in a manner that works what-
ever the reason is that det K ¼ 0). The recipe is as follows.

(i) Follow the recipe in §3.2 to determine K.
(ii) Determine whether det K ¼ 0.8

— If det K = 0 then no further reduction is
possible and KS ¼K.

— If det K ¼ 0 proceed as below.
(iii) Define a matrix R, whose rows are linearly inde-

pendent vectors spanning the rows of T, and a
matrix C, whose columns are linearly indepen-
dent vectors spanning the columns of T. Scale
the matrices so that T ¼ CR.

(iv) Compute the NGM with small domain,
KS ¼ 2RS21 C.

As a side remark we now explain that one can derive
KS from K in more or less the same way as we derived
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K from KL. When deriving K, we consider ‘pure’
states-at-infection and represent these in the columns of
E. A more general point of view considers ‘mixed’
states-at-infection, by which we mean a probability distri-
bution for state-at-infection represented by a column with
non-negative elements that sum to one (and with zero
elements, of course, at positions that do not correspond
to states-at-infection). By replacing E by a matrix consist-
ing of such probability vectors, one may derive KS directly
from 2TS21, following the recipe in §3.2.

We now show that the NGM with small domain and
the NGM with large domain have the same non-zero
eigenvalues. Let v be an eigenvector of KS with corre-
sponding eigenvalue l. Then KS v ¼2RS21 Cv ¼ lv.
Multiply this identity by C to get 2CRS21 � Cv ¼
lCv. But CR ¼ T, so Cv is an eigenvector of KL

with corresponding eigenvalue l. As the matrices K,
KL and KS have the same rank, we have established
that they have the same non-zero spectrum and hence
the same dominant eigenvalue.
4. EXAMPLES

To illustrate our method further, we present three more
examples, each highlighting special difficulties one
might encounter. For the first example we analyse a sexu-
ally transmitted infection of SEI type, which we then
extend by adding vertical transmission of infection. The
final example is taken from the literature and based on a
model for the transmission of bovine viral diarrhoea. For
each example we start with the infection subsystem.

4.1. A sexual transmission SEI model

Consider a purely heterosexually transmitted infectious
disease. If the numbers of exposed and infectious
females are E1 and I1, and the numbers of exposed
and infectious males are E2 and I2 respectively, then
we assume that

_E1 ¼ b1S1
I2

N2
� n1 þ mð ÞE1;

_I 1 ¼ n1E1 � g1 þ mð ÞI1;

_E2 ¼ b2S2
I1

N1
� n2 þ mð ÞE2

and _I 2 ¼ n2E2 � ðg2 þ mÞI2;

where N1 and N2 are the sizes of the subpopulations of
females and males, respectively. To construct the NGM
K, observe that a newly infected male (in the E2 state
or with state-at-infection E2) has a probability
n2/(n2 þ m) of entering the I2 state, and would then
infect females at a rate b1N1/N2 over a period of
1/(g2 þ m) time units. Hence the entry in row one
column two. A similar argument specifies the entry in
row two column one. We have deduced that

K ¼
0

n2b1N1

n2 þ mð Þ g2 þ mð ÞN2

n1b2N2

n1 þ mð Þ g1 þ mð ÞN1
0

0
BB@

1
CCA:
ð4:1Þ
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Hence we obtain the expression for R0 directly from the
formula (2.12) with trace K ¼ 0:

R0 ¼ r Kð Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n1n2b1b2

n1 þ mð Þ n2 þ mð Þ g1 þ mð Þ g2 þ mð Þ

s
: ð4:2Þ

This example illustrates how easy it is to write down
the NGM directly from epidemiological reasoning. As
the NGM is two-dimensional it is then straightforward
to compute R0.

For the more laborious way of using the recipe one
proceeds as follows. Specify, from the infection
subsystem, the transmission matrix as

T ¼

0 0 0 b1
N1

N2
0 0 0 0

0 b2
N2

N1
0 0

0 0 0 0

0
BBBBB@

1
CCCCCA

and the transition matrix as

S¼

� n1þmð Þ 0 0 0
n1 � g1þmð Þ 0 0
0 0 � n2 þmð Þ 0
0 0 n2 � g2 þmð Þ

0
BB@

1
CCA:

Then calculate

S
�1¼

� 1
n1þm

0 0 0

� n1

n1þmð Þ g1þmð Þ �
1

g1þm
0 0

0 0 � 1
n2þm

0

0 0 � n2

n2þmð Þ g2þmð Þ �
1

g2þm

0
BBBBBBBBBB@

1
CCCCCCCCCCA
:

The NGM with large domain is given by
KL ¼ 2TS21 and is four-dimensional. Using the
second recipe in §3.2, we observe that the matrix T
has only two non-zero rows, the first and third, so the
auxiliary matrix E is given by

E ¼

1 0
0 0
0 1
0 0

0
BB@

1
CCA

and the formula K ¼ 2E0TS21E then leads to
equation (4.1) above. Note that det K = 0, so no
further reduction of dimension (K to KS) is possible.

