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Ecosystem biogeochemistry considered
as a distributed metabolic network ordered

by maximum entropy production
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We examine the application of the maximum entropy production principle for describing ecosystem
biogeochemistry. Since ecosystems can be functionally stable despite changes in species compo-
sition, we use a distributed metabolic network for describing biogeochemistry, which synthesizes
generic biological structures that catalyse reaction pathways, but is otherwise organism indepen-
dent. Allocation of biological structure and regulation of biogeochemical reactions is determined
via solution of an optimal control problem in which entropy production is maximized. However,
because synthesis of biological structures cannot occur if entropy production is maximized instan-
taneously, we propose that information stored within the metagenome allows biological systems to
maximize entropy production when averaged over time. This differs from abiotic systems that maxi-
mize entropy production at a point in space–time, which we refer to as the steepest descent
pathway. It is the spatio-temporal averaging that allows biological systems to outperform abiotic pro-
cesses in entropy production, at least in many situations. A simulation of a methanotrophic system is
used to demonstrate the approach. We conclude with a brief discussion on the implications of view-
ing ecosystems as self-organizing molecular machines that function to maximize entropy production
at the ecosystem level of organization.
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1. INTRODUCTION
Many of the chemical transformations that occur on
the Earth are catalysed by biological systems, and in
most cases these biological machines enhance reaction
rates by many orders of magnitude over abiotic pro-
cesses (Falkowski et al. 2008). Now that human
society can match or exceed many of the natural bio-
geochemical reaction rates, it is critical that we
understand how living systems organize to process
energy and mass on local, regional and global scales.
Given the importance of biogeochemical cycles on cli-
mate and ecological processes, it is surprising that we
lack any agreed upon theoretical basis for biogeochem-
istry. Current biogeochemical models largely take an
organismal perspective, where emphasis is placed on
understanding and modelling the growth and inter-
action of the various organisms that comprise a given
ecosystem. The biogeochemistry is then a secondary
consequence of the complex food web (for aquatic sys-
tems) or physiological (for terrestrial systems)
dynamics. Unfortunately, other than conservation of
mass, and implicit conservation of energy, no funda-
mental rules or theories govern the equations used to
model the organisms and their interactions. While
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the theory of evolution by natural selection provides
a mechanism for self-organization of complex biologi-
cal structures, the theory is indeterminate with regards
to the emergent properties biological systems follow, if
any (Peters 1976; Murray 2001). Consequently, our
biogeochemical models are purely based on imperial
observations, where each system is modelled largely
as a case study that depends on the organisms present
in the particular system under study. As natural or
human-induced environmental conditions change,
the population of the dominate organisms in an eco-
system shift in response, but we have little
understanding or predictive capabilities regarding
such system reorganization. Consequently, our biogeo-
chemical models are brittle and of dubious value when
predictions are extrapolated beyond observations used
to calibrate them. Yet, ironically, extrapolation is often
the primary rationale for quantitative modelling.

Dating back to at least Lotka (1922), who proposed
that ecosystems organize towards a state of maximum
power, there has been a significant amount of work in
theoretical ecology that focuses on understanding the
governing principles that organize ecosystems. Biologi-
cal systems are far from equilibrium and contain low
entropy ordered structures that are maintained by
external energy dissipation (Schrödinger 1944;
Morowitz 1968). Accordingly, there has been a great
deal of interest in non-equilibrium thermodynamic
(or thermodynamically inspired) applications
to living systems involving: power (Lotka 1922;
Odum & Pinkerton 1955), biomass to maintenance
(Margalef 1968), minimum entropy (Prigogine &
This journal is q 2010 The Royal Society
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Nicolis 1971), exergy (Mejer & Jorgensen 1979),
ascendancy (Ulanowicz 1986), emergy (Odum
1988), energy dissipation (Schneider & Kay 1994),
respiration (Washida 1995; Choi et al. 1999), thermo-
dynamic efficiency (Nielsen & Ulanowicz 2000),
constructal theory (Bejan 2007) as well as others
(Ulanowicz & Platt 1985; Weber et al. 1988; Toussaint &
Schneider 1998; Jorgensen et al. 2000). However, the
theories have not gained wide acceptance and are
seldom employed to model biogeochemistry. While
many of the theories have a similar basis (Jorgensen
1994; Fath et al. 2001), they differ sufficiently to cause
confusion.

As evident by this special journal issue, there is a
renewed interest in the principle of maximum entropy
production (MEP) for non-equilibrium systems owing
to both theoretical and observational research. The
original application of MEP dates to Paltridge
(1975), who demonstrated that if global heat transport
between the tropics and the poles operates at MEP,
one can accurately predict meridional heat flux, latitu-
dinal temperatures and fractional cloud cover; a
similar analysis has also been applied to describe the
climatology of Mars and Titan (Lorenz et al. 2001).
Others speculated that ecosystems follow MEP
(Ulanowicz & Hannon 1987; Swenson 1989), but it
garnered little attention without theoretical and
experimental support. Dewar’s (2003, 2005) analysis
now provides a theoretical basis for the MEP principle,
as he derives a provisional proof for MEP for non-
equilibrium steady-state systems with sufficient
degrees of freedom. The general implication of the
MEP principle is that systems will organize, within
biophysiochemical constraints, so as to maximize the
rate of entropy production. MEP is an appealing
extension to classic, equilibrium thermodynamics
which dictates that systems will move to a state of
maximum entropy at equilibrium. In essence, MEP
indicates that systems will attempt to achieve equili-
brium via the fastest allowable pathways. Equally
desirable, the MEP principle does not distinguish
between biotic and abiotic systems, so it can be applied
generally.

