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The elastic strain energy potential for nonlinear fibre-reinforced materials is customarily
obtained by superposition of the potentials of the matrix and of each family of fibres. Com-
posites with statistically oriented fibres, such as biological tissues, can be seen as being
reinforced by a continuous infinity of fibre families, the orientation of which can be rep-
resented by means of a probability density function defined on the unit sphere (i.e. the
solid angle). In this case, the superposition procedure gives rise to an integral form of the elas-
tic potential such that the deformation features in the integral, which therefore cannot be
calculated a priori. As a consequence, an analytical use of this potential is impossible. In
this paper, we implemented this integral form of the elastic potential into a numerical
procedure that evaluates the potential, the stress and the elasticity tensor at each defor-
mation step. The numerical integration over the unit sphere is performed by means of the
method of spherical designs, in which the result of the integral is approximated by a suitable
sum over a discrete subset of the unit sphere. As an example of application, we modelled the
collagen fibre distribution in articular cartilage, and used it in simulating displacement-
controlled tests: the unconfined compression of a cylindrical sample and the contact problem
in the hip joint.
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1. INTRODUCTION

The nonlinear elasticity of composite materials
reinforced by one or more families of fibres, each
oriented in a given direction, has often been modelled
by means of the so-called superposition method (e.g.
Weiss 1994; Holzapfel et al. 2000; Holzapfel & Gasser
2001): the elastic strain energy potential of the compo-
site is given by the sum of a (typically isotropic) term
representing the non-fibrous matrix, and as many aniso-
tropic terms as the fibre families. This method has often
been used to model biological soft tissues.

Biological tissues are multi-phasic materials, com-
posed of a solid phase and a fluid phase in which
several chemical species are dissolved (Fung 1981).
The solid phase can be represented as a composite
material, in which the matrix is reinforced by collagen
fibres. Tissues characterized by one family of fibres
are, for example, tendons and ligaments (Weiss &
Gardiner 2001), whereas examples of tissues with two
families are the annulus fibrosus of intervertebral discs
(White & Panjabi 1978) and the adventitial layer of
blood vessels (Canham et al. 1989). Articular cartilage
is instead an example of tissue characterized by a
location-dependent fibre arrangement that cannot be
represented with a finite number of fibre families. The
orrespondence (salvatore.federico@ucalgary.ca).
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fibres are roughly aligned in the deep zone, randomly
oriented in the middle zone, and parallel to the surface
in the superficial zone (Mollenhauer et al. 2003).

A composite material with such a complex fibre
arrangement can be treated in statistical terms, i.e. at
each material point, a probability distribution density
function provides the probability of finding a fibre
oriented in a given direction. This approach was first
proposed by Lanir (1983), and widely used in
subsequent works (e.g. Hurschler et al. 1997; Billiar &
Sacks 2000; Sacks 2003; Gasser et al. 2006). Similar
results (with the same formalism that shall be used in
this paper) were independently found by Federico
et al. (2004). Gasser et al. (2006) proposed to account
for fibres with statistical orientation by calculating
the directional average of the structure tensor, an
approach that has been adopted in later works (e.g.
Menzel et al. 2008). A microplane model based on
stress directional averaging has been proposed by
Caner & Carol (2006).

Recently, Federico & Herzog (2008c) generalized the
elastic strain energy potential superposition method, by
extending it to the case of composites with statistical
fibre orientation, obtaining an integral form of the elas-
tic strain energy potential, the integral being performed
on the unit sphere S2 representing the set of all possible
directions in the natural space R3 (i.e. the solid angle).
This journal is q 2010 The Royal Society
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The deformation features in the integrand function and,
except for a limited number of particular cases, this pre-
vents the reduction of the integral to an expression
involving only structural parameters (and no defor-
mation), and the direct analytical use of the potential.
Although this is a limitation from the theoretical
point of view, the numerical implementation of this
elastic potential is possible.

The purpose of this work is twofold. On the theoreti-
cal side, it is aimed at studying the convexity of the
elastic potential resulting from the generalized
superposition method. On the computational side, its
objective is to provide a robust numerical implemen-
tation of the integration of the potential, the stress
and the elasticity tensor. The numerical evaluation of
the integrals is performed using the method of spherical
designs (Hardin & Sloane 1996; Hardin et al. 2008), i.e.
discrete subsets of the unit sphere S2, such that the
integral of a polynomial on S2 equals its discretized
counterpart evaluated as its average value at the
points belonging to the spherical design. The inte-
gration method was tested by modelling an articular
cartilage unconfined compression test and the articular
contact in the hip.
2. THEORETICAL BACKGROUND

Following standard notation (e.g. Marsden & Hughes
1994), x is the configuration, mapping points X ¼ (X1,
X2, X3) in the reference configuration B # R3 into
points x ¼ (x1, x2, x3) in the natural Euclidean space
S ¼ R3, the tensor F with components FiI ¼ @xi/@XI

is the deformation gradient, J ¼ det F is the volumetric
deformation ratio, and C ¼ FTF is the right Cauchy
deformation tensor.

The deformation gradient can be written in the
so-called volumetric-distortional decomposition (Flory
1961; Ogden 1978)

F ¼ J1=3F̄; ð2:1Þ

where F̄ ¼ J21/3F is the purely distortional (or isochoric,
or unimodular) part of the deformation, with det F̄ ¼ 1.
Note that, if there is no distortional deformation, F̄
equals the shifter Y (in Cartesian coordinates, with col-
linear material and spatial reference frames, YiI ¼ diI),
and the total deformation gradient F describes a
purely volumetric deformation: F ¼ J1/3Y. From the
decomposition of F̄, it follows that C ¼ J2/3C̄ and
C̄ ¼ F̄TF̄ ¼ J22/3C.

