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What role does natural selection
play in speciation?

N. H. Barton*

Institute of Science and Technology, Am Campus 1, 3400 Klosterneuburg, Austria

If distinct biological species are to coexist in sympatry, they must be reproductively isolated and
must exploit different limiting resources. A two-niche Levene model is analysed, in which habitat
preference and survival depend on underlying additive traits. The population genetics of preference
and viability are equivalent. However, there is a linear trade-off between the chances of settling in
either niche, whereas viabilities may be constrained arbitrarily. With a convex trade-off, a sexual
population evolves a single generalist genotype, whereas with a concave trade-off, disruptive selec-
tion favours maximal variance. A pure habitat preference evolves to global linkage equilibrium if
mating occurs in a single pool, but remarkably, evolves to pairwise linkage equilibrium within
niches if mating is within those niches—independent of the genetics. With a concave trade-off,
the population shifts sharply between a unimodal distribution with high gene flow and a bimodal
distribution with strong isolation, as the underlying genetic variance increases. However, these
alternative states are only simultaneously stable for a narrow parameter range. A sharp threshold
is only seen if survival in the ‘wrong’ niche is low; otherwise, strong isolation is impossible. Gene
flow from divergent demes makes speciation much easier in parapatry than in sympatry.

Keywords: sympatric speciation; gene flow; parapatric speciation; Levene model;
disruptive selection
1. INTRODUCTION
The role of natural selection in the origin of species has
been controversial ever since Darwin published his
great work in 1859; as can be seen from the papers
in this volume, it remains so. Darwin (at least, in the
first edition of The origin of species) relied on selection
as the main cause of evolutionary change, but saw
that hybrid sterility could not be directly selected;
instead, he argued that it arises as a side-effect of diver-
gence. In contrast, Wallace’s (1889) enthusiasm for
selection led him to argue that not only could it
strengthen prezygotic isolation, by what we now call
reinforcement, but that group selection could even
cause hybrid sterility (Cronin 1991, ch. 16). Then,
as now, ecological divergence that allows distinct
species to live together in sympatry received less atten-
tion than reproductive isolation. However, Darwin
(1859, ch. 4) did attach great importance to diversify-
ing selection in driving speciation.

This paper begins by briefly reviewing the various
roles that selection plays in speciation, but then
focuses on how it leads to sympatry, by selecting for
reduced recombination and for the use of different
limiting resources. Specifically, it argues that the
condensation of a single population into two
reproductively isolated clusters, coexisting in different
niches, is a process distinct from the traditional view of
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reinforcement and that this process is much more
likely to occur in parapatry than in sympatry.
(a) The role of natural selection in speciation

Selection against hybrids is essential to the definition
of biological species. Alleles will be eliminated from a
population if they find themselves in unfit heterozy-
gotes or recombinants, and similarly, sexual selection
will act against alleles that make males unattractive,
or make it harder for females to find a mate. The fun-
damental opposition of selection to the evolution of
reproductive isolation has long been seen as the
major obstacle to speciation (Darwin 1859, ch. 8;
Huxley 1860; Mayr 1963, ch. 17); in Wright’s
(1932) metaphor of an ‘adaptive landscape’, reproduc-
tive isolation corresponds to a valley of reduced mean
fitness that cannot be crossed by selection alone. This
view motivated a variety of models in which random
drift overcomes selection, to knock populations onto
new fitness peaks: various models of founder-effect
speciation (Mayr 1963, ch. 17; Carson & Templeton
1984), chromosomal speciation (Wright 1941; White
1978) and Wright’s (1932) ‘shifting balance’.

In fact, selection will not oppose the evolution of
reproductive isolation if that isolation is not expressed
during divergence. Separate populations will diverge,
even if they experience identical environments: they
will not fix the same alleles from the ancestral popu-
lation and will not pick up the same set of
mutations. So, two populations will come to differ at
many sites, some fraction of which will affect fitness.
This journal is # 2010 The Royal Society
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Figure 1. (a) Mutations A and B arise in one lineage, and C
and D in another. The descendant populations have geno-
type ABcd and abCD, and are separated by two
Dobzhansky-Muller incompatibilities (DMIs), indicated by
thin lines: allele A is incompatible with D, and B with C.

Both incompatibilities are between two derived alleles. (b)
If the ancestral genotype were ABcd, and four mutations
occurred in one lineage (B! b, A! a, c! C, d!D),
then the descendant populations would have the same geno-
types, but both incompatibilities would be between a derived

and an ancestral allele. All that has changed is the position of
the root.
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Novel genotypes will be produced from crosses
between populations that have been separated by
only a few thousand generations. A priori, we
expect that genotypes that have never been tested
by selection would have lower fitness, on average,
and that the average hybrid fitness would decrease
with divergence. It is remarkable that, in fact, organ-
isms that offer by thousands of amino acid
substitutions often freely hybridize, and that even
where they do not, relatively few incompatibilities
may be responsible for hybrid unfitness (Orr &
Turelli 2001). The slow accumulation of reproduc-
tive isolation reflects the robustness of organisms to
genetic change.

The first explicit models in which reproductive iso-
lation evolves as a side effect of divergence were made
by Poulton (1903) and Bateson (1909), and rediscov-
ered by Dobzhansky (1937) and Muller (1942); see
Orr (1996). Two alleles arise, one in each lineage,
and although each allele is favourable on the ancestral
background, they are incompatible with each other.
Orr (1995) and Orr & Turelli (2001) generalized
these models by supposing that there is some small
probability that any pair of alleles will substantially
reduce fitness. (Note that there may be incompatibil-
ities between derived alleles in different lineages, or
between ancestral and derived alleles in the same line-
age; the root could lie anywhere on the path
connecting the present-day populations; figure 1.)
Orr & Turelli (2001) assume that there is a highly
skewed distribution of fitness effects, with a very
small fraction of allelic combinations showing large
detrimental effects. This is consistent with the results
of Drosophila speciation genetics, but remains to be
firmly demonstrated more generally, for a wider
range of traits and taxa.

It is unfortunate that the term ‘Dobzhansky–
Muller incompatibility’ (DMI) is used in a variety of
ways: to refer to Dobzhansky and Muller’s specific
two locus model; to Orr and Turelli’s generalization
of it; or to the broad idea that reproductive isolation
need not be expressed during divergence. It is also
not clear whether the term refers to the process of
divergence (in which selection does not oppose the
evolution of reproductive isolation) or to the outcome
(in which a small number of incompatibilities are
involved in hybrid breakdown). This paper uses the
term ‘broadly’, to refer to an incompatibility that has
evolved without ever having been expressed in the
ancestral lineages, but avoids making any restrictive
assumptions about the distribution of fitness effects.

In these models, although there is no direct selec-
tion for or against reproductive isolation, selection
may nevertheless drive divergence in a variety of
ways. There may be selection for different favourable
mutations in a uniform environment, or different
environments may fix different alleles. Both the phys-
ical and biological environments may differ, the latter
including coevolution between host and pathogen, or
selfish genetic elements. The isolation that ensues
may be related to the process that was selected or
may be due to an entirely different pathway (e.g. auto-
immunity in plants (Bomblies & Weigel, 2010),
nucleoporins in Drosophila, melanomas in fish (Orr &
Phil. Trans. R. Soc. B (2010)
Presgraves 2000)). Divergence might be due to
random drift across a neutral adaptive landscape
(Gavrilets & Gravner 1997; Gavrilets 2004), or in
opposition to weak selection (e.g. compensatory evol-
ution; Innan & Stephan 2001). However, we might
expect strongly selected changes to be more likely to
cause reproductive isolation as a by-product. It is strik-
ing that in all the examples of ‘speciation genes’
discovered to date, there is evidence for positive
selection where this has been tested (mainly, by
finding excess rates of amino acid substitution).
Under the Dobzhansky–Muller model, whether
selection drives biological speciation really depends
primarily on the extent to which evolution in general
is due to selection.