In this manuscript we will examine the application
of the MEP principle to describe biogeochemistry.
To facilitate this, we will view ecosystems from the per-
spective of a distributed metabolic network, which will
replace the traditional organismal focus. With the new
perspective, we will develop, via example with a
methanotrophic community, a mathematical frame-
work to describe ecosystem biogeochemistry. We
conclude with a discussion on the advantages and
limits of the MEP approach.
2. THEORETICAL FRAMEWORK
(a) Entropy context

In this manuscript, entropy will refer to Clausius’
(1850) original definition; the energy dissipated
when converting internal energy into work. Under
constant temperature and pressure, the energy that
can be used for work (or to drive other reactions) is
Gibb’s free energy, which accounts for losses owing
to entropy. Most importantly, if an exergonic chemical
Phil. Trans. R. Soc. B (2010)
reaction occurs but all the energy liberated is dissi-
pated as heat to the surroundings (i.e. energy is not
stored), then all the free energy is converted to entropy
at the given temperature. Unlike energy, free energy is
not conserved. In fact, free energy is more accurately a
measure of entropy that can be produced at a given
temperature (Lineweaver & Egan 2008). For processes
of interest here, entropy production will be equated to
chemical or radiative energy dissipation at the temp-
erature of the surroundings, and all discussions refer
to internal system entropy production (Meysman &
Bruers 2007).
(b) Macrostates, microstates and ecosystems

The MEP principle requires a system to have many
degrees of freedom; that is, many different microstate
configurations (technically, micropaths) that produce
the same entropy-producing macrostate (Dewar
2003). In this paper, we extend the concept of micro-
states to biological systems. Here, a microstate will
refer to the organisms present and their connectivity
in an ecosystem. Based on MEP principle, there
should exist many different species configurations
and trophic connections that give rise to the same
entropy-producing macrostate. Over appropriate time
scales, species composition and their trophic relation-
ships dramatically change, as has been observed in
methanogenic (Fernandez et al. 1999), nitrifying
(Graham et al. 2007) and planktonic communities
(Beninca et al. 2008) that exhibit dynamics primarily
at the species level but maintain similar biogeochemis-
try (i.e. functional stability). Indeed, multiplicity of
biological microstates appears consistent with neutral
theory (Pueyo et al. 2007), provided the different con-
figurations are functionally complementary. Because
of the large number of microbial species and their
high abundances (Gans et al. 2005; Sogin et al.
2006), the microstate analogy is most applicable to
microbial systems, which will be our primary focus.
(c) Biophysiochemical constraints

In any implementation of MEP principle, system con-
straints are critical in determining the relevant solution
and the rate of entropy production at MEP (Crooks
2007). As an example, consider a burning mixture of
methane and air. If no energy is stored, then all the
free energy of combustion is ultimately dissipated as
entropy at the temperature of the surroundings. In
this case, the process is operating at the MEP state,
where the magnitude of entropy production is con-
strained by the kinetic theory for gasses, which we
could calculate a priori. We consider this type of abio-
tic process operating in a steepest descent mode, where
the rate of entropy production is maximized at any
instance in time and space, subject to kinetic
constraints.

Outside the flammability limits, CH4 and O2 still
react in a steepest descent mode, but the reaction pro-
ceeds extremely slowly. The reaction rate can be
considerably accelerated by the addition of a catalyst,
but for self-organizing systems, the catalyst must be
created from CH4 and O2 and/or materials contained
within the system. The reaction rate, and entropy
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produced, depends on the effectiveness and quantity
of the catalyst. An insufficient amount of catalyst
limits the reaction rate, but too much catalyst wastes
resources. If the catalyst contains internal energy,
which it is likely to, then over-synthesis of catalyst is
not consistent with MEP, because entropy could
have been produced instead of catalyst. The catalyst’s
effectiveness (i.e. reaction rate per unit mass) depends
on its molecular structure, which in turn depends on
the resources available to construct it. Given the avail-
able elements, what is the most effective catalyst that
can be constructed? Obviously, this is an extremely
difficult question to answer given the tremendous
number of degrees of freedom. We know the upper
bound is the complete removal of the reaction’s acti-
vation energy, but how much the activation energy
can be decreased is constrained by the elemental
resources used to build the catalyst. Unlike the relatively
simple kinetics of combustion, we cannot determine
a priori what the maximum reaction rate is nor what
the MEP rate could be. Experiments are necessary.
(d) MEP from individuals or ecosystems?

