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This study examines a new formulation of non-equilibrium thermodynamics, which gives a con-
ditional derivation of the ‘maximum entropy production’ (MEP) principle for flow and/or
chemical reaction systems at steady state. The analysis uses a dimensionless potential function fst

for non-equilibrium systems, analogous to the free energy concept of equilibrium thermodynamics.
Spontaneous reductions in fst arise from increases in the ‘flux entropy’ of the system—a measure of
the variability of the fluxes—or in the local entropy production; conditionally, depending on the be-
haviour of the flux entropy, the formulation reduces to the MEP principle. The inferred steady state
is also shown to exhibit high variability in its instantaneous fluxes and rates, consistent with the
observed behaviour of turbulent fluid flow, heat convection and biological systems; one conse-
quence is the coexistence of energy producers and consumers in ecological systems. The different
paths for attaining steady state are also classified.
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1. INTRODUCTION
Since the seminal book ‘What is Life’ by Schrödinger
(1944), scientists have pondered the existence of life
and its compatibility with the second law of thermo-
dynamics. Ridiculing the popular notion that the
primary purpose of biological metabolism is to extract
matter and energy from the environment, he moves to
the crux of the issue (p. 71):
. . . a living organism continually increases its entropy

. . . and thus tends to approach the dangerous state of

maximum entropy, which is death. It can only keep

aloof from it, i.e. alive, by continually drawing from

its environment negative entropy . . . What an organism

feeds upon is negative entropy.
(The argument is qualified in a footnote, to refer to
free energy instead of negative entropy.) The topic
was taken up in more detail by Prigogine (1967,
1980), who described living organisms—along with
heat-transporting convection cells, turbulent fluid
flow vortices and oscillatory chemical reactions—as
dissipative structures, which continually dissipate heat
and thus generate and export entropy to the environ-
ment. However, Prigogine’s main quantitative result,
his minimum entropy production (MinEP) principle—
valid in the linear or Onsager (1931a,b) transport
regime—seems diametrically opposed to life
(Martyushev et al. 2007), as was recognized by
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Prigogine (1980, p. 88) himself. Bacteria in a micro-
cosm, organisms in an ecosystem or humans on a
planet do not try to minimize their entropy pro-
duction, but instead grow, reproduce and consume
all available resources as rapidly as possible. More
recently, other thermodynamics-inspired perspectives
on biological systems have been advanced, including
the use of biological measures of entropy and infor-
mation (e.g. Ayres 1994); the non-mathematical
gradient theory of Schneider & Sagan (2005); and
exergy-based treatments of ecological systems and
processes (e.g. Jørgensen 2006).

Over the past 30 years, a new principle has been
proposed, the maximum entropy production (MEP)
principle, which states that a flow system subject to
various flows or gradients will tend towards a steady-
state position of maximum thermodynamic entropy
production, ṡ (Ozawa et al. 2003; Kleidon & Lorenz
2005; Martyushev & Seleznev 2006; Bruers 2007).
The MEP principle has been successfully applied—in
a heuristic sense—to the prediction of steady states
of a wide range of systems, including the Earth’s cli-
mate system (e.g. Paltridge 1975, 1978; Kleidon
2004; Kleidon & Lorenz 2005); thermal (Bénard)
convection (Ozawa et al. 2001); mantle convection
(Vanyo & Paltridge 1981; Lorenz 2001); electrical
currents (Županović et al. 2004; Botrić et al. 2005;
Christen 2006; Bruers et al. 2007a); plasmas (Christen
2007a; Yoshida & Mahajan 2008); crystalline solids
(Martyushev & Axelrod 2003; Christen 2007b); eco-
logical systems (Meysman & Bruers 2007) and
biochemical processes (Juretić & Županović 2003;
Dewar et al. 2006). The MEP principle therefore
offers a new approach for the analysis of biological
This journal is q 2010 The Royal Society
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systems at the cellular, organism, ecosystem and bio-
sphere levels. Most importantly, it is a quantitative
principle, based on precisely defined, rigorous thermo-
dynamic concepts; it does not rest upon vague,
non-mathematical notions such as ‘order’, ‘disorder’,
‘randomness’ or ‘complexity’ often seen in discussions
of biological systems.