To some extent, it does not matter what causes
divergence—the key issue is what fraction of allelic
combinations cause incompatibility. However, the
cause of divergence is relevant to the geography of spe-
ciation. If divergence is due to moderately strong
selection, then it can occur despite gene flow. Thus,
divergence in parapatry seems just as likely as in allo-
patry. With discrete demes, selection dominates if it
is faster than migration (i.e. s� m), and in a spatially
extended population, selection must favour an allele
over a spatial scale that is sufficiently large
(x� s=

ffiffi
s
p

; Slatkin 1973). As can be seen from the
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Figure 2. DMIs can accumulate in parapatry as well as in allo-
patry. (a) Alleles A and D arise at different places, and at
different loci, and both begin to spread. (b) If they meet,
and are incompatible, then they will remain separated by a

stable pair of clines (double lines). New alleles may then
arise (B,C); if these are incompatible with each other, or
with one of the alleles that are already established, then they
will strengthen the isolation, leading to a set of four clines.
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many examples of local adaptation across narrow
clines, gene flow does not prevent divergence in a het-
erogeneous environment. Parapatric divergence is
more difficult in a uniform environment, but will still
occur if the species covers a broad enough range.
Then, favourable alleles will arise at different loci
and spread through the range at the same time. If
they proved to be incompatible with each other, then
they will remain separated by a narrow cline that can
be the nucleus for further divergence (figure 2;
Kondrashov 2002; Navarro & Barton 2003). The rate
of parapatric divergence depends on how long it takes
for a favourable allele to sweep through the whole popu-
lation: the longer it takes, the greater the opportunity
for incompatible alleles to meet each other.

Selection plays a much more direct role in the evol-
ution of sympatry—i.e. in determining how divergent
populations come to coexist. Yet, this question has
been somewhat neglected, relative to the evolution of
reproductive isolation. This may be partly because bio-
logical species are defined by reproductive isolation, so
that on this definition, speciation is identical with the
evolution of isolation. It may also be because sympatry
requires ecological divergence, so that understanding
its evolution depends on combining genetics with
ecology and on work in the field rather than the labora-
tory. Yet, sympatry is essential for the long-term
survival of species: otherwise, a species’ range will be
fragmented into ever smaller areas, until extinction is
inevitable. Examples of parapatric distributions, such
Phil. Trans. R. Soc. B (2010)
as chromosomal races in rodents, represent a balance
between the accumulation of partial reproductive
isolation in parapatry, and the extinction of local
races (Patton & Sherwood 1983; Searle 1993).

Alternative combinations of alleles can coexist in
sympatry if they use different limiting resources and if
they are, to some degree, reproductively isolated, so
that recombination is reduced. Neither ecological diver-
gence nor reproductive isolation need be complete, but
the net strength of these two factors must exceed some
threshold if disruptive selection, favouring the alterna-
tive genotypes, is to overcome recombination. (Indeed,
in simple models, the sum of these factors is precisely
what determines whether coexistence is possible
(Udovic 1980; Gavrilets 2004, and see below).)

Recombination can be reduced by assortative
mating, by preference for different niches and mating
within niches, by selection against intermediate geno-
types, or by chromosomal rearrangements. Divergence
to use different resources requires some combination
of preference and of specialization to better exploit par-
ticular resources. So, we need to understand the joint
evolution of ecological divergence, postzygotic isolation
and prezygotic isolation to give clusters that can ulti-
mately continue their divergence to give full biological
species with no gene flow.

This paper refers to ‘habitats’ in a broad sense, to
mean the exploitation of a distinct limiting resource; it
need not imply a physical location or microhabitat,
but could include, e.g. mimicry of different unpalatable
model species.

This paper analyses the transition to sympatry by
using a generalization of the Levene (1953) model,
which assumes soft selection in two habitats; i.e.
each habitat produces a fixed proportion of the popu-
lation, regardless of number that choose to live on
each, or the proportion that survive there. Assuming
soft selection is a drastic simplification. Ideally, one
would allow for separate density-dependent regulation
in each habitat, with survival being a decreasing func-
tion of numbers. This would allow study of extinction
and range limits, but makes the analysis substantially
more complicated.

The Levene (1953) model is the basis for a variety of
models of sympatric speciation (Maynard Smith 1966;
Maynard Smith & Hoekstra 1980; Felsenstein 1981;
Diehl & Bush 1989; see Gavrilets 2004, for a review).
In particular, Geritz et al. (1998) and Geritz & Kisdi
(2000) give an ‘adaptive dynamics’ analysis which is
close to that set out here: they assume that viabilities
in each niche are a Gaussian function of an underlying
trait, and assume a single locus in a diploid sexual
population. Recently, Nagylaki (2009) and Bürger
(in press) has made a detailed analysis of the multilocus
Levene model, but assuming no epistasis.

This paper will lay out the model in a slightly more
general way, that allows for multiple loci to interact in
order to determine habitat preference and viability in
each habitat. This paper will first describe the evolutio-
narily stable strategy for preference and for viability
separately, then show how genes for either may
couple together in a single population and finally,
extend the analysis to the parapatric case, to ask how
initially disjunct populations come to coexist.
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Figure 3. The distribution of viability, v1, caused by a normal
distribution of the underlying trait, z. This changes from

unimodal through to bimodal as the variance in z increases
from 0.1 to 1 to 10; mean z ¼ 1, b ¼ 2.
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2. THE LEVENE MODEL
At the start of each generation, individuals have a
probability ag of moving into habitat g. They then
have the relative viability vg and finally, a fixed fraction
cg emerge, as breeding adults. Mating may occur
randomly within each niche or across the whole
population. This paper will focus mainly on the first
case, which is more favourable to speciation.

The effects of habitat preference and viability selec-
tion on the genotype frequencies within niche g, gg,
depend on the product of preference and viability,
ag(X )vg(X ):

ggðXÞ ¼
agðXÞvgðXÞ

av
gðXÞ;

where av ¼
X
g

agðXÞvgðXÞgðXÞ ð2:1Þ

and X denotes the genotype. If mixing occurs before
mating, we have genotype frequencies g*(X ) ¼

P
gcg

gg(X ) in the pool of breeding adults, and the genotype
frequency among newborns is

P
Y,Z R(X, Y, Z)

g*(Y )g*(Z); R(X, Y, Z) is the frequency of genotype X
among offspring from parental genotype Y,Z. If mating
occurs within habitats, we have genotype frequencies
among newborns of

P
gcg
P

Y,Z R(X, Y, Z)gg(Y )gg(Z).
After considering the evolutionarily stable strategies
(ESS), I will derive explicit results, with R being defined
by Mendelian inheritance at multiple loci.

It is crucial to realize that because genotype
frequencies change only through the product agvg,
the population genetics of preference and viability are
equivalent. Differences arise only to the extent that we
assume different constraints: because every individual
must go somewhere, it is natural to constrain prefer-
ences to sum to 1 (

P
g ag ¼ 1 8X ), whereas

viabilities in the different habitats could be constrained
in a variety of ways. However, if the constraints are the
same, then the habitat preference and viability selection
change genotype frequencies in the same way.

There is a natural generalization, in which viability is
the product of a set of independent components, rather
than one; each is determined by a different trait, zi. If
these involve different processes, we can assume that
different sets of loci are involved for each. For example,
net survival on each habitat might depend on ability to
use different nutrients, resistance to different patho-
gens, development time and so on. Even if alleles of
large effect were available for each component, recom-
bination would prevent their coupling together. We do
not pursue this idea here, but note that coupling
between preference and a single viability trait is similar
to coupling among multiple viability traits.
(a) Representing constraints on preference

and viability

The habitat preference, ai, must sum to 1—every indi-
vidual must go somewhere—and so with two niches, it
is convenient to write

a0 ¼
1

1þ ea
and a1 ¼

ea

1þ ea
¼ 1

1þ e�a
; ð2:2Þ

where a is an additive trait (21 , a , 1) that deter-
mines the preference. With this choice, the
Phil. Trans. R. Soc. B (2010)
distribution of preference in the population changes
from unimodal to bimodal (clustered around 0 and 1)
as the variance of a increases (figure 3).

We can write the viability in each niche in a similar
way, but now, we must choose the constraint on
viabilities in each niche:

v0 ¼
1

1þ bez
and v1 ¼

ez

bþ ez
¼ 1

1þ be�z
: ð2:3Þ

If b . 1, then the trade-off curve (i.e. v1 considered
as a function of v0) is concave: at z ¼ 0, viability is
1/(1 þ b) in both niches, and so is lower than the aver-
age viability of an extreme specialist (1

2
for jzj � 0).