Of course, the catalysts of interest here are enzymes,
but we include the organisms that synthesize enzymes
as part of the catalyst. Continuing our example, we
know from experiments that methanotrophs catalyse
methane oxidation as follows:

CH4 þO2 �!
M

1MMþ ð1� 1MÞCO2 þ � � � ; ð2:1Þ

where methanotrophs, M, both catalyse the reaction
and are produced by it if their growth efficiency, 1M,
is greater than 0. The question we address here is
how might evolution by natural selection lead to a
system that maximizes entropy production? The com-
petitive exclusion principle (Armstrong & McGehee
1980) tells us that the organism with the fastest
growth will dominate at the exclusion of all others.
To achieve fast growth, an organism must balance effi-
ciency against speed. In equation (2.1) above, if 1M is
close to unity (high efficiency), the reaction will pro-
ceed slowly owing to thermodynamic constraints
(Gnaiger 1990; Pfeiffer & Bonhoeffer 2002, but also
see §3a below) and methanotroph productivity will
be low. As 1M approaches 0 (low efficiency), the reac-
tion can proceed rapidly, but once again with low
methanotroph productivity owing to low efficiency.
Between 0 and 1 there is an optimum 1M that maxi-
mizes methanotroph productivity, which is selected
for by evolution (Ibarra et al. 2002), but this value
does not maximize entropy production because the
methane that contributed to methanotroph biomass
could have been oxidized. We conclude that growth
of individual organisms as selected for by evolution
does not follow the MEP principle. But ecosystems
are not composed of a single species, as grazers, G,
are always present and they consume prey, such as
methanotrophs, as given by,

MþO2 �!
G

1GGþ ð1� 1GÞCO2 þ � � � ; ð2:2Þ

which is also an autocatalytic reaction that pro-
duces exponential growth. Of course, grazers of the
Phil. Trans. R. Soc. B (2010)
methanotroph-grazers are often present, as well as det-
ritivores. Extending this logic naturally leads to food
webs observed in nature. A net result of all the preda-
tion and recycling is that the total biomass in the
system is constantly turned over. It is possible to
have all organisms growing near their maximum rates
without any biomass accumulation, which can lead
to an MEP state. Hence, it is necessary to have a
closed food web of prey, predators and detritivores in
order to achieve MEP. The predator–prey interactions
also ensure that biological structures are continuously
and dynamically reallocated to those reactions that can
assure MEP under changing conditions.
(e) MEP, information and time scales

Interestingly, the effectiveness of methanotrophs to
catalyse equation (2.1) depends on information
stored in their genome, which specifies how to con-
struct astoundingly complex organic structures
from resources available in the environment. Over
evolutionary time, enzymes associated with methano-
trophy would presumably improve (Adami 2002), so
that less protein is needed by modern methanotrophs
than ancient methanotrophs to attain the same reac-
tion rate. Hence, the amount of entropy produced
for a given amount of protein changes with evolution,
as well as the introduction of new pathways all
together. But information embedded in the metagen-
ome makes it difficult to predict MEP in biological
systems from first principles as can be done with phys-
ical systems and demonstrated by Paltridge (1975).
For this paper, we will rely on simple metabolic net-
works as constraints. Genomic information also
permits biological systems to integrate entropy pro-
duction over time and circumvent the steepest
descent pathway of abiotic systems.

As discussed above, MEP rate for a flammable mix-
ture of CH4 and air is dictated by gas kinetics. While
combustion is the MEP solution, it tends to destroy
ordered structures, so has only short persistence. If a
perturbation extinguishes the flame, the CH4 and air
mixture will accumulate until a serendipitous spark is
reintroduced. Consequently, there can be periods of
massive entropy production followed by long periods
of no entropy production, and combustion never
occurs if the mixture falls outside its flammability
limits. If a catalyst is introduced, such as methano-
trophs, then entropy can be continuously produced
over substantial transients. Even though the instan-
taneous entropy production will be lower with
methanotrophs, the average rate of entropy production
can exceed that of the sporadic steepest descent route.

If MEP follows only steepest descent pathways,
then not only should CH4 be oxidized, but all biomass
as well, as this would produce the greatest instan-
taneous entropy production. However, if time-
averaged entropy production is maximized (Moroz
2008), then allocating some CH4 to methanotrophs
and grazers increases entropy production over the inte-
gration interval. Unlike physical systems, biological
systems have the capability to predict the future,
where the information to do so is contained within
the system metagenome. For instance, deciduous
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Figure 1. Simple distributed metabolic network for a
methanotrophic-based food web. Seven biological structures,

i, catalyse the reactions, including degradation of detrital

N (dN) and C (dC).
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forests store some resources during the growing season
that allows them to maintain dormancy over the winter
or dry period, which requires expectations of future
conditions. Microbes also exhibit temporal strategies
such as spore formation and luxury-uptake mechan-
isms (Berman-Frank & Dubinsky 1999;
Khoshmanesh et al. 2002). When considering biologi-
cal systems, strategies are not instantaneous, but are
integrated over time based on a prediction of the
future that has been selected for by evolution. By
avoiding the steepest descent pathway, information
can allow a system to produce entropy even when con-
fronted with perturbations. Of course, perturbations of
sufficient magnitude will disrupt biological systems as
well. Nevertheless, we postulate as follows: the differ-
ence between abiotic and biotic processes is that the
former always follows a pathway of steepest descent, while
the latter follows a pathway dictated by information,
which leads to greater entropy production when averaged
over time. Of course, the two pathways are always com-
peting, such as occurs when fire consumes a forest.
Pathways of averaged entropy production may be
flanked by pathways of steepest descent.