For a hyperelastic material with elastic strain energy
potential W, seen as a function of the Cauchy defor-
mation tensor C, the second Piola–Kirchhoff stress S
and the material elasticity tensor C are given by

S ¼ 2
@W
@C

; C ¼ 4
@2W

@C2 : ð2:2Þ

The Cauchy stresss and the spatial material elasticity
tensor C are obtained from equations (2.2) by means of an
inverse Piola transformation (e.g. Marsden & Hughes
1994)

s ¼ J�1x�½S�; C ¼ J�1x�½C� ð2:3aÞ
J. R. Soc. Interface (2010)
and

sij ¼ J�1FiIF jJSIJ ; Cijkl ¼ J�1FiI F jJFkKFlLCIJKL:

ð2:3bÞ

For the case of nearly incompressible materials, such
as biological soft tissues, the elastic strain energy poten-
tial can be assumed to be fully decoupled in the
volumetric and the distortional parts of the defor-
mation, and can be written as the sum of a purely
volumetric term U, a function of the volumetric defor-
mation ratio, J, and a purely distortional term W̄,
a function of the distortional right Cauchy deformation
tensor, C̄ (Simo et al. 1985):

W ðJ ; C̄Þ ¼ U ðJÞ þ �W ðC̄Þ: ð2:4Þ

Remark. The decoupled potential (2.4) is only
appropriate for nearly incompressible or incompressible
materials. For the case of anisotropic compressible
materials, an additional interaction term, in both J
and C̄, would be needed to account for non-spherical
deformations induced by spherical (hydrostatic) stres-
ses, and non-spherical stresses induced by spherical
(volumetric) deformations (Guo et al. 2008; Sansour
2008; Federico 2009), and to guarantee the consistency
(Quintanilla & Saccomandi 2007) of the linear elasticity
tensor obtained from the nonlinear constitutive
equations with that obtained directly from small-
strain experiments (Federico in press). However, a
complete description, also suitable for anisotropic
compressible materials, is not within the aims of this work.

With the decoupled potential (2.4), the Cauchy
stress is directly split into its spherical and deviatoric
components, and the spatial elasticity tensor is fully
decoupled (Miehe 1994; Weiss et al. 1996). Their
expressions are given by

s ¼ svol þ �s; ð2:5aÞ
svol ¼ �p i; ð2:5bÞ

�s ¼ J�2=3
M : ~s ð2:5cÞ

and

C ¼ Cvol þ �C; ð2:6aÞ
Cvol ¼ 3ðK J � pÞKþ 2 p I; ð2:6bÞ

�C ¼ J�4=3
M : ~C : Mþ 2

3J
�2=3 trð~sÞM

� 2
3½i � �sþ �s� i�; ð2:6cÞ

where p ¼ 2@U/@J is the hydrostatic pressure, K ¼
@2U/@J2 is the (large strain) bulk modulus, s̃ ¼
J21x

*
[2@W̄/@C̄] and C̃ ¼ J21x

*
[4@2W̄/@C̄2]. Tensor i

is the spatial second-order identity, with components
iij ¼ dij, and

I¼ 1
2ði � iþ i � iÞ; I ijkl ¼ 1

2ðdikd jl þ dild jkÞ; ð2:7aÞ
K¼ 1

3ði� iÞ; Kijkl ¼ 1
3dijdkl ð2:7bÞ

and M¼ I�K; Mijkl ¼ 1
2ðdikd jl þ dild jkÞ� 1

3dijdkl ð2:7cÞ

are the spatial fourth-order symmetric identity,
spherical operator and deviatoric operator,
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respectively (e.g. Walpole 1981; Federico in press),
with the special tensor products � and � as defined
by Curnier et al. (1995).

Note. In equations (2.5)–(2.7), the notation is as in
Federico (in press), which differs from that of Gasser &
Holzapfel (2002) and Gasser et al. (2006), who work in
terms of the Kirchhoff stress t ¼ x

*
[S] rather than the

Cauchy stress s ¼ J21t, define C as the push-
forward x

*
[C] rather than the inverse Piola transform

J21x
*
[C], incorporate the term J24/3 into C̃ and

denote the spatial deviatoric operator M by P.
3. METHODS

The elastic strain energy potential for a composite
material with fibres obeying a given statistical distri-
bution of orientation is constructed starting from that
of a composite material with a finite number of fibre
families, each aligned in a specific direction, by means
of a passage from a sum to an integral. Then, the
stress and elasticity tensor are obtained as the first
and second derivative of the elastic potential with
respect to a suitable measure of strain. This section
also describes the ‘technical’ use of the probability
distribution of the fibre orientation, as a function of
angular coordinates.
3.1. Fibre-reinforced composite materials

Composite materials with a finite number of fibre
families have been described by means of the superposi-
tion method (e.g. Weiss 1994; Holzapfel et al. 2000;
Holzapfel & Gasser 2001), in which the elastic strain
energy potential is the linear combination of those of
the matrix and each fibre family. This class of materials
is generalized to the case of statistically oriented fibres,
by transforming the sum of the fibre terms into an inte-
gral over the unit sphere S2 ¼ fM [ R3 : kMk ¼ 1g
(the set of all directions in space), weighted by a prob-
ability distribution density function c, such that c(M)
gives the probability of finding a fibre aligned with
direction M. The function c must obey the symmetry
condition c(M) ¼ c(2M), and the normalization con-
dition