Conversely, if b , 1, the trade-off curve is convex, lying
above v0 þ v1¼ 1 (figure 4). We will need, below, a
more general form, in which the less-well-adapted types
always have a minimal viability of at least u:

v0 ¼ uþ 1� u

1þ bez
and v1 ¼ uþ 1� u

1þ be�z
: ð2:4Þ

It is important to note that this curve represents the
outer limit of the set of possible viabilities: genotypes
below the curve no doubt exist, but will be less fit
than those on the curve. In reality, we can imagine
that viability in each niche is controlled by a set of
loci with additive effects, with additive trait zi deter-
mining the viability vi through a logistic relation.
Transforming to zi ¼ log(vi/(1 2 vi)), the constraint
described by equation (2.2) amounts to assuming
that z0 þ z1 � 22 log(b). Thus, we can imagine a set
of genotypes whose outer limits lie on the trade-off
curve (figure 5). We make the approximation that
selection will always take the population onto this
curve and neglect deleterious mutations that would
take it into the interior. It is thus convenient to
assume that alleles lie on the trade-off curve, implying
that they have pleiotropic effects. However, this is not a
critical assumption: essentially the same results would
emerge even if alleles had small effects on viability in
only one or other niche (i.e. if there is no pleiotropy).
Indeed, it is implausible that alleles would have effects
that lie precisely on the trade-off curve.
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Figure 4. (a) The possible viabilities in each niche are limited
by a trade-off curve (equation (2.3)). For b ¼ 1, there is a
linear trade-off (v0 þ v1 � 1; middle line), and any distri-
bution on this line that has mean v̄ ¼ 1 is an ESS. For b ¼

0.5, the trade-off curve is convex (upper curve), and there
is a unique monomorphic ESS for viability (shown at
upper right, for c0 ¼ c1 ¼ 0.5). Conversely, for b ¼ 2, the
trade-off curve is concave, and there is a unique polymorphic

ESS, with a mixture of specialist genotypes (dots at upper
left, lower right). (b) If both preference and viability vary,
and if there is no recombination between them, then what
matters is the constraint on the product agvg. The curves
here show the combined trade-off (equation (2.5)) for the

viabilities shown in (a), and habitat preference (a0 þ a1 ¼

1; equation (2.4)). These are concave, for all b, and so the
ESS is always for a polymorphism between two extreme
specialists (dots).
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Figure 5. The trade-off curve is the outer limit of the set of
possible viabilities, fv0, v1g: it does not require that

mutations have effects that fall on this curve. To illustrate
this point, the distribution of genotypic values is
shown, for viabilities determined by underlying additive
traits fz0, z1g (equation (2.2)). These traits are determined

as the sum of random effects at 10 loci, with effects on z0,
z1 at each locus chosen independently from a random uni-
form distribution, but with the constraint that z0 þ z1 � 2
log (b); here, b ¼ 2. Selection will take the population close
to the trade-off curve.
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3. EVOLUTIONARILY STABLE STRATEGIES
(a) ESS for habitat preference and viability

separately

We begin by finding the ESS for habitat preference and
viability separately, by looking for a phenotype that
cannot be invaded by any other; this analysis follows
Levins’ (1968) approach. The ESS preference is
when the mean fraction that moves into each niche
matches the output of that niche (i.e. �ag ¼ cg). How-
ever, this ESS can be achieved in a variety of ways:
there is no selection either for or against variation in
preference, because at the ESS, all individuals have
the same fitness wherever they go. (For the moment,
we are ignoring variation in relative viability between
individuals.) Therefore, there may be considerable
variation in preference.

Next, consider the ESS for relative viabilities in
each niche. If b , 1, giving a convex trade-off
curve, then the ESS is for a single generalist
phenotype, moderately well adapted to both habitats.
Conversely, if b . 1, the ESS is a polymorphism
with two specialist genotypes (figure 4). In each case,
the ESS maximizes the mean viability, weighted by
cg; note that because the model assumes a fixed
output from each niche, cg, the ESS for viability is
independent of preference and vice versa: both ESS
depend only on the outputs, cg.
(b) No recombination: joint ESS for preference

and viability

The argument given above is independent of the mode
of reproduction, provided that the population is mono-
morphic. If the population is polymorphic, then the
average fitness of an invading allele depends on its
association with the existing polymorphism and
hence on the rate of recombination. If recombination
Phil. Trans. R. Soc. B (2010)
is so fast, relative to selection, that viability and prefer-
ence are uncorrelated, then the above arguments for
the separate ESS apply. Below, we examine the case
where selection and recombination are comparable,
so that we must follow the evolution of linkage disequi-
librium. First, however, we find the ESS for an asexual
population, by finding combinations fa, vg that
cannot be displaced.

It is obvious that when any combination of viability
and preference can be selected, the ESS will be the
coexistence of two perfect specialists: a generalist
ESS is only possible when recombination prevents
associations between preference and viability from
becoming sufficiently strong. However, it is instructive
to show this formally, by combining the constraints on
preference and trait, to give the joint trade-off curve
for their product, a*v, and then asking whether this
is concave or convex. Consider a0v0 and a1v1 as func-
tions of a, z, as given by equations (2.2) and (2.4).
Then, by maximizing a1v1 for given a0v0, we find
that the joint trade-off is given by

a0v0 ¼
1þ buezð Þ2

e2z þ 1ð Þ 1þ b2u
� �

þ 2ezbð1þ uÞ

and a1v1 ¼
ez þ buð Þ2

e2z þ 1ð Þ 1þ b2u
� �

þ 2ezbð1þ uÞ

9>>>=
>>>;
ð3:1Þ

Crucially, this is always concave (i.e. a0v0 þ a1v1 , 1
for b . 0 and u , 1; figures 4 and 6). Thus, even if the
trade-off curve for viabilities is convex, so that the ESS
for viability is for a single generalist genotype, the joint
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Figure 6. When constraints on preference (a0 þ a1 ¼ 1) and

viability (v0, v1) are combined, the trade-off curve for net fit-
ness (a0v0, a1v1) is always concave. Therefore, in an asexual
population, the ESS is always for polymorphism between
two extreme specialists, if preference and viability can
evolve together. (a) The constraint on viability (equation

(2.4)) is convex, straight or concave, depending on whether
b ¼ 0.5, 1 or 2 (top right to lower left). (b) The correspond-
ing constraint on net fitness (agvg) is always concave (u ¼ 0.1
throughout).
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ESS for preference and trait together is always con-
cave, so that specialists that choose different niches,
and are adapted to those niches, will evolve.
(c) Sexual reproduction

With sexual reproduction, an ESS with polymorphism
between extreme specialists is only possible if the gen-
etic system can produce these two extreme types. The
simplest case is of a single locus (in diploids, with com-
plete dominance). More elaborate mechanisms include
tightly linked ‘supergenes’, or a single locus that
switches the effects of other loci between two states.
The problem is to understand how such a complex
system could evolve: if it cannot, then disruptive selec-
tion will maintain a polymorphism that is limited by
genetic constraints. Such polymorphism may be main-
tained at multiple loci, giving an approximately
normal distribution of the trait, z; the distribution of
viability, v(z), would be roughly normal if the trait var-
iance is small and the trait mean intermediate (figure 3).

We can understand the evolution of a sexual popu-
lation by assuming that a very large number of loci
influence the traits, so that although the extreme phe-
notypes could be generated, the actual variance is
drastically reduced by recombination: reproductive
isolation is then strongly favoured, as indeed are any
mechanisms that reduce recombination. Assuming
that z is tightly clustered around its mean, so that
higher-order selection such as @2 log(v)/@z2 can be
neglected, the selection gradient on z can be approxi-
mated by E[@log(v)/@z], evaluated at the trait mean
ðz ¼ �zÞ; here, the expectation is across niches.