(f ) Distributed metabolic networks

Because of the multitude and redundancy of micro-
states, understanding flow of energy and mass
through ecosystems at the organismal level is proble-
matic (Graham et al. 2007; Beninca et al. 2008).
Instead of focusing at the organismal level, we will
pursue a functional representation using a metabolic
network abstraction. When considering metabolic
capabilities of microbial systems, we often find that
metabolic function is distributed among all three
domains of life: Bacteria, Archaea and Eukaryote.
Since the species that comprise metabolic networks
can undergo substantial substitution with only minor
impact on functional characteristics (Fernandez et al.
2000; Wittebolle et al. 2008), we will view microbial
systems as metabolic networks that can be distributed
in space and time, but resemble multicellular organ-
isms (Wilson & Sober 1989; Shapiro 1998).
3. MATHEMATICAL FRAMEWORK
As defined above, our basic model framework uses the
metabolic network perspective that is applied at the
ecosystem level. The formulation is similar to how
single cells control metabolism by regulating the syn-
thesis and degradation of enzymes associated with
pathways necessary for growth. We assume that com-
munities organize such that their combined
metabolic expression maximizes entropy production.
A methanotrophic microbial community in a batch
reactor that is sparged with methane and air will
serve as an example to demonstrate the approach.

(a) Optimized metabolic ecosystem

network model

In our approach the microbial food web is replaced by
a metabolic network that synthesizes generic biological
structure, , which consists largely of enzymatic
protein, but also represents other macromolecules
expressed by microbial communities for growth and
Phil. Trans. R. Soc. B (2010)
form. The biological structure can be allocated to
any reaction in the network and serves as the reaction’s
catalyst. The metabolic network also orchestrates
energy and mass acquisition necessary to construct
biological structure itself, where the MEP principle
governs how biological structure is allocated to any
metabolic reaction. The mathematical framework is
general and can be extended to any microbial system
by expanding the distributed metabolic network
based on knowledge from classic microbiology and
metagenomics. One can also examine how the intro-
duction or evolution of new metabolic functions
alters resource allocation and system dynamics, as
well as examine dynamics when metabolic functions
are removed.

For our aerobic methanotrophic metabolic network
example (figure 1), eight half reactions account for
methane oxidation (r1, r2, r3), including sugar biosyn-
thesis (r1), nitrate reduction (r4) for biological
structure synthesis from NHþ4 and sugars (r5), and bio-
logical structure and detritus degradation (r6, r7, r8)
(electronic supplementary material, table S1). Each
of the eight reactions has associated biological struc-
ture ( 1,. . .,7), except for reactions 7 and 8, which
are both catalysed by the same structure, 7, to
minimize model degrees of freedom. The use of
half reactions (electronic supplementary material,
table S1) increases the flexibility of the network to
use the available electron acceptors or donors, but to
ensure electron conservation, all half reactions are
coupled to an electron shuttle reaction as follows:

1ið2e� þNADþ þHþ ! NADHÞ; ð3:1Þ

where 1i is the number of electron pairs produced by
reaction i. Gibbs free energies are calculated for each
reaction (electronic supplementary material, table
S1) after coupling to equation (3.1). We use the
approach of Alberty (2003, 2006) to calculate the
standard Gibbs free energy of reaction, which accounts
for proton dissociation equilibria between chemical
species (H2CO3 , Hþ þHCO�3 , etc.) at a specified
pH and temperature. The overall free energy of
reaction, denoted as DG†

r ðriÞ, accounts for the con-
centration of reactants and products (c(t)), where
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ionic strength, IS, is used to estimate activity coeffi-
cients (Alberty 2003). For the methanotrophic
network simulation, we use the following conditions:
pH 7, IS 1.92 mM, at 208C. Free energy, enthalpy
and entropy of formation for biological structure is
based on Battley (1999, 2003) for bacteria; however,
this is not critical as the free energy of living organisms
is similar in value to the substrates they are constructed
from.

Of course, DG†
r ðriÞ represents the available or

needed energy only if the reaction is run reversibly,
which is clearly not the case for biological systems.
To account for inefficient energy transfer or energy
production, all reactions are coupled to an energy
source (or sink) reaction in the form of ATP hydrolysis
(or synthesis) of the form,

hiðtÞðATPþH2O! ADPþ PiÞ: ð3:2Þ

Even though we know most ATP reaction couplings
from biochemistry, cells have the ability to dissipate
ATP (Russell & Cook 1995), and different organisms
in a community can have different ATP couplings for
the same pathways (Helling 2002). Consequently, we
treat energy coupling, hi(t), as a control variable to
be determined by optimization. The combined whole
reaction i consists of equations (3.1) and (3.2) and
half reaction i (figure 1; electronic supplementary
material, table S1). The Gibbs free energy of the
combined reaction i, DG†

c ðriÞ, is then given by

DG†
c ðriÞ ¼ DG†

r ðriÞ þ hiðtÞDG†
r ðrATPÞ; ð3:3Þ

where DG†
r ðrATPÞ is the Gibbs free energy of equation

(3.2). By altering the magnitude and sign of hi(t), an
endergonic reaction can be driven forward, and by
inefficient coupling of equation (3.2) with exergonic
reactions, energy can be extracted at less than 100
per cent efficiency, allowing the reaction to proceed
at higher rates. This is the standard tradeoff between
power and efficiency; operating reactions at high
throughput necessitates low efficiency, while attaining
high efficiency limits reaction rate, which all biotic
and abiotic systems must contend with (Gnaiger
1990; Pfeiffer & Bonhoeffer 2002).