4.2. A model for a sexually transmitted infection
with vertical transmission

Now consider an SI model for a heterosexually trans-
mitted infectious disease that may also be transmitted
vertically. As new-born individuals are not immediately
sexually active, we take J1 and J2 to be the numbers of
infected juvenile females and males, and I1 and I2 to be
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the numbers of infected adult females and males,
respectively. We assume that both the length of the
pre-sexual period and the length of the infectious
period are large compared to the latency period, so we
neglect the latter. We also assume that the sex ratio
of offspring is one-to-one (a logical consequence is
that N1 ¼ N2 if the per capita death rates are equal,
but we shall keep the quasi-generality of allowing
these numbers to be different). We are thus led to
consider the following infected subsystem:

_J1 ¼pmI1 � n1 þ mð ÞJ1;

_I 1 ¼n1J1 þ b1S1
I2

N2
� g1 þ mð ÞI1;

_J2 ¼pmI1 � n2 þ mð ÞJ2

and _I 2 ¼ n2J2 þ b2S2
I1

N1
� ðg2 þ mÞI2;

where p denotes the probability that a vertical
transmission takes place when offspring is produced.

There are four states-at-infection: vertically infected
females J1; horizontally infected females (included in
I1); vertically infected males J2; and horizontally
infected males (included in I2). A horizontally infected
female is initially in the I1 state. She produces vertically
infected females and males at rate pm and horizontally
infects males at rate b2N2/N1, all for a period of, on
average, 1/(g1 þ m) time units. Hence the second
column of K, specified in equation (4.3). A vertically
infected female enters the I1 state with probability
n1/(n1 þ m), hence the first column of K is just a mul-
tiple of the second. A horizontally infected male is
initially in the I2 state, and horizontally infects females
at the rate b1N1/N2 for a period of 1/(g2 þ m) time
units, hence the K24 entry. This is the only way that
a male transmits the infection, so the other entries in
the fourth column of K are zero. Finally, a vertically
infected male enters the I2 state with probability
n2/(n2 þ m), and the third column of K is a multiple
of the fourth. Note that all of these expressions concern
a fully susceptible population. The NGM for this
model is

K ¼

n1pm
n1 þ mð Þ g1 þ mð Þ

pm
g1 þ m

0 0
n1pm

n1 þ mð Þ g1 þ mð Þ
pm

g1 þ m

n1b2N2

n1 þ mð Þ g1 þ mð ÞN1

b2N2

g1 þ mð ÞN1

0
BBBBBBBBBB@

0 0

n2b1N1

n2 þ mð Þ g2 þ mð ÞN2

b1N1

g2 þ mð ÞN2

0 0

0 0

1
CCCCCCA
: ð4:3Þ

The NGM is four-dimensional, but of rank two and
hence has two zero eigenvalues.
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We have shown how the NGM is easily constructed by
epidemiological reasoning. Alternatively, we may proceed
using the linear algebra recipe. We observe that the
transmission and transition matrices are, respectively,

T ¼

0 pm 0 0

0 0 0 b1
N1

N2
0 pm 0 0

0 b2
N2

N1
0 0

0
BBBBBB@

1
CCCCCCA

and

S¼

� n1þmð Þ 0 0 0
n1 � g1þmð Þ 0 0
0 0 � n2þmð Þ 0
0 0 n2 � g2þmð Þ

0
BB@

1
CCA:

As T has entries in all four rows, each infected state is, in
this example, a state-at-infection. Because there are no
zero rows the matrix E consists of all four unit vectors
and therefore equals the identity matrix. Hence for this
example K ¼KL ¼ 2TS21.

Note that, from T, it is easily seen that among the four
states-at-infection, there are only two that are also states-
of-infectiousness: only the second and fourth columns of
T contain at least one non-zero element. The columns cor-
respond to state I1 and I2, which can, of course, also be
gleaned from the biological interpretation of the four states.