The population will reach an equilibrium for mean
z when this gradient is zero; then, the curvature of
the fitness landscape determines the outcome. If
E[@2log(v)/@z2] , 0, then the equilibrium is stable
and sexual populations will evolve to that point. At
the equilibrium, however, there may nevertheless be
disruptive selection, if E[(@2v/@z2)/v] . 0. Indeed,
for the constraints given in equation (2.3), a sexual
population always converges to intermediate z. This
Phil. Trans. R. Soc. B (2010)
is because an extreme specialist has negligible viabi-
lity in the other niche, so that a variant that has
even a very low survival on that niche will gain a
huge fitness advantage, being guaranteed the entire
output from that niche; nevertheless, if b . 1, the
population will be under disruptive selection. Thus,
we expect that a sexual population will fix a generalist
genotype if b , 1 (or maintain limited genetic vari-
ation due to mutation), whereas if b . 1, it will
maintain the maximum genetic variance possible,
given recombination. This will include a component
equal to the maximum at linkage equilibrium, plus
an additional component due to linkage disequili-
brium, which could be much larger, but which is
limited by recombination.

Under equation (2.3), maximum viability in one
niche requires zero viability in the other. Then, only
a single outcome is possible. In contrast, if the
less-well-adapted types have a minimum viability of
at least u . 0 (equation (2.4)), then a sexual popu-
lation can be selected to specialize on one or the
other niche: a variant that does better in the under-
used niche must now compete with the predominant
type, which has appreciable viability there. Now,
there are more possibilities: as well as the evolution
of a single generalist phenotype, the ESS may be for
specialization on just one niche, or there may be two
alternative stable states, with specialization on either
one or the other niche.

We can understand the various possibilities by
thinking of a cline in niche size (c0, c1). We ignore dis-
persal, and so position can be measured by the
probability of moving to niche 1, c1. With u ¼ 0
(equation (2.3)), a sexual population with low genetic
variance will always evolve to an intermediate pheno-
type that tracks the niche size (figure 7a). If u . 0,
then when niche availability is highly skewed, only
specialization on the most abundant niche is stable.
When both niches are abundant (c0 � c1), there are
two possibilities. If b2u , 1, then for b2u , c1/c0 ,

1/b2u, a single generalist phenotype will evolve, as
when u ¼ 0 (figure 7b). For both these possibilities,
intermediate populations will be under disruptive
selection if b . 1. If b . b2u . 1, however, then
there is an intermediate region in which there are
two alternative stable states: specialization on one or
the other niche is stable, but the intermediate general-
ist equilibrium is unstable. If there is a small amount of
migration, then a narrow tension zone will form at the
boundary between the alternative states; with uniform
density and dispersal, this will move to an equilibrium
position at z ¼ 0 (figure 7c).

Geritz et al. (1998) and Geritz & Kisdi (2000) also
find alternative stable states in a model in which viabi-
lity is a Gaussian function of an underlying trait, rather
than a logistic, as used here. The relationship between
these models is summarized in appendix A. Note that
although we have described the evolution of an addi-
tive trait in a sexual population, assuming low
genetic variance, the outcome is the same as in an
‘adaptive dynamics’ model, which examines the inva-
sion of new alleles of small effect: in both cases, the
outcome depends on the selection gradient near to
the current mean.
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Figure 7. (a) The equilibrium viabilities in the two niches,
plotted against the size of niche 1, c1; b¼ 2, u ¼ 0. There is

a single intermediate equilibrium, which smoothly tracks
niche size. (b) With u¼ 0.1, populations specialize on the com-
monest niche when that niche predominates (c1/c0 , b2u, c1/
c0 . 1/b2u or c1 , 0.29, c1 . 0.71); however, for intermediate
c1, there is an intermediate equilibrium, as in (a). (c) With u ¼

0.4, there is an intermediate region with two stable equilibria
(0.38 , c1 , 0.62). If these meet in a cline, a narrow tension
zone will form, centred on z ¼ 0 (dashed line). (Only the
mean viability in niche 1 is shown here, for clarity.)
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(d) Selection on modifiers and on

linkage disequilibrium

So, we expect there to be variation in habitat preference,
because that is not directly selected. For viability, we
expect that if there is a concave trade-off between survival
on two habitats, and the concavity is strong enough that
an intermediate equilibrium exists (i.e. if b2 . 1/u), then
disruptive selection will maintain maximum variance in
the trait. Selection may then strengthen divergence
between habitats in two ways, first distinguished by
Felsenstein (1981). First, an allele may be favoured
because it reduces the formation of unfit hybrids, by
strengthening assortment or by directly reducing recom-
bination, as an adaptive process by which prezygotic
isolation evolves in response to postzygotic isolation
Phil. Trans. R. Soc. B (2010)
(Dobzhansky 1940; Servedio & Noor 2003). In the
model just outlined, an increased habitat preference
would reduce recombination between genotypes emer-
ging from each habitat and so would be favoured. (That
is, a modifier that increases the effect of a preference
allele and so increases the variance of awould be selected.)
Similarly, a modifier that increased the effects of viability
alleles, and hence the variance of z, would be favoured. A
modifier that reduced recombination would be selected
for the same reason (Kirkpatrick & Barton 2006).

In contrast, selection may act to strengthen linkage dis-
equilibrium, rather than to change allele frequencies:
different incompatibilities may become coupled together,
ultimately leading to distinct clusters. Thus, linkage dise-
quilibrium is expected to develop between habitat
preference and viability loci, and between loci within
each set. This process, in which different incompatibilities
became associated, is fundamentally different from the
usual view of reinforcement: it can happen between
incompatibilities that act at any stage, including postzygo-
tic as well as prezygotic isolation (Barton & de Cara
2009). Note that selection for both single alleles and for
linkage disequilibrium (Felsenstein’s (1981) one- and
two-allele models) all become more effective as the var-
iance of divergent traits increases. So, we expect a
strong feedback, potentially leading to rapid speciation.

We will now analyse the growth of linkage disequili-
brium in a single population: first, among preference
loci (b ¼ 1) and then among viability loci (b . 1).
Finally, we discuss what happens in parapatry, across
a cline in niche size.
4. EVOLUTION OF LINKAGE DISEQUILIBRIUM
(a) Habitat preference

If there is purely variation in habitat preference (or
equivalently, if there is a linear trade-off between
viabilities in the two niches), the outcome is remark-
ably simple. A general analysis is given in appendix
A; here, we summarize these results and approximate
them using the infinitesimal model.

As explained above, the population evolves to an ESS
at which habitat choice matches the output from each
niche, so that all genotypes have the same fitness. If
mating occurs randomly across the whole population,
then the population evolves neutrally, apart from the
single constraint that mean preference must match
niche size. Thus, the population as awhole evolves to link-
age equilibrium, and allele frequencies may drift, as long
as the mean preference stays fixed. In general, however,
there will be linkage disequilibrium within each niche:
unless alleles have multiplicative effects on preference,
the set of genotypes that choose to move to one or the
other niche will not, in general, be at linkage equilibrium.
However, because a separation into different niches, fol-
lowed by mixing, does not alter genotype frequencies,
the population as a whole stays at linkage equilibrium.

If mating occurs within niches, breaking down link-
age disequilibria within them, there will nevertheless
be strong linkage disequilibrium in the population as
a whole, generated by the mixing of divergent popu-
lations; this reflects the incipient reproductive isolation
caused by mating within separate gene pools. Remark-
ably, however, pairwise linkage disequilibria tend to
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Figure 8. The probability that a surviving parent in one niche
was born in a different niche, plotted against the within-
niche variance in underlying preference, var(a). Solid line:

symmetric case, c0 ¼ c1 ¼ 0.5; dashed lines: asymmetric
case, c0 ¼ 0.2, c1 ¼ 0.8. The upper dashed line shows the
chance that a parent in the smaller niche came from else-
where, and the lower dashed line, the chance that a parent
in the larger niche came from elsewhere. The long dashed

line at the centre shows the weighted average of these two.
This assumes the infinitesimal model, which has a Gaussian
solution (equation (4.2)).
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zero within niches, regardless of how genotype deter-
mines preference and regardless of the pattern of
recombination. Thus, the pairwise linkage disequili-
brium in the whole population is entirely due to
mixing of subpopulations with different allele frequen-
cies. There may, in general, be higher-order linkage
disequilibria within niches, which will depend on the
genetic map. However, if preference is determined by
an additive trait based on at least a modest number of
loci, that trait will be normally distributed, with a
mean and variance that are independent of linkage dis-
equilibrium; higher-order associations within niches
only affect the higher moments of the trait distribution,
which are negligible for large numbers of loci.