Metabolic network reaction rates are given by:

ri ¼ ni iðtÞFK
i ðcÞFT

i ðcÞ; ð3:4Þ

where ni is an experimentally determined rate constant
per unit of biological structure allocated, iðtÞ is bio-
logical structure allocated to reaction i, and FK

i ðcÞ and
FT

i ðcÞ are kinetic and thermodynamic forces, respect-
ively. The kinetic force is given by the general form:

FK
i ðcÞ ¼ fNADHðzNADH; 1iÞfATPðzATP;hiÞ

�
Y

j

cj

cj þKi;j

� �Fi;j

; ð3:5Þ

where cj is the concentration of substrate j, and the
matrix element, Vi,j, equals 1 if reaction i consumes
substrate j; otherwise Vi,j is zero (electronic sup-
plementary material, table S1). To ensure electron
and energy conservation, we assume that biological
structure has a fixed amount of NAD þNADH and
Phil. Trans. R. Soc. B (2010)
ADP þATP storage per unit of total biological struc-
ture, T ¼

P
i i, as specified by the constants

zT
NADH and zT

ATP, respectively ðmmolðmmol T Þ
�1Þ.

Consequently, the amounts of NAD and NADH as
well as ATP and ADP per biological structure are
constrained by,

zT
NADH ¼ zNADHðtÞ þ zNADðtÞ

and zT
ATP ¼ zATPðtÞ þ zADPðtÞ:

ð3:6Þ

We define the functions fNADH and fATP based on
zT

NADH and zT
ATP as,

fNADHðzNADH;1iÞ ¼
zNADH=ðzNADHþKNADHÞ 1i , 0

zNAD=ðzNADþKNADHÞ 1i . 0

1 1i ¼ 0

8<
:

ð3:7Þ

and

fATPðzATP;hiÞ ¼
zATP=ðzATP þKATPÞ hi . 0

zADP=ðzADP þKATPÞ hi , 0

1 hi ¼ 0

8<
:

ð3:8Þ

Functions (3.7) and (3.8) account for the redox and
energy state of the system, analogous to cellular
metabolism.

Chemical reaction rates are often limited by kin-
etics, so the thermodynamic force is often ignored
because it is usually close to unity. However, as the
reaction approaches equilibrium, FT

i ðcÞ in equation
(3.4) approaches 0 and constrains the net reaction
rate, no matter how favourable the reaction kinetics
may be. It can be shown (Boudart 1976; Jin &
Bethke 2003) that the thermodynamic force is related
to the Gibbs free energy of the reaction, DG†

c ðriÞ,
as follows:

FT
i ðcÞ ¼ 1� exp

DG†
c ðriÞ

RTxi

� �
forDG†

c ðriÞ � 0; ð3:9Þ

where R is the gas constant, T is temperature (K) and
xi is the average stoichiometric number for net reaction
i (Boudart 1976; Vuddagiri et al. 2000). By adjusting
hi(t), FT

i ðcÞ can be driven from 0 to 1 via relationship
to equation (3.3). Because of the complexity of com-
munity metabolic networks, xi is treated as a tunable
parameter for each reaction.

Reactions r5(t) and r6(t) represent the synthesis and
degradation of all biological structures, respectively.
However, which of the seven biological structures to
produce or degrade at time t has not been specified.
Consequently, we introduce an additional set of con-
trol variables, si(t), that specify the partitioning of
biological structure synthesis, which is analogous to
transcription plus translation (figure 2). While we
could introduce another set of control variables to
determine which biological structures to degrade, we
make the assumption that degradation of biological
structure is non-specific and depends only on the rela-
tive concentration of i to total biological structure,

T , and the concentration of 6. In addition, biologi-
cal structure is not perfectly degraded to building
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block materials (i.e. CH2O and NHþ4 ), but produces
some detrital carbon (dC) and nitrogen (dN)
(figure 1), as specified by the assimilation parameters
faC and faN, respectively (electronic supplementary
material, table S1). Breakdown of detrital C and N is
controlled by reactions r7(t) and r8(t), but only one
biological structure, 7, catalyses both the reactions.

Based on the metabolic network and reaction rates
(figure 1), a mass balance model can be constructed
for the state variables, xT(t) ¼ [c(t), (t), z(t)]T,
which represent the concentrations of chemical
species, c(t), biological structures, (t), as well as
the system’s redox and energy states (zNADH, zATP),
and has the general form,

dxðtÞ
dt
¼ f ðxðtÞ;hðtÞ;sðtÞÞ: ð3:10Þ

Once the control variables s(t) and h(t) are speci-
fied over time, the state equation (3.10) can be
solved for the state variables (see equations S1–S14
in the electronic supplementary material for the
expansion of equation (3.10) in scalar form).