Ð
S2 c dS ¼ 1. For nearly incompressible matrix

and fibres (see §2 and the remark therein), the distor-
tional elastic strain energy potential can be written as
(Federico & Herzog 2008c)

�W ðC̄Þ ¼ f0
�W 0ðC̄Þ þ ff

�W eðC̄Þ; ð3:1Þ

where f0 and ff are the volumetric fractions of the
matrix and the fibres, respectively, and the integral

�W eðC̄Þ ¼
ð

S2
c �W fðC̄ ;AÞ dS ð3:2Þ

is called ensemble fibre potential, representing the linear
superposition of the effect of all fibres, with A(M) ¼
M �M being the structure tensor associated with
direction M, written as an explicit function of M. We
remark that, as in the case described by Holzapfel
et al. (2000), of a finite number of fibre families,
the linear superposition of the potentials implies
J. R. Soc. Interface (2010)
no fibre–matrix shear interaction, as well as no
fibre–fibre interaction.

It has been shown (Federico & Herzog 2008c) that
the integral in equation (3.2) can be reduced to an
analytical form not involving the deformation only in
a few particular cases.
3.2. Tension–compression asymmetry and the
anisotropic ensemble fibre potential

The fibres are known to give a much larger contri-
bution in tension than in compression. This
behaviour is often described by assigning the fibres a
potential that is ‘active’ in tension and vanishes in
compression, which describes them as having exactly
zero stiffness when in compression. A more realistic rep-
resentation of the asymmetric tension–compression
behaviour of the fibres can be achieved by expressing
the fibre potential W̄f as the sum of an isotropic term
and an anisotropic term, the latter being different
from zero only when the fibre is in tension (Federico
& Herzog 2008c), i.e. when the distortional invariant
Ī4(C̄, A(M)) ¼ C̄ : A(M) is greater than one. Note
that Ī4 (C̄, A(M )) is the distortional stretch l̄M

2 in
the direction M of the fibre, which equals the distor-
tional fibre stretch, in the hypothesis of perfect
matrix–fibre bonding. Thus, the fibre potential can
be expressed as

�W fðC̄ ;AÞ ¼ �W fiðC̄Þ þHð�I 4ðC̄ ;AÞ � 1Þ �W faðC̄ ;AÞ;
ð3:3Þ

where W̄fi is an isotropic potential, active in both ten-
sion and compression, and W̄fa is a base anisotropic
potential that is switched on when the fibre is in ten-
sion, by means of the Heaviside step function H
evaluated at Ī4(C̄, A) 2 1. Substituting equation (3.3)
into (3.2), the potential of the composite becomes

�W ðC̄Þ ¼ f0
�W 0ðC̄Þ þ ff ½ �W fiðC̄Þ þ �W eaðC̄Þ�; ð3:4Þ

where
Ð

S2 cW̄fi(C̄) dS ¼ W̄fi (C̄) because W̄fa does not
depend on the direction and c is normalized to one,
and the integral term

�W eaðC̄Þ ¼
ð

S2
c Hð�I 4ðC̄ ;AÞ � 1Þ �W faðC̄ ;AÞ dS

ð3:5Þ

is called anisotropic ensemble fibre potential.
3.3. Potential and isochoric stress and
elasticity tensor

For the finite element implementation of the anisotro-
pic ensemble fibre potential W̄ea, we follow Gasser &
Holzapfel (2002) and calculate the isochoric Cauchy
stress s̄ea and the isochoric spatial elasticity tensor
C̄ea. In order to perform the derivatives involved in
these calculations, avoiding the non-differentiability
involved by the presence of the Heaviside function,
the integral in equation (3.5) can be restricted to the
subset of the unit sphere on which Ī4(C̄, A(M)) 2 1 is
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positive

S
2
C̄ ¼ fM [ S

2 : �I 4ðC̄ ;AðM ÞÞ � 1 . 0g; ð3:6Þ

and the integral (3.5) becomes

�W eaðC̄Þ ¼
ð

S2
C̄

c �W faðC̄ ;AÞ dS : ð3:7Þ

As for the analytical form of the anisotropic base
fibre potential W̄fa, following Weiss et al. (1996), we
assume it to be a function solely of the invariant Ī4. It
is convenient to report the derivative of Ī4 with respect
to C̄

@�I 4

@C̄
ðC̄ ;AÞ ¼ A: ð3:8Þ

The second derivative is identically equal to the null
fourth-order tensor O. The first and second derivatives
of a scalar function f of Ī4, with respect to C̄, are then

@ð f W �I 4Þ
@C̄

ðC̄ ;AÞ ¼ ½ f 0ð�I 4ðC̄ ;AÞÞ�A ð3:9aÞ

and

@2ðf W �I 4Þ
@C̄

2 ðC̄ ;AÞ ¼ ½f 00ð�I 4ðC̄ ;AÞÞ�A�A; ð3:9bÞ

where f 0 and f 00 are the derivatives of f with respect to Ī4.
Following the arguments in §2 and using equations

(3.7) and (3.9), the isochoric Cauchy stress s̄ea and
the isochoric spatial elasticity tensor C̄ea associated
with W̄ea read