Several theoretical justifications of the MEP prin-
ciple have been advanced, including approaches
based on path or transition probabilities (Dewar
2003, 2005; Attard 2006a,b) and two more general-
istic arguments (Županović et al. 2006; Martyushev
2007). Recently, a rather different derivation was
presented to directly determine the steady state of a
flow system, based on an entropy defined on the
set of local instantaneous fluxes and reaction rates
through or within each infinitesimal element; this
reduces to a local form of the MEP principle in
some circumstances (Niven 2009b). The analysis
invokes a generalized potential function (negative
Massieu function) obtained from Jaynes’ maximum
entropy method, somewhat analogous to the free
energy concept used in equilibrium thermodynamics,
which attains a minimum at steady state. The aim of
this study is to explore the implications of this deri-
vation in somewhat simpler terms than in Niven
(2009b), using terminology adapted from chemical
and statistical thermodynamics. In particular, the
nature of the inferred steady state of a flow system,
and the various means by which it can be attained,
are examined in detail. The analysis has important
implications for the modelling of flow systems,
including the Earth’s climatic-biosphere system and
all biological systems.
2. THE GENERALIZED FREE ENERGY CONCEPT
(a) Jaynes’ maximum entropy principle

The maximum entropy (MaxEnt) principle of Jaynes
(1957, 1963, 2003, see also Tribus 1961a,b; Kapur &
Kesevan 1992) provides a powerful technique with
which to infer the most probable position of a probabil-
istic system. Consider a system composed of N
distinguishable entities allocated to s equiprobable, dis-
tinguishable categories (a multinomial system: Niven
2005, 2006, 2007, 2009a; Niven & Grendar 2009).
In the asymptotic limit N!1, the most probable pos-
ition can be obtained by maximizing the relative
entropy function (the negative of the Kullback & Lei-
bler (1951) function, D):

H ¼ �D ¼ �
Xs

i¼1

pi ln
pi

qi

; ð2:1Þ

where pi is the probability of an entity in the ith category
and qi is the source or ‘prior’ probability of category i.
For equiprobable categories, this reduces to the
Shannon (1948) entropy function:

HSh ¼ �
Xs

i¼1

pi ln pi ð2:2Þ

plus a constant. Equation (2.1) (or equation (2.2)) is
maximized subject to the natural (normalization) and
Phil. Trans. R. Soc. B (2010)
any moment constraints on the system:

Xs

i¼1

pi ¼ 1 ð2:3Þ

and

Xs

i¼1

pi fri ¼ k frl; r ¼ 1; . . . ;R; ð2:4Þ

where fri is the value of the ith category of property fr
and k frl is the expectation (average) of fri. This yields
the most probable (stationary) distribution of the
system:

p*
i ¼ qi exp �l0 �

XR

r¼1

lr fri

 !

¼ ðZÞ�1
qi exp �

XR

r¼1

lr fri

 !

and Z ¼ qi expðl0Þ ¼
Xs

i¼1

exp �
XR

r¼1

lr fri

 !
;

9>>>>>>>>>>>=
>>>>>>>>>>>;
ð2:5Þ

and the maximum entropy position (Jaynes 1957,
1963, 2003):

H* ¼ l0 þ
XR

r¼1

lrk frl; ð2:6Þ

where lr is the rth Lagrangian multiplier, l0 is the
‘Massieu function’ (Massieu 1869), Z is the partition
function and an asterisk denotes the stationary position.
It is emphasized that the above derivation is generic,
and applies to any probabilistic system of multinomial
form; it need not refer to a thermodynamic system.
(b) Generalized heat, work and

potential function

We now consider any conserved quantity fr, for which
we adopt the definition:

dk frl ¼ dWr þ dQr ; ð2:7Þ

where the path differentials dWr ¼
Ps

i¼1 p*
i dfri and

dQr ¼
Ps

i¼1 dp*
i fri can be termed the ‘generalized

work’ and ‘generalized heat’ associated respectively
with a change in k frl. It can be shown (Jaynes 1957,
1963, 2003) that

dH* ¼
XR

r¼1

lrdQr : ð2:8Þ

This is a ‘generalized Clausius equality’ (cf. Clausius
1865), applicable to all multinomial systems. Substi-
tuting equation (2.8) into the differential of equation
(2.6) and rearranging gives:

df ¼ �dl0 ¼
XR

r¼1

lrdWr þ
XR

r¼1

dlrk frl

¼ �dH* þ d
XR

r¼1

lrk frl

 !
:

ð2:9Þ
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We therefore obtain a potential function f (negative
Massieu function) which captures all possible changes
in the system, due to changes in the entropy H* or in
the ‘constraint set’

PR
r¼1 lrk frl. If the multipliers flrg

are constant, df reduces to the multiplier-weighted
total generalized work on the system,

PR
r¼1 lrdWr .

We therefore see that f is a dimensionless, weighted,
extended version of the free energy function, appli-
cable to any probabilistic system of multinomial form
(Jaynes 1957, 1963, 2003; Tribus 1961a,b).