The control variables, [h(t), s(t)]T, are determined
by formulating and solving an interval optimization
problem in which average entropy production rate,
kdS=dtltj , is maximized over a specified interval of
time, dt for each tj interval. Entropy production is
given by the negative of a reaction rate multiplied by
the Gibbs free energy of the reaction divided by temp-
erature, summed over all reactions (Eu 1992, pp. 131–
141), which is readily calculated. The general form of
the model is as follows:

max kdS

dt l
tj

¼ �1

T dt

ðtjþdt

tj

X
i

riðtÞDG†
c ðriðtÞÞdt

wrt hðtÞ; sðtÞ
Subject to :

hL � hðtÞ � hU

0 � siðtÞ � 1P
i

siðtÞ ¼ 1

ð3:11Þ

which is a class of optimal control problems (Kirk
1970); however, since no constraints are imposed on
the state variables, x(t), it is not necessary to include
the differential equations (3.10) as part of the con-
straints, as they are explicitly satisfied. To obtain a
solution over a specified time domain, [t0, tf], the opti-
mal control problem (3.11) is solved repetitively over a
Phil. Trans. R. Soc. B (2010)
sufficient number of j intervals, [tj, tj þ dt], to cover the
entire domain. There are several ways of solving
equation (3.11), including linear programming follow-
ing linearization at time, t (Vallino et al. 1996; Vallino
2003). However, we have implemented an interval
optimization method using SNOPT (Gill et al. 2005)
that solves the nonlinear programming problem over
the interval dt via sequential quadratic programming
coupled with block implicit methods to solve the
associated differential equations (3.10) (Brugnano &
Magherini 2004). In the current implementation, the
optimal interval, dt, is subdivided into ng grid points,
and the control functions [h(t), s(t)]T are discretized
over the interval as linear piecewise continuous func-
tions. The length of the optimization interval dt, is
an interesting aspect of the model, as it reflects the
characteristic time scale of environmental variability
that a living system has evolved to cope with over a
given spatial scale (O’Neill et al. 1986). We expect
that microbial systems can be described by short
optimization intervals (approx. days), while for forest
ecosystems dt would require longer intervals (approx.
year). It is also possible to cast the problem as a type
of infinite horizon (Carlson et al. 1991) or receding
horizon (Ito & Kunisch 2002) optimal control pro-
blem, but we are yet to fully investigate that possibility.
4. SIMULATION RESULTS
Figures 3–5 show results from a standard simulation
based on the above equations for a 18 l methano-
trophic microbial community that is sparged with 2.9
per cent methane in air at 20 ml min21 (STP) starting
with initial nutrient concentrations of 700 mM NO�3 ,
70 mM PO3�

4 , plus salts and trace elements. The simu-
lation conditions are based on current methanotrophic
microcosm experiments that are being used to guide
model development and test the MEP principle; how-
ever, the model has not been calibrated to the
observations yet, but we do provide some preliminary
experimental data in the electronic supplementary
material for qualitative comparison. For these simu-
lations, an 8-day optimization interval, dt, was
employed, which results in NO�3 depletion by day 75
(figure 3a), which closely matches observations (elec-
tronic supplementary material, figure S2a). Although
not evident on the linear scale (figure 3), constant
exponential growth begins at time zero but does not
result in significant changes in state variables until
day 40, which is similarly observed experimentally
(electronic supplementary material, figure S2).
Because entropy production is maximized over an
8-day interval instead of being instantaneous, entropy
production can be increased if some CH4 is allocated
to rather than being completely oxidized to CO2.
During the first 75 days, biological structure is allo-
cated to respiration ( 3), CH4 oxidation ( 1),
CH2O oxidation ( 2), biological structure synthesis
( 5) and nitrate reduction ( 4) in decreasing magni-
tude (figure 3b). The majority of NO�3 is converted to
NHþ4 for biological structure synthesis; however, some
NHþ4 accumulates, but is later consumed after NO�3
depletion (figure 3a). Ammonium accumulation
during the first 75 days occurs to balance excess
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electrons resulting from CH4 oxidation that is not
completely balanced by O2 reduction to H2O.
Ammonium accumulation and depletion also occurs
in the experimental microcosms (electronic sup-
plementary material, figure S2a), both before and
after NO�3 depletion. Entropy production rate
increases rapidly during the first 75 days, while both
the ‘intracellular’ redox (zNADH) and energy (zATP)
states oscillate around their balance state of
0.5 mmol mmol21 (figure 4). Because ‘intracellular’
zNADH and zATP have faster characteristic time scales
than other state variables (see electronic supplemen-
tary material, equations S10 and S11), balancing
internal NADH/NAD and ATP/ADP ratios severely
constrains reaction rates and may account for energy
spilling observed in bacterial cultures (Dauner et al.
2001).