�sea ¼ J�1
ð

S2
C̄

2c �W 0
fað�I 4ðC̄ ;AÞÞdevðāÞ dS ð3:10Þ

and

Cea ¼ J�1
ð

S2
C̄

4c �W 00
fað�I 4ðC̄ ;AÞÞ devðāÞ � devðāÞ dS

þ J�1
ð

S2
C̄

4
3c

�W 0
fað�I 4ðC̄ ;AÞÞ trðāÞM dS

� 2
3ði � �sea þ �sea � iÞ; ð3:11Þ

where

āðM Þ ¼ J�2=3FAðM ÞFT ¼ F̄AðM ÞF̄T

¼ F̄M � F̄M ¼ m̄ � m̄ ð3:12Þ

is the isochoric push-forward of the structure tensor A,
expressed in terms of the spatial isochoric fibre direc-
tion m̄ ¼ F̄M, with deviatoric part dev(ā) ¼ M : ā,
and trace given by

trðāðM ÞÞ ¼ m̄ � m̄ ¼ F̄M � F̄M ¼ ðF̄T
F̄Þ : ðM �M Þ

¼ C̄ : AðM Þ ¼ �I 4ðC̄ ;AðM ÞÞ:
ð3:13Þ

Therefore, the positivity of tr(ā(M)) ¼ m̄ . m̄ ¼
Ī4(C̄, A(M)) can be used to verify whether a fibre is
in tension. Note that the conventional push-forward
J. R. Soc. Interface (2010)
of the structure tensor is given by a(M) ¼m �m ¼
(FM) � (FM).
3.4. Transversely isotropic probability
distribution

In many applications, it is convenient to evaluate the
directional average integrals in polar coordinates. If
fN̂1, N̂2, N̂3g is any orthonormal basis of R3 (not
necessarily coincident with the canonical basis fÊ1,
Ê2, Ê3g), and K ¼ N̂1 is chosen as the polar axis, a
given unit vector M is given as a function of the
co-latitude Q from the polar axis K ¼ N̂1 and longi-
tude F from the N̂1–N̂2 plane (see the box in
figure 1):

M ðQ;FÞ ¼ cosQN̂ 1 þ sinQ cosFN̂ 2

þ sinQ sinFN̂ 3: ð3:14Þ

Hence, the probability distribution can be written as
a function of Q and F :

rðQ;FÞ ¼ cðM ðQ;FÞÞ ð3:15Þ

and the directional average of any function f of M
becomes

kf l ¼
ð

S2
cðM Þf ðM Þ dS

¼
ð2p

0

ðp
0
rðQ;FÞf ðM ðQ;FÞÞ sinQ dQ dF: ð3:16Þ

If the probability distribution is transversely iso-
tropic with respect to the polar direction K ¼ N̂1,
then the probability function r depends only on
the co-latitude angle Q and not on the
longitude F. In this case, the normalization condition
becomes

2p
ðp

0
rðQÞ sinQ dQ ¼ 1: ð3:17Þ

If a transversely isotropic distribution tends to the
Dirac delta distribution centred at Q¼ p/2 and Q¼ 0,
then it represents the limit cases of fibres randomly
oriented in the transverse plane (planar isotropy) and
fibres all aligned in one direction, respectively. In
order to include these two limit cases, we follow the pro-
cedure described by Gasser et al. (2006) and consider
the p-periodic von Mises distributions rM(Q) centred
at Q ¼ p/2 and Q ¼ 0, respectively, given by

rMðQÞ ¼
exp½b cosð2Q� pÞ�

2pI0ðbÞ
ð3:18aÞ

and

rMðQÞ ¼
exp½b cosð2QÞ�

2pI0ðbÞ
; ð3:18bÞ

where I0(b) ¼ (1/p)
Ð

0
pexp(b cosQ) dQ denotes the modi-

fied Bessel function of the first kind of order zero.
Normalization of rM according to equation (3.17) leads
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Figure 1. Transversely isotropic probability distribution density functions describing fibre orientation, mapping points M on the
unit sphere into the real numbers. Surface plots are defined by the vector r(Q)M and r is based on the von Mises distribution.
The limit case of b ¼ 0 describes isotropy, and the limit case of b!1 describes planar isotropy for ‘Model (A)’ defined by
equation (3.19a) and fibres all aligned in the polar direction for ‘Model (B)’ defined by equation (3.19b). The box in the left-
bottom corner describes the general case in which the polar direction K does not coincide with any of the axes of the canonical
basis fÊ1, Ê2, Ê3g.
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to the orientation probability distribution functions

rðQÞ ¼ 1
p

ffiffiffiffiffiffi
b

2p

r
exp½bðcosð2Q� pÞ � 1Þ�

erfð
ffiffiffiffiffi
2b
p
Þ

ð3:19aÞ

and

rðQÞ ¼ 1
p

ffiffiffiffiffiffi
b

2p

r
exp½bðcosð2QÞ þ 1Þ�

erfið
ffiffiffiffiffi
2b
p
Þ

; ð3:19bÞ

where erf(x) and erfi(x) ¼ 2i erf(ix) denote the error func-
tion at x and the imaginary error function at x,
respectively (Weisstein 2005). The dispersion about Q ¼
p/2 in equation (3.19a) (Model (A)) and about Q ¼ 0
in equation (3.19b) (Model (B)) is described by the con-
centration parameter b (roughly the inverse of
a concentration; Gasser et al. 2006). In the former case,
b! 1 describes fibres all lying on the plane, in the
latter case, b! 1 describes fibres all aligned in one direc-
tion. In both cases, the limit b!0 represents isotropy.
The transversely isotropic orientation probability distri-
butions described above are illustrated in figure 1, where
surface plots defined by the vector r(Q)M have been used.