So det K ¼ 0, and reduction to an NMG with small
domain is possible. The matrix KS has eigenvalues equal
to the two non-zero eigenvalues of K. To formally con-
struct the matrix KS we observe that the rows of matrix
T are spanned by the vectors (0, 1, 0, 0) and (0, 0, 0, 1);
and the columns are spanned by (pm,0, pm, b2N2/N1)0

and (0, b1N1/N2, 0, 0)0. We then define matrices

R ¼ 0 1 0 0
0 0 0 1

� �
; C ¼

pm 0

0
b1N1

N2
pm 0

b2N2

N1
0

0
BBBBBB@

1
CCCCCCA

and write

KS ¼ �RS
�1 C

¼

n1pm
n1 þ mð Þ g1 þ mð Þ

b1N1

g2 þ mð ÞN2

b2N2

g1 þ mð ÞN1
þ n2pm

n2 þ mð Þ g1 þ mð Þ 0

0
BB@

1
CCA:

The basic reproduction number can be obtained
easily from the formula for 2 � 2 matrices (equation
(2.12)) applied to KS:

R0 ¼ r Kð Þ ¼ r KSð Þ ¼ n1pm
2 n1þmð Þ g1þmð Þþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n1pm
2 n1þmð Þ g1þmð Þ

� �2

þn2pmb1N1þb1b2 n2þmð ÞN2

n2þmð Þ g1þmð Þ g2þmð ÞN2

s
:
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4.3. A model for bovine viral diarrhoea

A modified SEIR model for bovine viral diarrhoea was
described by Cherry et al. (1998). The system has
both horizontal and vertical transmissions. Horizontally
infected animals can be in E, I and R states. Animals
that have been pregnant for less than 150 days when
becoming infected may, following recovery into one par-
ticular immune state Z of several possible immune
states, give birth to an infected calf. These offspring
are classified as persistently infected (P state): they
transmit infection, give birth at a lower rate and die
at a higher rate than cattle that were infected by the
horizontal route. Let the constant p1 be the probability
that an infected animal enters the immune state Z upon
recovery, let p2 be the probability that an infected
foetus survives to enter the herd, 1/a be the average
time spent carrying an infected foetus, and a and b be
the reduction in birth rate and increase in death rate
of persistently infected animals, respectively.

With a change in notation from Cherry et al. the
model is described by

_E ¼ b1I þ b2Pð ÞS � nþ mð ÞE;
_I ¼nE � gþ mð ÞI ;
_Z ¼p1gI � aþ mð ÞZ

and _P ¼ p2aZ þ ðm� aÞP � ðmþ bÞP;

where, as before, we restrict ourselves to the infected
subsystem. Note, however, that there is a difference
with the previous examples that included a recovered
state. In the previous examples the R state did not
occur in the equations for the infected states and
could therefore be ignored for the construction of the
NGM and the calculation of R0. Individuals in an R
state do not give rise to new infections, so R is con-
sidered to be a non-infected state. In this particular
example this is still true as far as horizontal trans-
mission is concerned and for all immune states in the
model (not shown here) other than state Z. It is, how-
ever, not true that recovered individuals cannot
produce new infections in this model, because vertical
transmission occurs from immune state Z. Calves are
born after the mother has recovered from the infection,
and therefore recovered mothers in state Z can give rise
to new infections through birth. There are therefore four
infected states. The transmission and transition
matrices are

T ¼

0 b1 0 b2
0 0 0 0
0 0 0 0
0 0 p2a m� a

0
BB@

1
CCA

and

S ¼

� nþ mð Þ 0 0 0
n � gþ mð Þ 0 0
0 p1g � aþ mð Þ 0
0 0 0 � mþ bð Þ

0
BB@

1
CCA:

We omit the computation of the four-dimensional
KL. Note that T has non-zero elements in two rows
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only, hence K is two-dimensional. The two states-at-
infection are the horizontally infected E state and the
vertically (and persistently) infected P state. Define

E ¼

1 0
0 0
0 0
0 1

0
BB@

1
CCA:

Then the NGM is given by

K ¼ �E0TS
�1 E

¼

nb1

nþ mð Þ gþ mð Þ
b2

mþ b

p2anp1g

nþ mð Þ gþ mð Þ aþ mð Þ
m� a
mþ b

0
BBB@

1
CCCA:

The basic reproduction number is then calculated
easily from K using equation (2.12).