Near the 75-day transition point, control variables
change so that s4 decreases to 0, while s6 and s7

turn on for the first time (figure 5a). The latter two
control variables allocate biological structure to
decomposition of biological structure and detritus,
respectively, while s4 controls NO�3 uptake, which is
exhausted after 75 days, so is no longer needed.
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Control variables also alter reaction energy coupling
via changes in hi around the transition point
(figure 5b). Prior to NO�3 depletion, the system runs
at high efficiency, in which ATP synthesis is high (h3

more negative), while ATP requirements for biological
structure synthesis, r5, are maintained low (h5 less
positive; figure 5b). After NO�3 depletion, control vari-
ables switch to favour low ATP synthesis (h3 less
negative) and high ATP requirements (h5 more posi-
tive), a low-efficiency mode which is necessary to
maintain energy balance as dictated by zATP via
equation (3.8) (figure 4). Laboratory cultures have
also been shown to spill ATP under nutrient-limited
growth (Russell & Cook 1995) and hence also exhibit
similar low-efficiency modes.

In the latter part of the simulation, detrital C and N
(dC, dN) begin to accumulate owing to synthesis of

6, which degrades biological structure with dC and
dN formation (figure 3a). Biological structure is ulti-
mately limited by N availability, so that more entropy
can be produced if N is maintained within the biologi-
cal structure pool, . Consequently, control variables
allocate some biological structure to 7 to return N
in dN to active catalyst. While 7 also causes conver-
sion of dC to CH2O, entropy production is not
C-limited because of the continuous addition of CH4.
While complete oxidation of dC would contribute to
entropy production, entropy production per unit of
biological structure is higher for CH4 oxidation. Conse-
quently, biological structure is not squandered to
completely use dC under the simulated conditions. As
a result, dC continuously accumulates (figure 3a).
Interestingly, we have also observed long-term accumu-
lation and depletion of dissolved organic C and N in the
experimental microcosms (electronic supplementary
material, figure S2b) and large amounts of particulate
C have visually accumulated in the microcosms
(electronic supplementary material, figure S1), but it
has not been quantified yet. Synthesis of 7 continues
until decomposition of dN matches its production, at
which point s7 is downregulated and the system reaches
pseudo steady-state at approximately 300 days
(figure 3).

During the period in which N is bound in dN (75 ,

t , 300), entropy production is low, but increases to its
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steady state value once recycling of N from dN is
balanced (figure 4). The system reaches pseudo-
steady-state near day 300, where entropy production
rate is 2.16 J l21 d21K21 and the dominate reaction
rates are respiration (r3: 1570 mM d21), methane oxi-
dation (r1: 815 mM d21) and CH2O oxidation (r2:
755 mM d21). Production of biological structure, r5,
matches its degradation rate, r6, at 120 mM d21. The
high frequency 8-day oscillations observed throughout
the simulation (figures 3–5) obviously result from the
8-day optimization interval used. However, if the sub-
interval daily data points are not plotted, then the
oscillations disappear. The oscillations are analogous
to changes in plant metabolism that occur over the
course of the daily photic period. Interestingly,
CH2O acts as an ‘internal’ storage mechanism over
the sub-interval (figure 3a). The magnitude of
CH2O storage increases with longer optimization
intervals, or if CH4 is periodically introduced into
the system instead of being continuous (data not
shown). While no attempt has been made to calibrate
the model to experimental data yet, maximizing
entropy production over successive intervals does pro-
duce results at least qualitatively similar to our
observations (see electronic supplementary material).
5. DISCUSSION
The MEP principle states that systems will tend to
follow pathways that maximize entropy production at
steady state. If internal self-organized structures facili-
tate entropy production, then those structures are
more likely to develop and persist, as occurs with Ray-
leigh-Benard convection cells and hurricanes
(Schneider & Kay 1994). In the MEP perspective,
living systems can be viewed as molecular machines
which catalyse reactions that both synthesize and
degrade molecular machines and dissipate energy via
redox reactions in the process, but are otherwise undif-
ferentiated from abiotic systems. Because MEP states
that there must be many different ways to produce
entropy maximally, the form of the molecular
machines is unimportant for biogeochemical MEP.
Consequently, we have chosen a metabolic perspective
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of ecosystem biogeochemistry that only predicts func-
tional characteristics in terms of allocation of
molecular machinery. The approach strives for long-
term predictability at the expense of short-term
dynamic details. However, the metabolic model does
predict biological structure allocation (figure 3b),
which can be related to observed functional groups
and community level gene expression obtained from
experiments, and it does produce reasonable results
and qualitatively compares with our experimental
mesocosm data prior to calibration. Furthermore,
the metabolic MEP perspective leads to some interest-
ing extrapolations, which we briefly explore below.

Current MEP theory applies to steady-state systems
(Dewar 2003; Niven 2009), but ecosystems seldom
operate at steady state and at times can be quite far
from it. During major transient events, such as recov-
ery from system collapse, MEP may not be a useful
descriptor of system response. Rather, the community
composition will likely play the dominant role in
system dynamics as it reorganizes and attempts to
return to MEP. However, for perturbations that an
ecosystem has evolved to cope with, MEP should be
an important system attractor, so we expect MEP to
be relevant even if a system is not strictly at steady
state. In fact, it is the ability of living systems to predict
future states in the presence of fluctuations that allows
biological systems to produce more entropy than abio-
tic systems that take the steepest descent approach. To
predict future states requires a system to store relevant
information. Hence, increases in information (i.e.
physical complexity (Adami et al. 2000)) facilitate
increases in thermodynamic entropy production—a
rather interesting parallel.