It is important to note that, in this approach, it is
only required to know the fibre orientation in the refer-
ence configuration. The reorientation of the fibres in the
J. R. Soc. Interface (2010)
current configuration can be tracked by pushing
forward the reference direction M to m ¼ FM.
4. CONVEXITY OF THE ANISOTROPIC
ENSEMBLE FIBRE POTENTIAL

In order to study the convexity of the anisotropic
ensemble fibre potential, we use the expression in
equation (3.5) and, following the Moonley–Rivlin
approach, we assume to be able to express W̄fa as a
Taylor series in Ī4 2 1:

�WfaðC̄ ;AÞ ¼
X1
n¼1

cnð�I 4ðC̄ ;AÞ � 1Þn: ð4:1Þ

The anisotropic ensemble fibre potential is then
given by substituting equation (4.1) into equation (3.5):

�W eaðC̄Þ ¼
ð

S2
c Hð�I 4ðC̄ ;AÞ � 1Þ

�
X1
n¼1

cnð�I 4ðC̄ ;AÞ � 1Þn dS ; ð4:2Þ

which, by commuting the integral and the summation,



Table 1. Fibre orientation distributions r and deformation
states C̄ tested in the study of the convexity of the first- and
second-order terms in the anisotropic ensemble potential
with tension-only fibres (w̄ea

(n), equation (4.3)) and the
comparison potential with tension–compression fibres (w̄c

(n),
equation (4.4)).

tested c (M) ¼ r(Q):

isotropic: rðQÞ ¼ 1
4p

transv. isotropic, peak at Q ¼ 0: rðQÞ ¼ 11
4p
½cosðQÞ�10

tested C̄:
uniaxial stretch in direction Ê1: C̄ ¼ diag½�l2

; �l
�1
; �l
�1�

biaxial stretch in plane Ê2–Ê3: C̄ ¼ diag½�l�4
; �l

2
; �l

2�
biaxial stretch in plane Ê1–Ê3: C̄ ¼ diag½�l2

; �l
�4
; �l

2�

simple shear in plane Ê1–Ê2: C̄ ¼
1 g 0
g 1þ g2 0
0 0 1

2
4

3
5
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becomes

�W eaðC̄Þ ¼
X1
n¼1

cn

ð
S2

c Hð�I 4ðC̄ ;AÞ � 1Þ

� ð�I 4ðC̄ ;AÞ � 1Þn dS : ð4:3Þ

In order to investigate whether the suppression of the
fibre contribution in compression (i.e. the presence of
the Heaviside step) plays a role in the convexity of the
ensemble potential, it is also interesting to study the
convexity of the ‘comparison’ potential

�WcðC̄Þ ¼
X1
n¼1

cn

ð
S2

c ð�I 4ðC̄ ;AÞ � 1Þn dS ; ð4:4Þ

in which the fibres are allowed to resist compression.
Sufficient condition for the convexity of the ensemble

potential (4.3) and the comparison potential (4.4) is the
convexity of each (non-dimensional) integral term

�wðnÞea ðC̄Þ ¼
ð

S2
c Hð�I 4ðC̄ ;AÞ � 1Þ ð�I 4ðC̄ ;AÞ � 1Þn dS;

ð4:5Þ
and

�wðnÞc ðC̄Þ ¼
ð

S2
c ð�I 4ðC̄ ;AÞ � 1Þn dS ; ð4:6Þ

respectively. We tested the convexity of the terms w̄ea
(n)

and w̄c
(n) of orders 1 and 2, and plotted the correspond-

ing graphs with MATHEMATICA 6.0 (Wolfram Research
2008). For the sake of simplicity, the fibre orientation
distribution was such that the basis N̂1, N̂2, N̂3 was
assumed to be coincident with the canonical basis Ê1,
Ê2, Ê3, so that the polar axis was K ¼ N̂1 ¼ Ê1. The
tested fibre orientation distributions and deformation
states are summarized in table 1. The convexity plots
corresponding to the terms of orders 1 and 2 for isotro-
pic (random) and transversely isotropic (peaked at
K ¼ N̂1 ¼ Ê1, i.e. Q ¼ 0) fibre orientation are reported
in figure 2. The comparison potential terms of orders 1
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and 2 (equation (4.4)), with the fibres allowed to resist
compression, are convex with the isotropic fibre
distribution, for all deformation states tested, and
non-convex with the anisotropic fibre distribution, for
most of the deformation states tested. In contrast, the
anisotropic ensemble potential terms of orders 1 and 2
(equation (4.3)) with tension-only fibres is convex for
all tested combinations of fibre orientation and defor-
mation state. This result suggests that the assumption
of fibres having asymmetric behaviour in tension and
compression is not only more realistic, but also needed
from the point of view of mathematical consistency, in
order to achieve convexity.
5. FINITE ELEMENT IMPLEMENTATION
AND EXAMPLES

For the finite element implementation of the continuum
model based on the ensemble fibre potential, we con-
sider the orientation probability density functions
described in §3.4. Note that, because of the generality
of the proposed concept, tabulated orientation density
functions, e.g. derived directly from experimental
studies, could be used instead.