The NGM K can, of course, also be constructed
directly from epidemiological considerations as follows.
A proportion n/(n þ m) of those horizontally infected
become infectious, and infect others at the rate b1 for,
on average, 1/(g þ m) time units. A proportion
p1g/(a þ m) of these enter the Z state, and give birth to
persistently infected calves at rate p2a for, on average,
1/(m þ b) time units. Hence the first column of K is
obtained. To construct the second column, observe that
those in the persistently infected state infect others hori-
zontally at rate b2, and give birth to persistently infected
calves at rate m 2 a for 1/(m þ b) time units. So we see,
once again, that a simple epidemiological argument
may be used to directly construct the NGM K.
5. CONCLUSION

In epidemic models, individuals can typically be in a
number of different states, ref lecting both differences
in traits and differences in infection status. From the
states that apply to infected individuals, we single out
those states that individuals can be in immediately
after they have been infected. We call these states-at-
infection. They play a special role in the definition
and calculation of R0 as the dominant eigenvalue of
the NGM associated with the epidemic system. The
NGM has an appealing epidemiological interpretation
because its components may be regarded as R0-like
quantities. We have provided a recipe for the construc-
tion of the NGM for general compartmental epidemic
models, exploiting also that there may be only a few
states-of-infectiousness in a given system. The recipe
may be implemented easily in commonly used
mathematical software.

We have in fact given three recipes because we have
identified three different NGMs and have clarified the
relationships between them. This is useful because
some researchers have been confused when trying to
reconcile an existing algorithmic linear algebra approach
(Diekmann & Heesterbeek 2000, pp. 105–107; Van
den Driessche & Watmough 2002) with the original
approach using the epidemiological interpretation. We
show that the reason is that the approaches lead to
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two different matrices, which we now call the NGM and
the NGM with large domain. Both of these matrices
have R0 as their dominant eigenvalue, the difference
lies in the set of individual states that the matrices
reflect. We have provided easy algorithms for the con-
struction of the matrices. Both algorithms start by
identifying transmission and transition matrices from
the linearization of the compartmental model near the
infection-free steady state: the transmission matrix
describes the production of new infections, and the
transition matrix describes changes of infected states
(including removal by death or recovery). The NGM
with large domain is obtained by a direct construction
using these two matrices. By identifying the subset of
epidemiological states-at-infection, which is easily
done by examining the transmission matrix, we use
the second recipe to find the NGM proper. It is often
of lower dimension than the NGM with large domain,
leading to a simpler calculation of R0. Sometimes it is
possible to construct the NGM with small domain.
This matrix may have a less readily understandable
interpretation in terms of the epidemiology, but has
the advantage of a lower dimension.

Although we present three mathematical recipes, we
encourage the construction of the NGM from epidemio-
logical reasoning. This is straightforward and maintains
the connection between the mathematics and the
biology, and especially gives the user a fuller
understanding of the interpretation of the results.
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APPENDIX A. A PROOF THAT R0

GOVERNS THE STABILITY OF THE
INFECTION-FREE STEADY STATE

Before formulating the key hypotheses concerning T
and S we introduce some notation. For a square
matrix A we denote by s(A) the spectral bound and
by r(A) the spectral radius:

sðAÞ :¼ supfReðlÞ : l [ sðAÞg

and

rðAÞ :¼ supfjlj : l [ sðAÞg;

where s(A) denotes the spectrum of A, that is the set of
eigenvalues. All matrices that we consider have real
entries. As customary, we call a non-zero matrix A
positive if all entries are non-negative; and positive-
off-diagonal if all entries are non-negative except
possibly those on the diagonal. The following holds if
A is a positive-off-diagonal matrix: s(A) , 0 if and
J. R. Soc. Interface (2010)
only if A is invertible and 2A21 is a positive matrix
(for a proof see, for example, lemma 6.12 in Diekmann &
Heesterbeek (2000)).

In the following we assume that T is a positive
matrix, and that S is a positive-off-diagonal matrix
with s(S) , 0, hence 2S21 is a positive matrix. These
assumptions reflect the biological meaning of both
matrices; the condition s(S) , 0 reflects that one
cannot remain (potentially) infectious for ever.

For the proof it is convenient to take the NGM with
large domain KL as our starting point; the equivalence
of the spectral radius of KL and K, as shown in §3,
then confirms the result for the NGM K. The basic
reproduction number R0 is defined by

R0 ¼ rðKÞ ¼ rðKLÞ ¼ rð�TS
�1Þ:

The stability of the zero steady state of the linear
system

dx
dt
¼ Tþ Sð Þx

is determined by the sign of the Malthusian parameter
r, which is defined as

r ¼ s Tþ Sð Þ:

This criterion extends to the nonlinear system by the
principle of linearized stability if, in addition, the demo-
graphic dynamics make the infection-free steady state
stable in the invariant subspace corresponding to the
absence of the infectious agent. The key result of this
appendix is the following.