Biological systems acquire information through
evolution and store it within the metagenome. This
information describes how to construct biological
structures from the resources available. But maximiz-
ing entropy production requires optimal use, and
possibly selection of resources at the whole system
level (Traulsen & Nowak 2006; Williams & Lenton
2008; Wilson & Wilson 2008), not at the level of the
constituent components. Information stored in any
genome correlates with the entire system (Adami
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2002), including that stored in other genomes, so all
ecosystem organisms must be inherently coupled to
achieve MEP. Consider a closed ecosystem similar to
our methanotrophic system, which contains finite
resources and so a limit to the total amount of biologi-
cal structure that can be synthesized. How should
biological structures be allocated to maximize entropy
production? While some biological structure must be
allocated to oxidizing methane, other structures must
be allocated to recycling nutrients, including nutrients
contained in biological structures that are no longer
useful (Chesson & Kuang 2008). Of course, excessive
or insufficient allocation to any one structure will
result in sub-optimal entropy production, so system
level coordination (e.g. figure 3b) is an emergent prop-
erty of the MEP principle.

While one can image a single organism that could
orchestrate all ecosystem functions, it would be at a
competitive disadvantage to any specialist organism
that only maintained a fraction of the entire metagen-
ome (Mills et al. 1967). Distributing genomic
information allows a system to retain important infor-
mation not relevant to the current ecosystem state at
very low copy number, such as that observed in the
rare biosphere (Sogin et al. 2006). Accordingly, a distrib-
uted metabolic system can function as a single metabolic
entity, but is more efficient with system resources, hence
is more likely to be selected for at the system level
(Traulsen & Nowak 2006; Williams & Lenton 2008;
Wilson & Wilson 2008). Consequently, we view an eco-
system composed of autonomous individuals all
attempting to maximize their own fecundity in the Dar-
winian context, but this leads to an MEP state at the
system level. If MEP is a true attractor, then ecosystems
that recycle nutrients more effectively should become
more spatially dominant. Likewise, systems that pro-
duce more entropy over longer time periods should
also be selected for. We speculate that systems will
evolve towards entropy production that is maximized
over infinite time and space. This contrasts abiotic
(information lacking) systems that maximize entropy
production at a point in space–time (steepest descent).

If a system organizes towards MEP over infinite
time and space, then steepest descent routes must be
inhibited, but they cannot be prevented from occur-
ring. As already mentioned, a forest fire rapidly
increases short-term entropy production, but at the
expense of long-term entropy production. Invasive
species can produce an identical phenomenon if the
invading species propagates via oxidation of biological
structure. However, if the invading species causes
lower entropy production on longer time scales, then
the new state will not be stable. On the contrary, if
the invasive species increases averaged entropy pro-
duction, then it should persist. Entropy production
serves as a useful measure of system stability then.
While changes in species abundances are often associ-
ated with instability, if the change does not alter
entropy production, then from the MEP perspective,
the system is stable. Changes in biodiversity that lead
to lower entropy production would be considered
detrimental to system stability.

If a system is subject to external perturbations, then
we may expect the system to store energy internally so
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that entropy production can be maintained unper-
turbed, such as that observed in CH2O dynamics in
our modelled system (figure 3a). One way to store
energy is to increase the fraction of large biological
structures. From the metabolic theory of ecology,
organism respiration increases only as the three-
fourth power of its mass (West et al. 1997). Conse-
quently, a unit mass of bacteria has a much higher
specific respiration than an equivalent mass of ele-
phant or whale. While our model above can store
‘internal’ energy as CH2O, that cannot occur in the
environment unless it is protected from microbial con-
sumption, such as in the form of a large animal. If a
perturbation occurs, large animals may perish, but
they provide energy to prevent hierarchical collapse
of the entire system. This is consistent with the obser-
vation that biomass-specific respiration decreases with
increase in ecosystem maturity (Odum 1969).

While we have discussed some of the possible impli-
cations of the MEP principle in this section, our
primary objective of this manuscript has been to
demonstrate how MEP can be used quantitatively as a
governing principle to understand and model biogeo-
chemical processes. A key aspect of our approach is to
replace the organismal focus with a functional one,
which should produce more robust predictions, albeit
with some loss of details. To further develop this
approach, it is necessary to examine ecosystems purely
at the functional level. For instance, many higher het-
erotrophs merely serve to capture and masticate
biological structure, while other organisms provide
physical structure, such as for trapping sediments on
marshes (Mudd et al. 2004), facilitating evapotranspira-
tion (Wang et al. 2007), or other transport-limited
phenomena (Meysman et al. 2006). We will need to
understand the functions that organisms contribute to
ecosystems and to quantify functional rates per unit
amount of biological structure allocated. Even though
examining ecosystems from an MEP perspective will
not always be productive for every interest, it does pro-
vide an alternative vantage point that can provide great
insight. Based on the MEP principle, living systems
exist because they hasten entropy production over
greater spatio-temporal scales than abiotic systems.
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