The integration over the unit sphere was performed
using a spherical t-design, i.e. a set fM (1), . . . ,M (N )g
[ S2 of N points on the unit sphere, such that, as
S(S2) ¼ 4p is the (surface) measure of the unit sphere
in R3, the equality

ð
S2

f ðM Þ dS ¼ 4p
N

XN
a¼1

f ðM ðaÞÞ ð5:1Þ

holds for polynomials f of degree k � t (Hardin & Sloane
1996; Hardin et al. 2008). The degree t of the spherical
design, used to integrate equations (3.10) and (3.11) up to
a required precision, should be determined based on the
form of the probability density function c (which, in
this case, is determined by the concentration parameter
b, see equations (3.19)) and the form of the anisotropic
fibre potential W̄fa. The model has been implemented
into the finite element package FEAP (Taylor 2007) at
the Gauss-point level. The underlying scheme is illus-
trated in table 2. In order to explore the basic
mechanisms of the proposed fibre-reinforced model, and
to demonstrate its finite element implementation, two
numerical examples were analysed: the unconfined com-
pression of a cylindrical articular cartilage specimen and
a spherical joint contact problem modelling the hip.
Both examples are based on the same material model of
articular cartilage, as described in the following.

5.1. Tested material model for articular cartilage

The arrangement of the collagen fibres was assumed to
vary linearly from nearly aligned (Model (B), b ¼ 5) and
orthogonal to the tidemark (bone–cartilage interface)
in the deep zone of the tissue, randomly oriented in
the middle zone (Model (A/B), b ¼ 0), and parallel to
the surface in the superficial zone (nearly planar distri-
bution: Model (A), b ¼ 5). Although this reflects the
qualitative collagen fibre distribution in articular carti-
lage (Mollenhauer et al. 2003), detailed quantitative
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Figure 2. Convexity plots for first- and second-order terms in the anisotropic ensemble potential with tension-only fibres (solid lines;
w̄ea

(n), equation (4.3)) and the comparison potential with tension–compression fibres (dashed lines; w̄c
(n), equation (4.4)). The graphs

are arranged in two groups of two rows each. The first group corresponds to an isotropic distribution of fibres (random, i.e. r(Q) ¼ 1/
4p), with the first and second row illustrating the first- and second-order terms, respectively. The second group corresponds to a
transversely isotropic distribution of fibres (peaked at M ¼ Ê1, i.e. Q ¼ 0), with the first and second row illustrating the first-
and second-order terms, respectively. The first column of graphs refers to uniaxial stretch along Ê1, the second to biaxial stretch
in the Ê2–Ê3 plane, the third to biaxial stretch in the Ê1–Ê3 plane, and the fourth to simple shear in the Ê1–Ê2 plane.

Table 2. Finite element implementation of the anisotropic ensemble fibre potential.

given:
isochoric deformation gradient F̄ ¼ J21/3F

orientation distribution data K ; b; r ¼ Model (A)
Model (B)

�
algorithm:
define integration order t b,W̄fa)t
load spherical design M (a), a [ f1 . . . Ng
initialize stress and elasticity tensors �s ea  o; �Cea  O

DO a ¼ 1, N
compute spatial isochoric fibre direction m̄(a) ¼ F̄M (a)

compute spatial isochoric structure tensor ā(a) ¼ m̄(a) � m̄(a)

compute fourth invariant Ī4
(a) ¼ m̄(a) . m̄(a) ¼ tr(ā(a))

compute co-latitude angle Q(a) ¼ arccos(K . M (a))

IF (Ī 4
(a) . 1) THEN

compute orientation density rðaÞ ¼

1
p

ffiffiffiffiffiffi
b

2p

r
exp½bðcosð2QðaÞ � pÞ � 1Þ�

erfð
ffiffiffiffiffi
2b
p
Þ

. . . ðModel (A)Þ

1
p

ffiffiffiffiffiffi
b

2p

r
exp½bðcosð2QðaÞÞ þ 1Þ�

erfið
ffiffiffiffiffi
2b
p
Þ

. . . ðModel (B))

8>>>><
>>>>:

IF (r(a) . 1) THEN

compute W̄ ea contribution of stress and elasticity tensors

�s ðaÞea ¼ J�1 2 rðaÞ �W 0
fað�I ðaÞ4 Þ devðāðaÞÞ

�CðaÞea ¼ J�1 4 rðaÞ �W
00

fað�I ðaÞ4 Þ devðāðaÞÞ � devðāðaÞÞ

þ J�1 4
3 r
ðaÞ �W 0

fað�I ðaÞ4 Þ �I
ðaÞ
4 M� 2

3ði � �s ðaÞea þ �s ðaÞea � iÞ

update W̄ ea contribution of stress and elasticity tensors
�sea  �sea þ 4p

N �s
ðaÞ
ea

�Cea  �Cea þ 4p
N

�CðaÞea
ENDIF

ENDIF
ENDDO
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Figure 3. Load–displacement response in the unconfined
compression of a cylindrical cartilage specimen, based on the
proposed cartilage model.
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data were not considered in the present computation.
Likewise, cartilage was treated as a pure solid (i.e. the
fluid phase was neglected) free from residual stresses,
and estimates were used for the elastic constants of
the matrix and fibres, rather than data from experimen-
tal studies. The material was treated as strictly
incompressible, so that a function U of the volumetric
deformation J (equation (2.4)) need not be defined.
The matrix potential and fibre isotropic and anisotropic
potentials featuring in equations (3.1)–(3.3) were set as

�W 0ðC̄Þ ¼ 1
2 c0ð�I 1ðC̄Þ � 3Þ; ð5:2aÞ

�W fiðC̄Þ ¼ 1
2 cfið�I 1ðC̄Þ � 3Þ ð5:2bÞ

and �W faðC̄ ;AÞ ¼ 1
2 cfað�I 4ðC̄ ;AÞ � 1Þ2; ð5:2cÞ

with constants c0 ¼ 0.1 MPa, cfi ¼ 0.1 MPa and
cfa ¼ 5.0 MPa. Note that the matrix potential W̄0

and the fibre isotropic potential W̄fi were assumed to
be neo-Hookean, with Ī1(C) ¼ I : C̄ being the first
invariant of C̄. The matrix and fibre fractions were
set to f0 ¼ 0.8 and ff ¼ 0.2, respectively.