These results are complementary to those obtained
by Nagylaki (2009), who showed that if there is soft
selection, mating within demes, and no epistasis,
then the population will converge to linkage equili-
brium within demes. This result does not require any
assumptions about the relationship between selection
in different demes (as assumed here, via the trade-off
for preference or viability), but does require strict
additivity across loci within each deme.

How is it that recombination within habitats, followed
by mixing, generates positive linkage disequilibrium in
the population as a whole? The preferential movement
of different genotypes into different niches does not
change genotype frequencies and so does not generate
any linkage disequilibrium in the whole population.
However, it does generate negative associations within
each niche, which are exactly balanced by the positive
associations caused by divergence between niches.
Thus, if recombination within niches breaks up negative
associations, there remains a positive association due to
the divergence between subpopulations. (To understand
this, think of a simple two-locus example, where the four
genotypes are initially equally frequent. With strong pre-
ference, all the 00 genotypes and half of the 01 and 10
genotypes will move to one niche, giving genotype fre-
quencies 2 : 1 : 1 : 0. If all linkage disequilibria are
eliminated from this subpopulation, then genotype
ratios change to 9 : 3 : 3 : 1. After mixing with the other
subpopulation (with ratios 1 : 3 : 3 : 9), the overall geno-
type ratios have changed to 5 : 3 : 3 : 5, showing strong
positive linkage disequilibrium.)

When the preference has the particular form of
equation (2.3), with b ¼ 1, the ratio between the fit-
nesses in niche 1 versus niche 0 is ez, so that the
effects of the different loci multiply. In this special
case, the equilibrium is in exact linkage equilibrium
within niches and is simply described by the allele fre-
quencies within each niche; thus, the ratio of allele
frequencies at each locus is just equal to the allelic
effect, a, at that locus: (p1/q1)/(p0/q0) ¼ ea. The aver-
age allele frequency is necessarily p ¼ c0p0 þ c1p1,
and so one can solve to find the difference in allele
frequency between niches:

p1� p0

¼
1þ ~a c1qþ c0pð Þ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ~a c1qþ c0pð Þð Þ2�4c0c1~apq

q
2c0c1~a

;

ð4:1Þ
Phil. Trans. R. Soc. B (2010)
where ã ¼ ea 2 1 measures the allelic effect at that
locus. For small effects (a , 1, say), p1 2 p0 � apq
for all c1; a very large allelic effect (a . 4, say) is
required for the allele frequency divergence to
approach its maximum value.

If many loci are polymorphic, the trait will follow a
Gaussian distribution within each niche and this distri-
bution will not change through random mating and
meiosis. The equilibrium then takes a very simple
form: the means within each niche are

m0 ¼ log
c1

c0

� �
�Vc1 and m1 ¼ log

c1

c0

� �
þVc0; ð4:2Þ

where the variance within each niche, V ¼ var(a), is
arbitrary and is determined by the underlying allele
frequencies. Note that because we assume large num-
bers of loci here, allele frequencies will only differ
slightly between niches, and so we can assume that
the variance within each niche is approximately the
same. Also, note that although the distribution of the
trait within each niche is Gaussian, the distribution
of the preference itself is far from Gaussian, since it
is bounded between 0 and 1.

The strength of reproductive isolation can be
measured by the probability that a parent that survived
to breed in one niche had been born in a different
niche. Figure 8 shows how this decreases as the variance
in underlying preference increases. The central line is
for the symmetric case (c1 ¼ 0.5). In the asymmetric
case (c1 ¼ 0.2), the chance that a survivor in the com-
moner niche came from elsewhere is low and
decreases rapidly with the variance in preference
(lower dashed curve). The chance that a survivor in
the rarer niche came from elsewhere is high and surpris-
ingly, gets higher as the variance in preference
increases—presumably, because this increases immigra-
tion from the commoner niche even more. It does
decline for higher variance, but preference has to be
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exceedingly variable to reduce immigration substan-
tially. Nevertheless, the average chance that a survivor
came from elsewhere does decrease with the variance
in preference, as expected (central dashed line).
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Figure 9. The mean and variance within niches, plotted

against the standard deviation at linkage equilibrium,ffiffiffiffiffiffiffiffiffi
VLE

p
. The dots connected by a solid line show the exact sol-

ution, obtained by iterating until convergence. (Starting
from linkage equilibrium, and from complete disequilibrium,
led to the same values.) Grey dots show the Gaussian

approximation. The dashed line in (b) shows the variance
at linkage equilibrium, in the population as a whole. There
are n ¼ 40 loci, and equal niche sizes; b ¼ 2; values are
measured in the newborn population.
(b) Viability

We now consider a more general trade-off, represented
by equation (2.3) with b = 1. If the trade-off curve is
convex (b , 1), then selection is stabilizing and a
single genotype will fix. We focus on the opposite
case (b . 1), where disruptive selection favours maxi-
mum variance, subject to the constraint on the mean
that is imposed by frequency-dependent selection.
Allele frequencies are now no longer neutrally stable
and will be kept polymorphic—in the symmetric
case, at equal allele frequencies. Selection will also
favour positive linkage disequilibria within niches.

We consider the simplest case of unlinked loci with
equal allelic effects. Then the frequencies of all geno-
types that give the same phenotype can be assumed
equal, and we only need to follow the phenotypic dis-
tribution. Such symmetric solutions tend to be
unstable under disruptive selection, but should be
stable to asymmetric fluctuations if selection is disrup-
tive, as we assume here (Barton & Shpak 2000). This
simplification makes numerical calculations with up to
approximately 50 loci possible.

Figure 9 shows an example with n ¼ 40 loci, and
b¼ 2, with equal niche sizes; the mean and variance
of z within niche 1 are plotted against the maximum
possible standard deviation at linkage equilibrium,ffiffiffiffiffiffiffiffiffi

VLE

p
¼

ffiffiffiffiffiffiffiffi
nZ2
p

=4, which increases with the allelic
effect, Z. The grey dots show an approximation, based
on the assumption that the distribution within each
niche is Gaussian. The approximation is calculated by
finding how the mean and variance within niches
change across one generation and then finding the equi-
librium numerically. This procedure is extremely
accurate up until a sharp threshold at

ffiffiffiffiffiffiffiffiffi
VLE

p
� 1:2,

beyond which the Gaussian approximation overestimates
the variance and underestimates the mean. Figure 10
shows how the distribution of z in the two niches
changes across this transition point. For

ffiffiffiffiffiffiffiffiffi
VLE

p
¼ 0.95,

the distributions overlap and there is substantial gene
flow between the niches; the distributions change slightly
as a result of reproduction, indicating that there is some
linkage disequilibrium, albeit weak. For

ffiffiffiffiffiffiffiffiffi
VLE

p
¼ 1.6

(outer pair), the distributions do not overlap and each
is in linkage equilibrium: reproductive isolation is essen-
tially complete, because the probability of survival in the
opposite niche is negligible. It is not obvious why the
Gaussian approximation fails as the sub-populations sep-
arate: the distribution within niches is still close to
Gaussian. The approximation fails because once the dis-
tributions have moved so far apart that almost all
individuals have high viability in their respective niche,
there is then only weak selection on the actual value of
z. (To see this, note that the viability (upper curves) is
almost constant across the range of each population.)
Thus, slight deviations from a Gaussian have large effects
on the location of the equilibrium.

As before, we can measure the strength of reproduc-
tive isolation by the chance that a survivor in one niche
Phil. Trans. R. Soc. B (2010)
was born the opposite niche. This is shown in
figure 11, which is based on numerical iterations of
the symmetrical model, as in figure 9. The rightmost
curve is for b ¼ 1, which could represent a pure habi-
tat preference. In this case, calculations for 10, 20 and
40 loci are indistinguishable from each other and from
the Gaussian solution to the infinitesimal model
(equation (4.2); figure 8); reproductive isolation
declines smoothly as the variance in preference
increases. The sets of curves to the left are for b ¼ 2
and 4. Now, the number of loci does alter the outcome
slightly (compare light with heavy curves in each
set), but results do converge with increasing numbers
of loci—presumably, to the limiting case of the
infinitesimal model.