Theorem A.1. Let T be a positive matrix and let S
be a positive off-diagonal matrix with s(S) , 0. Let
R0 ¼ r(2TS21) and r ¼ s(T þ S). Then the following
equality holds:9

sign rð Þ ¼ sign R0 � 1ð Þ:

We first prove the result under the extra assumptions
that T þ S is irreducible and R0 . 0, and then employ
an approximation and continuity argument to establish
the result in general. The proof is based on ideas in Li &
Schneider (2002), who addressed a similar problem in
population dynamics in a discrete-time setting. In Van
den Driessche & Watmough (2002) a proof is presented
in terms of M-matrices, and we refer to Thieme (2009)
for the analogous result for the infinite dimensional case.

Lemma A.2. If R0 . 0 then s(R0
21 T þ S) ¼ 0.

Proof. First assume that T þ S is irreducible. Let v
be the non-negative left eigenvector of KL ¼ 2TS21

corresponding to the eigenvalue R0. Hence vKL ¼

R0v which can be rearranged to obtain

v R�1
0 Tþ S

� �
¼ 0: ðA 1Þ

The irreducibility of T þ S implies that R0
21 T þ S is

irreducible. By adding a large positive multiple of the
identity, kI, toR0

21 T þ S, we obtain a positive irreduci-
ble matrix, and since v is non-negative it must be the
eigenvector corresponding to the spectral radius of that
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matrix. It follows that all the other eigenvalues have smal-
ler real parts. By subtracting kI again all eigenvalues shift
to the left in the complex plane, but the order relation
between their real parts remains intact. Hence we
conclude from equation (A 1) that s(R0

21T þ S) ¼ 0.
Next consider the case that T þ S is reducible. Regard

the irreducible matrix T þ e1 þ S, where 1 is the matrix
with all entries equal to one. Denote the spectral radius
of the matrix 2(T þ e1)S21 by re. For e # 0, we have
that re !R0 and hence re. 0 for e small. So,
by the above proof for the irreducible case,
s((T þ e1)/re þ S) ¼ 0. Finally, for e # 0 we have, as
noted above, that re !R0, and hence s(T/R0 þ S) ¼
lime!0 s((T þ e1)/re þ S) ¼ 0. B

Lemma A.3. If T þ S is irreducible then

y 7! sðy�1Tþ SÞ

is strictly monotone decreasing.

Proof. We first add kI to T þ S for some k large
enough to obtain a positive matrix. The spectral
radius of an irreducible positive matrix strictly
decreases (increases) if any entry of that matrix
decreases (increases) (see theorem 2.1 in Li & Schneider
(2002) and references therein). Hence the spectral
radius of y21T þ S þ kI is a monotone function of y.
For a positive matrix the spectral radius is equal to
the spectral bound, and it remains equal to the spectral
bound as the spectrum shifts to the left when we
subtract kI. B

Lemma A.4. If T þ S is irreducible and R0 . 0
then sign (r) ¼ sign(R0 2 1).

Proof. If R0 . 1 then (by lemma A.3) s(T þ S).
s(R0

21T þ S), but (by lemma A.2) s(R0
21T þ S) ¼ 0,

hence r ¼ s(T þ S) . 0. If R0 ¼ 1 then (by lemma A.2)
r ¼ s(T þ S) ¼ 0. If R0 , 1 then (by lemma A.3) s(T þ
S), s(R0

21T þ S), by lemma A.2 s(R0
21 T þ S) ¼ 0,

hence r ¼ s(T þ S), 0. B

Lemma A.5. If s(T þ S) ¼ 0 then R0 � 1.

Proof. By the shifting argument used above, it fol-
lows that s(T þ S) is an eigenvalue of T þ S. Let u
= 0 be a vector such that (T þ S)u ¼ 0, and define
v ¼ Su. As S is invertible, v = 0. Moreover, (TS21 þ
I)v ¼ (T þ S)u ¼ 0, hence KL ¼ 2TS21 has a unit
eigenvalue and the spectral radius of KL must be
greater than or equal to one. B

Lemma A.6. If s(T þ S) ¼ 0 then R0 ¼ 1.

Proof. Below we approximate KL ¼ 2TS21 with a
continuous family of matrices, parametrized by e, that
have spectral radius less than or equal to one for e .