The degree t of the spherical design used in the
numerical integrations involving the anisotropic fibre
potential (5.2c), which is a second-order polynomial in
Ī4, has been determined by numerical experiments. In
particular, simple tension was considered and t was
increased until a converged solution was achieved.
This approach defined the empirical relation t ¼ 7.0 þ
1.5b for exact integration, where b is the concentration
parameter featuring in the normalized von Mises prob-
ability density function (3.19). It should be emphasized
that (i) anisotropic fibre potentials W̄fa expressed as
higher order polynomials in Ī4 require a higher inte-
gration order t of the spherical design employed and
(ii) for several practical applications, sources of error
influence the orientation probability density function,
and a lower integration order might be justified.

The computational grids, including the underlying
collagen distribution data, were developed in MATHEMA-

TICA 6.0 (Wolfram Research 2008) and the structural
analysis was carried out within the multipurpose
finite element analysis package FEAP (Taylor 2007).
To this end, Q1P0 finite elements (Simo & Taylor
1991) were used and the nonlinear mechanical problem
was solved by incrementing the imposed displacements
in 10 steps. Incompressible deformation of cartilage
tissue was assumed and enforced by an augmented
Lagrangian approach, where the Lagrange multipliers
were updated by a nested loop at each loading step
(Uzawa scheme). The system of linearized equations
was solved by an iterative solution scheme with diag-
onal preconditioning, and all computations were
performed on a standard personal computer (Dell
Optiplex GX520).

5.2. Cylindrical specimen under unconfined
compression

This example aims at investigating the stress state
within a cylindrical cartilage specimen of 3.0 mm in
diameter and a height of 1.83 mm. Dimensions were
taken from test specimens used in Park et al. (2004)
and, in accordance with that study, a 0.5 mm thick
J. R. Soc. Interface (2010)
layer of the deep zone of articular was removed, such
that Model (B) with b ¼ 2.85 describes the collagen dis-
tribution at the deepest zone of the test specimen.
Unconfined compression was assumed and
a displacement of 0.366 mm was prescribed at the
articular surface corresponding to a physiologically rel-
evant cartilage strain in the direction of the thickness
(Park et al. 2004).

A discretized model involving 21 000 nodes was used
and, although the investigated problem is rotationally
symmetric, the whole cylindrical specimen was modelled
to support possible instabilities of the problem, i.e. not to
use too restrictive boundary conditions, which could
suppress the development of instabilities. Results demon-
strate a significant nonlinear load displacement response
with a compressive load of 2.671 N (corresponding to an
average engineering stress of 377.9 kPa) at the final
displacement of 0.366 mm (figure 3).

The structural inhomogeneity in the direction of
tissue depth (thickness) caused an inhomogeneous
deformation, with the prediction of larger radial defor-
mations in the superficial zone compared with those
in the deep zone. Likewise, a complex state of stress
develops, as shown by the principal stress plots in
figure 4.

It is important to note that the original transverse
isotropy assumed in the reference configuration is pre-
served only at all points lying on the axis of
symmetry of the cylindrical sample. At these points,
indeed, the pushed-forward direction k ¼ FK of the
local axis of transverse isotropy of the fibre direction
probability density function remains parallel to the
reference direction K, which coincides with the axis of
symmetry of the sample. At all points lying outside of
the axis of symmetry of the sample, the depth-
dependent (i.e. varying in the axial direction) stiffness
causes a non-uniform radial deformation in the axial
direction, which implies that the push-forward k of
the reference axis of symmetry K is rotated with respect
to its reference direction K. Because of this rotation,
fibre buckling occurs in a pattern that is no longer sym-
metric with respect to k, and local transverse isotropy is
lost. Naturally, because of the geometry of the system
and the loading, global axial symmetry of the solution
is preserved.
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5.3. Spherical joint contact

As another example of application, we investigated the
hip joint, i.e. the stress distribution in the cartilage
between the femoral head and the acetabulum. These
were modelled by two hemispherical layers of cartilage
(figure 5), each 1.7 mm thick, with the subchondral
bone assumed to be rigid, and the femoral head
having a diameter of 50.1 mm (Anderson et al. 2008).
For simplicity, i.e. to avoid problems inherent to the
numerical contact between the two deformable bodies,
we considered a rigid interface at the two articular
surfaces, which resulted in a small computational
effort. The acetabulum was fixed and a displacement
was prescribed at the femoral head in the direction of
the line connecting the centres of the two hemispheres.
J. R. Soc. Interface (2010)
A total displacement of 0.34 mm was prescribed, corre-
sponding to a maximal nominal compression of the
articular tissue of 10 per cent.