What is most striking is that with strong disruptive
selection (b . 1), there is a sharp threshold, beyond
which isolation is essentially complete. This can be
understood from figure 10: for b� 1, intermediate
phenotypes survive poorly in either niche. Therefore,
once the distributions within each niche move far
enough apart, gene flow almost ceases. This is a conse-
quence of the assumption of a strong trade-off, such
that a specialist in one niche has very low fitness in
the other. If this assumption is relaxed, by assuming
that individuals have a minimal survival of u ¼ 0.2,
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Figure 10. The distributions of the trait, z, within each of the

two niches, for standard deviation
ffiffiffiffiffiffiffiffiffi
VLE

p
¼ 0.95 (inner pair)

and 1.6 (outer pair); these correspond to allelic effects Z ¼
0.3, 0.5, respectively. The upper pair of logistic curves
show how the viabilities depend on z. For
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¼ 1:6

(outer pair), the distributions before and after reproduction

are indistinguishable, implying linkage equilibrium. How-
ever, for smaller allelic effects (inner pair), there is
appreciable linkage disequilibrium; the solid lines show the
distribution within niches immediately before reproduction,

and the thin lines, the distribution amongst newborns.
Parameters as in figure 9.

2 4 60

0.5

R
I

VLE

Figure 11. The chance that a survivor in one niche was born
in a different niche, plotted against the standard deviation at
linkage equilibrium

ffiffiffiffiffiffiffiffiffi
VLE

p� �
, assuming equal allele frequen-

cies. Each set of curves is for b ¼ 1, 2, 4 (right to left);
within each set, the three curves are for n ¼ 10, 20, 40 loci

(thin to thick lines). Otherwise, parameters as in figure 9.
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Figure 12. Reproductive isolation, given that there is a mini-

mum survival u ¼ 0.2 in the unsuitable niche (equation
(2.4)). As in figure 11, this shows the chance that a survivor
in one niche was born in a different niche, plotted againstffiffiffiffiffiffiffiffiffi

VLE

p
. Results for n ¼ 10, 20, 40 loci are indistinguishable.

The two curves are for b ¼ 1 (top) and b ¼ 2 (bottom); for

b . 1=
ffiffiffi
u
p
¼ 2.2, the population fixes for one or other

specialist.

1834 N. H. Barton Review. Evolution of sympatry
however badly adapted they are (equation (2.4)), then
strong isolation becomes impossible, and there is no
longer a sharp threshold (figure 12). Now, even
when the population has very high variance in z
(right of graph), a substantial fraction (approx. 0.33
for b ¼ 2) were still born in the other niche. When
disruptive selection rises above a threshold
ðb . 1=

ffiffiffi
u
p
¼ 2:26Þ, the polymorphic equilibrium

becomes unstable, and one or other extreme specialist
fixes in the population.

We began the analysis by showing that an asexual
population will evolve to an ESS with coexistence of
two specialists, whereas a sexual population with lim-
ited phenotypic variance will evolve to an
intermediate generalist phenotype that is under dis-
ruptive selection if 1, b , 1=

ffiffiffi
u
p

. We might expect
that if the genetic variance is free to evolve, and if
mating occurs within niches, then both these out-
comes could be possible, depending on the starting
conditions. A unimodal distribution with low variance
could be stable, because the variance would be kept
low by recombination, but a bimodal distribution
might also be stable under the same conditions,
because there would be little gene flow between the
two extremes. However, numerical calculations show
that such alternative states can only coexist for a
narrow parameter range, unless disruptive selection is
extremely strong (b� 1), there are very many loci
(n� 20, say), and specialists survive poorly on
the opposite niche (u � 0). For example, with b ¼ 4,
u ¼ 0 and 40 loci, a unimodal distribution is reached
for

ffiffiffiffiffiffiffiffiffi
VLE

p
� 0:57, a bimodal distribution forffiffiffiffiffiffiffiffiffi

VLE

p
� 0:63 and simultaneous stability is possible

only around
ffiffiffiffiffiffiffiffiffi
VLE

p
� 0:60. With 40 loci, we could

not find cases of simultaneous stability for b ¼ 2 and
u ¼ 0, or for b ¼ 4 and u ¼ 0.1, and nor with n ¼ 20
loci and b ¼ 4, u ¼ 0. For very strong disruptive selec-
tion (b ¼ 8), a coexistence is possible over a somewhat
Phil. Trans. R. Soc. B (2010)
wider range (0.41 ,
ffiffiffiffiffiffiffiffiffi
VLE

p
, 0:51); this is under-

standable, because for very large b, intermediates
become very unfit, and so the extreme phenotypes
are strongly isolated.

Figure 13 shows the behaviour near the threshold,
for b ¼ 4, u ¼ 0. The middle row shows the dynamics
when coexistence is possible: a population that starts
in linkage equilibrium maintains a unimodal distri-
bution, whereas one that starts in strong linkage
disequilibrium maintains its initial bimodal distri-
bution. (At least, for 2000 generations, it is difficult
to precisely determine stability.) For slightly lower gen-
etic variance (top row), the peaks of an initially
bimodal distribution gradually move together, as a
result of gene flow from the opposite niche. For
around 800 generations, the divergence suddenly col-
lapses to give an approximately Gaussian
distribution, with little divergence between niches.
For slightly higher genetic variance (bottom row),
the opposite is seen: an initially narrow unimodal
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Figure 13. Behaviour near the threshold between unimodal and bimodal equilibria. (a) Shows the trait variance, across both
niches, against time, starting either from complete linkage disequilibrium (LD, a(i)) or linkage equilibrium (LE, a(iii)). There
are n ¼ 40 loci, b ¼ 4, and niches are of equal size. The standard deviation at linkage equilibrium is
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(a)(i)–(iii). (b) Shows the viabilities in each niche (thick curves; equation (2.3)), together with the trait distribution over suc-
cessive generations. (i)

ffiffiffiffiffiffiffiffiffi
VLE

p
¼ 0:57, t ¼ 100, 200, . . . , 1000, starting in LD; (ii)

ffiffiffiffiffiffiffiffiffi
VLE

p
¼ 0:60, t ¼ 20, 40, . . . , 200, starting in

LD and in LE; (iii)
ffiffiffiffiffiffiffiffiffi
VLE

p
¼ 0:63, t ¼ 100, 200, . . . , 1000, starting in LE.
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distribution gradually broadens under disruptive selec-
tion, until two peaks emerge and diverge rapidly,
greatly reducing gene flow.
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Figure 14. The effect of migration, m, on reproductive iso-
lation. The chance that a survivor in one niche was born in

a different niche (RI) is plotted against the standard deviation
at linkage equilibrium ð

ffiffiffiffiffiffiffiffiffi
VLE

p
Þ, as in figure 11. Migration rate

is m ¼ 0, 0.02, 0.1, 0.5 (thin to thick lines). The focal deme
exchanges a fraction m/2 of individuals with each of two flank-

ing demes; one has only niche 0, and the other, only niche
1. b ¼ 2, n ¼ 40 loci; otherwise, parameters as in figure 9.
(c) Divergence in parapatry

We have seen that sympatric speciation is possible if
genetic variance in viability is higher than a threshold
value, which decreases with the strength of disruptive
selection, b (figure 11). Speciation should be easier if
divergent populations, adapted to different niches,
meet, since gene flow will increase linkage disequili-
brium and facilitate divergence within a mixed habitat.
Figure 14 shows that low levels of gene exchange with
adjacent demes can greatly reduce the threshold for spe-
ciation. In a single population, reproductive isolation is
almost complete if

ffiffiffiffiffiffiffiffiffi
VLE

p
. 1:3, for b ¼ 2. However, if

that population exchange a fraction m/2 of migrants
from each of the two flanking demes, which contain
only one or other niche, then the threshold is reduced,
to approximately 1.0 for m ¼ 0.02, and to approxi-
mately 0.7 for m ¼ 0.2; a further increase to m ¼ 0.5
has a smaller effect. (Note that even for the highest
level of gene flow, the flanking demes remain divergent,
and dominated by a single peak.)