0, and which converge to KL as e # 0. It follows that
R0 � 1. Because from lemma A.5 it follows that R0 �
1, we conclude that R0 ¼ 1.

Define A(e) ¼ T þ S þ e1, where 1 is the matrix
with all entries equal to one. From similar arguments
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to those used in the proof of lemma A.3, it follows
that the function e 7! s(A(e)) is monotone increasing.
So, if we define Ã(e) ¼A(e) 2 s(A(2e))I, then
s(Ã(e)) ¼ s(A(e)) 2 s(A(2e)) � 0. The decomposition
Ã(e) ¼ (T þ e1) þ (S 2 s(A(2e))I) motivates us to
introduce the matrix

MðeÞ ¼ �ðTþ e1ÞðS� sðAð2eÞÞIÞ�1:

Clearly, M(e) converges to KL as e # 0, and as the spec-
tral radius of KL exceeds one (by lemma A.5), the
spectral radius of M(e) must be positive for small posi-
tive e. Because Ã(e) is clearly irreducible, we use
lemma A.4 to deduce that r(M(e))4 1. B

Proof of theorem A.1. Combining lemmas A.6 and
A.2 (with R0 ¼ 1) we conclude that

sðTþ SÞ ¼ 0 , R0 ¼ 1:

By lemma A.4 we have that, at least for small e . 0,

sðTþ e1þ SÞ , 0 , rð�ðTþ e1ÞS�1Þ , 1

and so, by considering the limit e # 0 that s(T þ S) , 0
) R0 � 1 and R0 , 1 ) s(T þ S) � 0. Since, as
already noted above, s(T þ S) ¼ 0 , R0 ¼ 1, we con-
clude that s(T þ S), 0 , R0 , 1. It follows that
s(T þ S). 0 , R0 . 1, and the proof is complete. B
ENDNOTES
1The word ‘typical’ is there to emphasize the subtlety that the word
‘average’ needs to be interpreted in the right way; see Diekmann &
Heesterbeek (2000).
2As an example consider the standard SEIR model. There are two
states for infected individuals, the latency state E and the infectious
state I. Only the E-state is a state-at-infection, however, because all
newly infected individuals start their ‘infected life’ in state E. One
cannot be in the I state immediately after becoming infected, but
can only enter state I in the course of the infection. In this example,
the NGM only involves the E state, whereas the NGM with large
domain involves both infected states.
3For completeness, we add that this is a general rule: when an individ-
ual can leave a state A, say, in several ways, the probability of going
to a particular state B, say, is the product of the per capita rate of
changing from state A to state B and the average time spent in
state A (sojourn time).
4In other words: the columns of E span the range of T.
5One way of viewing this property is by saying that there is then only
one state-at-infection in a stochastic sense, even though formally there
are still two states-at-infection. By ‘stochastic sense’ we mean that
the probability distribution of state-at-infection is fixed, i.e. does not
depend on the infectious individual responsible for the transmission.
6For completeness we remark that in the decomposition T þ S it is
essential only that T is a non-negative matrix and that S is a positive
off-diagonal matrix with spectral bound s(S), 0 (see appendix A for
the terminology). These conditions, however, do not uniquely deter-
mine T and S. As explained in the text, it is the interpretation that
leads to the relevant T and S. The interpretation decides which
events (production and changes of state) are accounted for in T
and which events in S. For a concrete example, we refer to Inaba &
Nishiura (2008) where in particular the transition from an asympto-
matically infected individual to a symptomatically infected
individual is considered (as this corresponds more closely to what
one can observe). For any decomposition one obtains a ‘reproduction
number’, counting the events incorporated in T. Different decompo-
sitions, however, lead to different reproduction numbers. The
crucial property explained in appendix A holds for all of them
when the conditions above are satisfied.
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7More generally, one can base the reduction on so-called renewal
points in the life cycle; i.e. a subset of states that any individual
who will ever reproduce will necessarily visit, and restrict 2(TS21)ij

to that subset of indices. We are, however, not aware of any epidemio-
logically relevant examples in which the renewal points are neither
states-at-infection nor states-of-infectiousness.
8Alternatively find the rank of T. This is equal to the number of linearly
independent vectors that span the columns of T, so is less than or equal
to the number of states-at-infection. If the rank of T is less than the
number of states-at-infection, then det K¼ 0. As explained in the text,
proceeding in this manner may avoid having to explicitly calculate K.
9The function sign is defined in the usual way: sign (y) ¼ y/jyj if
y = 0, and sign(0) ¼ 0.
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