Results show a nonlinear load displacement response
of the joint (figure 6) and, although the collagen
arrangement varies considerably across the the carti-
lage thickness, only a moderate stress gradient in that
direction was predicted. Here, it is emphasized that
complementary computations indicated that an
increase in collagen stiffness, i.e. increasing cf, enhances
the stress gradient across the thickness. Although the
radial strain was kept moderate (10% nominal
strain), the incompressibility assumption and the par-
ticular kinematics of the joint caused much larger
cross-thickness shearing, particularly at the articular
surface.
6. DISCUSSION

Composite materials reinforced by fibres with statistical
orientation (described by a probability distribution
function) can be modelled by superposing an isotropic
elastic potential representing the matrix and an integral
term, the ensemble fibre potential, representing the
fibres. Because of the presence of the deformation in
the integrand function, the resulting potential cannot
be directly used analytically (Federico & Herzog
2008c), except for some particular cases. In this work,
we developed a robust numerical integration method
for the elastic potential, the stress and the elasticity
tensor, based on the use of spherical designs (Hardin &
Sloane 1996; Hardin et al. 2008). The proposed
method is very general, in the sense that any
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probability distribution density function, representing
the fibre orientation in the reference configuration,
can be easily implemented into the code, either from
an analytical function, or in a tabular form from
experimental data.

We also investigated the correctness of the assump-
tion of asymmetric tension–compression fibre
behaviour (stiffness in compression lower than in ten-
sion), by comparing the convexity plots of an
ensemble potential with tension-only fibres, and with
tension–compression fibres. For the cases studied, our
results show that if fibres are allowed to resist
compression to the same extent of tension, the
overall elastic potential is non-convex. In contrast, the
potential with asymmetric behaviour preserves
convexity.

As an example of application, we modelled articular
cartilage as anisotropic and inhomogeneous (although
monophasic), with a qualitatively realistic location-
dependent probability distribution, and simulated the
unconfined compression of a cartilage sample, and the
cartilage layers of the hip joint.

For the case of articular cartilage, a biological tissue
that well represents composites with statistically
oriented fibres, several methods have been proposed,
all based on finite element models, i.e. often lacking a
direct connection with a precise mathematical model.
This is the case of the class of mesh superposition
methods, in which a ‘base’ mesh is assigned the elastic
properties of the matrix, and it is then reinforced by
superposing tension-only springs (e.g. Soulhat et al.
1999) or a tension-only congruent mesh (e.g. Li &
Herzog 2004). Based on considerations made on the
J. R. Soc. Interface (2010)
stress, and not on the elastic potential (also because
of the assumption of viscoelasticity), Wilson et al.
(2004) proposed a model in which only a finite,
although very large, number of fibre directions was
considered.

Because the proposed method is based on the
description of the microstructure, and on the use of
averaging integrals rather than on sums over a finite
number of fibres, it has two main advantages with
respect to the above-mentioned models.

— It enables one to account for the microstructure,
while retaining a precise analytical form, rep-
resented by the elastic potential, which is directly
implemented into finite elements.

— It is not affected by the limitation of a finite number
of fibres; furthermore, a large finite number of fibres
might require large computational resources, par-
ticularly in terms of memory needed to store the
information related to the fibre directions used in
the computation (in the proposed method, instead,
for the case of transverse isotropy, only the mean
direction K and the concentration parameter b
need to be stored).

On the other hand, the superposition method (Holzapfel
et al. 2000), on which the theoretical model of
Federico & Herzog (2008c) and the numerical implemen-
tation presented here are based, is affected by two
limitations.

— It does not account for shear interactions between
matrix and fibres; this effect has instead been



Nonlinear elasticity of biological tissues S. Federico and T. C. Gasser 965
studied by Guo et al. (2006) in the annulus fibrosus
of intervertebral discs (characterized by two distinct
families of fibres).

— When fibre orientation has a statistical distribution,
it is possible that fibre networking and entangle-
ment occur: such fibre–fibre interaction is not
taken into account here.

It should also be noted that a direct, quantitative com-
parison of the specific applications of the proposed
model to articular cartilage with published experimen-
tal results is not possible. Indeed, neither the choice of
the collagen fibre strain energy potential nor the con-
sidered orientation probability density function is
based on experimental data.

However, the simulated unconfined compression test
(§2) qualitatively reproduces a typical load displace-
ment curve (e.g. fig. 3 in the work by Park et al.
(2004)), and the behaviour of the radial displacement
as a function of the tissue depth (figure 4), which is
larger in the superficial zone (upper surface) and smal-
ler closer to the tidemark (bone–cartilage interface,
lower surface), that is commonly found in experiments
(e.g. fig. 3 in the work by Fortin et al. (2003)).

The present work provides an efficient and robust
numerical implementation of the previously proposed
theoretical fibre-reinforced model (Federico & Herzog
2008c), which was shown to be in general not usable
in analytical form.

In the future, we plan a more detailed application to
the mechanics of articular cartilage, including the use of
experimental data for the fibre arrangement (e.g.
Mollenhauer et al. 2003), the presence of the fluid
phase and the use of microstructural models of per-
meability (Federico & Herzog 2008a,b) and the effects
of growth (Grillo et al. 2009).

The authors gratefully acknowledge Dr Raymond W. Ogden
for his feedback on the manuscript, Dr Walter Herzog for
supporting T.C.G.’s visit at the University of Calgary, and
the AIF New Faculty Programme (Alberta Ingenuity Fund,
Canada) and the NSERC Discovery Programme (Natural
Science and Engineering Research Council of Canada) for
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