What happens across a broad one-dimensional cline
in niche abundance, ci? If niche size changes over a
much longer spatial scale than dispersal, then gene
Phil. Trans. R. Soc. B (2010)
flow will have a negligible effect, and each local popu-
lation will reach an equilibrium, determined by the
local environment (figure 7). If the niche abundance
changes more sharply, then gene flow will generate
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additional genetic variance and is expected to increase
the degree of reproductive isolation. Figure 15a illus-
trates this point, by showing how the strength of
reproductive isolation in the central deme increases,
as the cline becomes sharper. However, because selec-
tion towards the local equilibrium is strong, gene flow
does not have an overwhelming effect: the width of the
cline in trait mean is always close to the width in niche
size (figure 15a).

In the narrow parameter regime where alternative
stable equilibria coexist, gene flow can increase the
genetic variance enough to trigger a transition to
broad sympatry. A shallow cline in niche size (or
any factor that causes geographic divergence) can
increase genetic variance enough that the population
at the centre establishes a bimodal distribution; this
then spreads out to cover the entire range
(figure 16). Here, parameters are such that in a
single population, a unimodal distribution would be
stable over a wide range of niche abundance. How-
ever, a sharp step in niche size at the centre of a
linear cline causes an increase in variance and triggers
a shift to the alternative bimodal distribution at the
centre; this propagates outwards at a steady speed.
The trait mean does not change much (figure 16a),
since in both states the mean matches the environ-
ment. However, the variance increases drastically
(figure 16b).
Phil. Trans. R. Soc. B (2010)
Random fluctuations could cause a similar sudden
transition from one species to the other, even in a
homogeneous environment. However, as noted
above, unless disruptive selection is extremely strong
(b� 1, u � 0, n� 1), alternative equilibria can only
coexist for a narrow parameter range. Typically, there
is a single globally stable equilibrium, and the outcome
is determined primarily by the local environment.
5. DISCUSSION
Selection must necessarily be involved in speciation:
reproductive isolation is defined by selection against
hybrids; evolution of sympatry requires adaptation
to, and choice of, different limiting resources; and
selection may be responsible for most of the changes
that lead incidentally to isolation. However, the key
questions concern the interaction between selection
and gene flow. Can selection overcome gene flow,
allowing divergence in parapatry or even sympatry?
When can selection favour reproductive isolation as
an adaptation to reduce gene flow? How can coexis-
tence in sympatry be achieved?

To begin to answer such questions, I analyse the
Levene model, in which individuals settle in one of
the two niches according to their genotype, and
each niche contributes a fixed proportion to the
whole population. Although this model has been
widely used as the basis for simulations of sympatric
speciation, it has hardly yet been analysed in depth
(see Gavrilets 2004 for a review). We have concen-
trated on the case most favourable to speciation,
where mating occurs randomly within niches. Thus,
habitat preference is a ‘magic trait’ that causes repro-
ductive isolation as well as exploitation of a particular
niche.

A pure habitat preference does not alter overall gen-
otype frequencies, but simply moves genotypes to
different niches. Therefore, allele frequencies evolve
neutrally, apart from the constraint that the proportion
settling in a niche should match the contribution of
that niche. Remarkably, if mating occurs within
niches, then populations evolve to pairwise linkage
equilibrium within those niches, regardless of the gen-
etic basis of habitat preference or of the pattern of
recombination. With a moderately large number of
loci and an additive preference trait, there is a Gaus-
sian trait distribution within each niche. The degree
of divergence between niches depends on the under-
lying genetic variance: if this is high, there can be
strong reproductive isolation. However, isolation
varies smoothly with the genetic variance and can
readily increase or decrease (figure 11, right).

If there is a concave trade-off between viabilities
in the two niches, then disruptive selection favours
maximum genetic variance, but is opposed by
recombination. Now, there is a sharp threshold
between unimodal and bimodal distributions, i.e.
between one species and two (figure 11, left). Never-
theless, there is typically only a single global
equilibrium: if the genetic variance is below some
threshold, a bimodal distribution will collapse through
introgression, while conversely, if it is above the
threshold, an initially well-mixed population will split
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Figure 16. Speciation can be triggered by gene flow in parapatry. In this example, selection is in the narrow range in which
alternative stable states are possible: b ¼ 4, u ¼ 0,
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VLE

p
¼ 0:60, n ¼ 40 loci (figure 13, a(ii), b(ii)). The population is distrib-

uted on a linear cline of 60 demes, with migration between nearest neighbours at a rate m ¼ 1/2; niche size varies along the
cline, from 0.3 on the left to 0.7 on the right, in a logistic curve with width 1 (black curve at (a)). Initially, the population

is at linkage equilibrium with equal allele frequencies. (a) Shows the allele frequency clines at t ¼ 0, 200, . . . , 2000 generations;
(b) shows the clines in trait variance, over the same intervals.
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into two. These alternative states can only be simul-
taneously stable if there are many loci, and disruptive
selection is strong (figure 13).

An unexpected result from this analysis is the key
role played by the survival of an extreme specialist in
the ‘wrong’ niche, denoted by u. If this is appreciable,
then it is possible for a sexual population to fix for one
or the other specialist; otherwise, for u ¼ 0, a sexual
population with low variance always evolves an inter-
mediate generalist phenotype. Moreover, appreciable
survival in the ‘wrong’ niche greatly reduces the repro-
ductive isolation that can be achieved, even when an
intermediate state is stable (figure 12). Sympatric spe-
ciation only seems possible when specialists do very
badly in the wrong place.

I have not explicitly modelled the coupling
between preference and trait that would be expected
to evolve, strengthening reproductive isolation. This
coupling was emphasized by Felsenstein (1981) in
his ‘two-allele’ model, and analysed more generally
by Barton & de Cara (2009). However, the analysis
given here does deal with the coupling between pre-
ference alleles or between viability alleles, which
inflates genetic variance and so can trigger specia-
tion. Moreover, a coupling between preference and
viability is implicit in the analysis. All that matters
for the population genetics is the product of these
two, agvg. The separate constraints on each can be
combined into a joint constraint, which is necessarily
concave (equation (3.1)). Thus, if we think of the
underlying trait space (a, z), we can imagine two
axes—one, along the trade-off curve, and one trans-
verse to it. Since selection pushes the population
onto the trade-off curve, we can follow evolution
along it as if following a single trait. This argument
suggests that the single-trait analysis given here will
extend much more generally, at least qualitatively.

Whether speciation occurs in a single population
depends primarily on the underlying genetic variance.
Thus, gene flow from divergent populations can
greatly facilitate speciation, by inflating the variance.
Even low levels of migration can have a large effect,
suggesting that speciation will be much easier in para-
patry, with heterogeneity in niche size from place to
place (figure 14).
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Mallet et al. (2009) have argued that even when
there is appreciable spatial subdivision on a fine
scale, the distribution should still be referred to as
‘sympatric’ (or perhaps, as ‘mosaic sympatry’). In
response, Fitzpatrick et al. (2009) argue for retaining
the strict population genetic definition of sympatry,
where the probability of mating must depend solely
on genotype and not on birthplace. We agree with
this latter view, at least for discussion of the population
genetics of speciation. The real issue is whether selec-
tion causes changes that lead only incidentally to
speciation or whether instead it acts directly to
reduce gene exchange. On the one hand, mechanisms
for allopatric divergence all extend to parapatry and
operate in the presence of some gene flow; yet, they
retain their essential character of leading to isolation
only as a side effect. Conversely, mechanisms of sym-
patric speciation, involving selection for modifiers
that increase isolation, or for association between
alleles that increase it (i.e. one- or two-allele models;
Felsenstein 1981), will also operate in parapatry and,
usually, more effectively. It seems clearest to analyse
first the extreme cases of strict allopatry or sympatry,
and then to find how plausible these are in the more
realistic care of parapatry—whether modelled as
discrete demes or a spatial continuum.

The analysis given here is only preliminary, but does
lay out a framework for future work. It should be
extended beyond the logistic model (equations (2.3)
and (2.4)), to find more generally when there is a
sharp threshold for isolation, and when alternative
states can coexist, allowing for the possibility of a
sudden transition to sympatry (figure 16). The coup-
ling between preference and viability needs to be
modelled explicitly, and related to the single-trait
analysis. The results here suggest that much can be
captured by the infinitesimal model, a promising way
to avoid the complexities of detailed genetics. Hope-
fully, this first effort will encourage future, more
detailed, analyses of speciation.

The author thanks the Werner-Gren Foundation and the
Royal Swedish Academy of Sciences for organizing the
symposium on the ‘Origin of Species’. He also thanks
Reinhard Bürger, and two anonymous referees, for their
helpful comments.
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APPENDIX A. MULTILOCUS ANALYSIS
This section gives general expressions for the effects of
selection and habitat preference in the two-niche
Levene model. With habitat preference alone, this
analysis shows that, on average, there is zero pairwise
linkage equilibrium within niches.
(a) Multilocus notation

We follow the notation of Kirkpatrick et al. (2002). All
loci are assumed to carry two alleles, labelled by Xi ¼ 0
or 1. Overall allele frequencies, pi, are assumed to stay
constant, so that they can be used as a fixed reference
point against which to define linkage disequilibria.
Thus, the association among the set U of alleles is
defined as DU ¼ E[zU], where zU ;

Q
i#U zi. Here,

the expectation is over the population of newborn hap-
loid individuals; associations within niche g are
denoted by Dg;U ¼ Eg[zU], taking the expectation
over genotypes within that niche. By definition, Di ¼ 0
in the population as a whole, but Dg;i gives the
change in allele frequency within niche g.

To find changes in allele frequencies and linkage
disequilibria, we must write the relative fitness within
niche g as a sum involving selection coefficients ag;U

on sets of alleles Y:

agðXÞvgðXÞ
av

¼ 1þ
X
Y#V

ag;Y zY �DUð Þ; ðA 1Þ

where the sum is over all subsets of the set of selected
loci V. If the survivors from each niche mix into a
common pool of mates, then all that matters is the
selection coefficient, averaged over niches. Immedi-
ately after selection, but before random mating,
recombination and mixing across niches, selection
changes the linkage disequilibria in niche g to

Dg;U ¼ DU þ
X
Y#V

ag;Y DUY �DU DYð Þ: ðA 2Þ

Assuming that random mating and recombination
occur within niches, we find that after recombination,
the linkage disequilibria among the set of alleles U are
given by a sum over the rates rS,T at which recombina-
tion brings together sets S,T of loci to make up the set
ST ¼ U. Dg;U

* ¼
P

ST¼U rS,T Dg;S Dg;S. Finally, after
mixing across niches:

D0U ¼
X
g

cg
X

ST¼U

rS;T Dg;SDg;T

¼
X

ST¼U

rS;T DSDT þ
X
Y#V

�ayðDSY �DSDY Þ
 

�DT þDS

X
Z#V

�aZ DTZ �DT DZð Þ

þ
X

Y ;Z#V

aY aZ DSY �DSDYð Þ DTZ �DT DZð Þ
!
;

ðA 3Þ

where aY ¼
P

g cgag;Y, aY aZ ¼
P

g cgag;Y ag;Z.
Note that the last term, involving the covariance of

selection coefficients across niches, aY aZ , will contrib-
ute even if there is no net selection, �aY , averaged over
Phil. Trans. R. Soc. B (2010)
niches. However, if mixing occurs before random
mating across the whole population, then this last
term does not appear.

The net change in allele frequencies is obtained by
setting U ¼ i in equation (A 3):

D0i ¼
X
Y#V

�ay DiY : ðA 4Þ

Since we assume equilibrium, this must be zero for
all loci, i. This constraint will be satisfied if there is
no net selection on any set of loci (āy ¼ 0 8Y ). How-
ever, there may also be equilibria where directional
selection (�āiDii ¼ āipiqi) is balanced by epistatic
selection (�ājkDijk).

The pairwise disequilibria are obtained by setting
U ¼ ij in equation (A 3):

D0ij ¼ ð1� ri;jÞ Dij þ
X
Y#V

�ayðDijY �DijDY Þ
 !

þ ri;j

X
Y ;Z#V

aY aZDiY DjZ : ðA 5Þ

Again, the last term must be dropped if mixing occurs
before meiosis. We see that at equilibrium

D̂ij ¼
1

ri;j
� 1

� �X
Y#V

�ay DijY �DijDY

� �
þ
X

Y ;Z#V

aY aZDiY D jZ : ðA 6Þ

The first term represents the generation of disequi-
libria by epistatic selection; when selection is weak, the
leading term is āijpiqipjqj. The second term is due to
mixing between niches, followed by recombination.
At equilibrium, its contribution is independent of ri,j,
because recombination both generates and breaks up
the association. With weak selection, it approximately
equals aiaj piqipjqj. This last term must be dropped if
mixing occurs before meiosis.

The analogous expression for three loci is the sum
of three components, from the three distinct kinds of
recombination event. Thus, in contrast to pairwise
associations, the disequilibria due to mixing across
niches are no longer independent of the recombination
rates.

(b) Habitat preference

If there is variation solely in habitat preference (i.e.
vg ¼ 1 for all genotypes), then we have the strong
constraint that every individual must go somewhere:P

g ag(X ) ¼ 1 8X. Thus, equation (A 1) implies thatP
g �ag ¼ 1 and

P
g �ag ag;Y ¼ 0 8Y . At the ESS for

preference, the mean preference matches the output
from each niche, and so �ag ¼ cg. Then, the constraint
that preferences sum to 1 implies that there is no net
selection: aY ¼

P
g cgag;Y ¼ 0 8Y . This is obvious,

since at the ESS, all genotypes have the same fitness,
so that preference is neutral. If mating occurs after
mixing, in the population as a whole, then linkage dis-
equilibria tend to zero under recombination alone.
However, if mating and meiosis occur within niches,
the subsequent mixing will generate linkage disequili-
bria. From equation (A 6),

P
Y,Z#V aY aZDiYDjZ.
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With two niches, and the constraint that aY ¼ 0 at
ESS, we can simplify by writing a0;Y ¼ 2c1AY,
a1;Y ¼ c0AY, so that aY aZ ¼ c0c1AYAZ. Here, DY is a
measure of the component of the difference in
preference between niches that is due to the set of
loci Y. With this definition, at equilibrium, the linkage
disequilibrium is the product of two quantities:

0 ¼
X

S=1;U
ST¼U

rS;T ððDSDT �DU Þ þ c0c1DSDT Þ; ðA 7Þ

where DU ;
P

Y#VAY(DUY 2 DUDY).
DU is the total divergence between niches D1;U 2

D0;U that is caused by selection.
For pairwise associations, the equilibrium is

independent of recombination:

D̂ij ¼ c0c1DiDj : ðA 8Þ

This is precisely the pairwise linkage disequilibrium
that would be produced by mixing two populations
that differ in allele frequency by Di, Dj. Therefore,
the average pairwise linkage disequilibrium within
niches must be zero (c0D0,ij þ c1D1,ij ¼ 0). This is a
very general result, which applies with any relation
between genotype and preference; it would also
apply to viability selection within niches, provided
that there is a linear trade-off between viabilities in
each niche (i.e. v0 þ v1 ¼ constant).

We can write the divergence at locus i, Di, as the
sum of a component due to selection on i, plus com-
ponents due to selection on other loci, that is
mediated by the corresponding linkage disequilibrium:

Di ¼
X
Y#V

DiY AY ¼ piqiAi þ
X
Y=i

DiY AY : ðA 9Þ

Here, we have used the relation Dii ¼ piqi, which
applies with two alleles per locus. With weak prefer-
ence, Di � piqi Ai, and so D̂ij � c0c1piqipjqj Ai Aj;
pairwise disequilibrium is generated mainly by the
differences in allele frequency between niches. If selec-
tion acts mainly on allele frequencies (i.e. if AY is
negligible for jYj . 1), then we have a closed set of
equations:

Di ¼ piqiAi þ c0c1Di

X
j=i

AjDj ; ðA 10Þ

which can be solved numerically, or by expanding in
c0 c1:

Di ¼ piqiAi þ piqiA
2
i ð �A

2 � piqiA
2
i Þ þOðA5Þ; ðA 11Þ

where �A
2 ¼

P
i piqiA

2
i .
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