How should we interpret equation (2.9)? Consider
some form of ‘open system’, consisting of a defined
region or collection of discrete entities in contact
with some surroundings (or the rest of the universe).
The internal structure of the system may be described
by some probability function pi, giving rise to some
relative entropy function H for the system (not necess-
arily the thermodynamic entropy S, but any entropy).
From a purely probabilistic formulation of the second
law (Niven 2009a,b):
Phil. T
The entropy of the universe, Huniv, however defined,

can only increase,
it is evident that any spontaneous event must be driven
by an increase of the entropy of the system H* and/or
an increase in entropy produced and exported by the
system to its surroundings, Hprod. Quantitatively, this
can be written as1:

dHuniv ¼ dH* þ dHprod � 0: ð2:10Þ

However, the only means by which a system can pro-
duce and export entropy—thereby increasing
dHprod—is by a reduction in the magnitude of one or
more constraints (or multipliers) which govern the
system, fk frlg (or flrg). For this to produce a change
in a quantity in (dimensionless) entropy units, we
therefore establish that dHprod ¼ �d

PR
r¼1 lrk frl

� �
.

Comparing equations (2.9) and (2.10), we thus see
that df expresses, in a negative sense, the change in
entropy of the universe. This can be written as

df ¼ �dH* � dHprod � 0: ð2:11Þ

Equations (2.9) and (2.11) thus provide a mathematical
formulation of a generalized second law (with sign
reversed), expressing the interplay between changes in
the entropy—however defined—of a system, and
changes in entropy produced and exported by a
system to its surroundings. This is again consistent
with the interpretation of f as a dimensionless,
weighted, extended version of the free energy concept
(Jaynes 1957, 1963, 2003; Tribus 1961a,b).

3. APPLICATIONS
(a) Equilibrium systems example

The above discussion is best illustrated by an example
from thermodynamics. Whilst a broader free energy
concept is considered in Niven (2009b), most readers
will be more familiar with the Gibbs (1875–1878) free
energy function for systems of constant composition:

G ¼ �TS* þU þ PV ¼ �TS* þH ; ð3:1Þ

where S* is the maximum thermodynamic entropy, U
is internal energy, V is volume, P is pressure, T is
rans. R. Soc. B (2010)
absolute temperature and H is the enthalpy. Equation
(3.1) can be derived by applying Jaynes’ method to
an equilibrium thermodynamic system subject to the
constraints U and V, wherein pi is the joint probability
that a molecule will occupy a specified energy level
and volume element. Equation (2.9) then gives the
potential function (Jaynes 1957, 1963, 2003; Tribus
1961a,b):

dfeq ¼ �dH*
eq þ dðlU U þ lV V Þ: ð3:2Þ

Recognizing S* ¼ kH*
eq; lU ¼ 1=kT and lV ¼ P/kT,

where k is Boltzmann’s constant, gives

kdfeq ¼ d
G

T

� �
¼ �dS* þ d

H

T

� �
� 0 ð3:3Þ

equivalent to equation (3.1). This form reveals the
true meaning of the Gibbs free energy concept: it
expresses—in a negative sense—the interplay between
the change in entropy within the system dS*, and the
change in entropy exported by the system, 2d(H/T ),
due to transfers of heat (Planck 1922, 1932; Fermi
1956; Strong & Halliwell 1970; Craig 1988). From
the (classical) second law, their sum must be positive,
and so a system will spontaneously approach a position
of minimum G/T (for constant T, it will approach
minimum G). From equation (2.11), we can rewrite
equation (3.3) as (Niven 2009b):

kdfeq ¼ d
G

T

� �
¼ �dS* � ds � 0; ð3:4Þ

where ds ¼ kdHprod is the increment of thermodynamic
entropy produced and exported by the system to its
surroundings.
(b) Flow system example

Now consider a second example, of an infinitesimal
fluid element in a control volume of a flowing fluid,
subject to local mean values of the heat flux jQ, diffu-
sive mass fluxes jc of each chemical species c, stress

tensor t and chemical reaction rates _̂jd of each reaction
d, plus the natural constraint (2.3). This model
encompasses all fluid flow, heat flow, biological and
ecological systems. Such a system can be analysed by
Jaynes’ method using the local flux relative entropy
(Niven 2009b):

Hst ¼ �
X

I

pI ln
pI

gI

; ð3:5Þ

where pI is the joint probability that the fluid element
experiences a set of instantaneous local fluxes of heat,
species c, momentum and rates of chemical reactions
d, and gI is the joint prior probability. For this
system, it can be shown that equation (2.9) gives the
increment in the local potential function (Niven
2009b):

dfst ¼ �dH*
st �

uV
k

d _̂s � 0; ð3:6Þ

where H*
st is the local flux entropy at steady state, u and

V are characteristic time and volume scales of the
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system, and _̂s is the local thermodynamic entropy
production of the element per unit volume:

_̂s ¼ jQ � rrrrr
1

T

� �
�
X

c

jc � rrrrr
mc

McT

� �
� gc

T

� �

� t : rrrrr v

T

� �`

�
X

d

_̂jd

Ad

T

ð3:7Þ

in which mc, Mc and gc are the molar chemical poten-
tial, molar mass and specific body force on species c, v

is the mass-average fluid velocity and Ad is the molar
chemical affinity of reaction d, with Ad , 0 indicating
spontaneous forwards reaction. Equation (3.7) can be
summarized in the form:

_̂s ¼
X

X

jXFX ; ð3:8Þ

where jX is the local mean flux or mean reaction rate of
quantity or species X, and FX is the corresponding
local ‘thermodynamic force’ (gradient or affinity
term). Not coincidentally, equation (3.6) has the
same form as equation (2.11), expressing (with sign
reversed) the sum of changes in the flux entropy
within the element plus its export out of the system.
A flow element will therefore try to approach a
steady-state position of minimum fst, for the same
reason that an equilibrium thermodynamic system
tries to approach an equilibrium position of minimum
feq (minimum G/T ).

Comparing equations (3.3) and (3.6), we see that
the entropy production _̂s within a fluid element of a
steady-state system plays a similar role (with change
of sign and units) to the enthalpy function H in equili-
brium systems. This is an important insight, which has
perhaps been hindered by the lack of popular under-
standing of the free energy concept (Strong &
Halliwell 1970; Craig 1988). The common feature is
that H and _̂s both serve as (modified) measures of
the export of entropy—however defined—by a system
to its surroundings. Many previous authors have
erred in considering _̂s to be the non-equilibrium
analogue of S*; while this may seem reasonable at
first glance, it is not correct.
4. IMPLICATIONS
(a) Meaning of the flux entropy

To understand equation (3.6), it is necessary to
appreciate the meaning of the flux entropy H*

st. To do
this, we need to consider the mathematical properties
of the relative entropy (2.1) and Shannon entropy
(2.2) (e.g. Kapur & Kesavan 1992). In essence, H indi-
cates the spread of the distribution pi amongst its
categories i; the thermodynamic entropy S* therefore
reflects the spread of the equilibrium distribution pi

*

over energy levels and volume elements, with low S*
indicating a narrow distribution and high S* a broad
one. In the same way, H*

st reflects the spread of the
steady-state probability p*I over the set of instan-
taneous local fluxes and reaction rates. This is
illustrated by the schematic plots in figure 1a–c, for
a univariate parameter I ¼ I (e.g. a single flux or reac-
tion rate of quantity X ). All three plots have the same
Phil. Trans. R. Soc. B (2010)
mean flux or rate jX —represented schematically by a
fixed ‘mean category’ I0—but the variance, and there-
fore the flux entropy, increases from (a) to (c).

The plots reveal an additional, extraordinary feature
of flow systems. In equilibrium systems, the categories
(e.g. energy levels) are generally taken to start from a
‘zero’ or reference level, for which the value of the
index is unimportant. In contrast, flow systems have
no such minimum, since we must allow for positive
and negative flux or rate levels I ¼ 0, +1, +2, . . . .
In consequence, as H*

st increases, the system is more
likely to access its states of reverse flow or reverse
chemical reaction I , 0, even if the mean value jX is
high (figure 1b,c). In other words, a high flux entropy
is associated with greater variability in the fluxes and
rates, which therefore implies oscillatory or chaotic pro-
cesses. We immediately see the connection between
steady states of high H*

st and the defining features of
many ‘far from equilibrium’ systems, such as fluid tur-
bulence, heat-induced convection cells, nonlinear
diffusion phenomena and oscillatory chemical reac-
tions (Prigogine 1967, 1980); indeed, the latter are
prevalent in biochemical processes such as nutrient
degradation processes (Meysman & Bruers 2007)
and the photosynthesis cycle (Juretić & Županović
2003; Dewar et al. 2006).

The importance of the above analysis can be illus-
trated by its application to the species population
structure within an ecosystem. Consider a small
element of a (rudimentary) ecosystem of s species,
identified only by their energy usage, such that each
organism of species i has the energy consumption e i,
and the overall system has mean energy consumption
kEl. This model dramatically simplifies the MaxEnt
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ecosystem model given by Dewar & Porté (2008). To
infer the steady-state species population distribution
p*

i , we maximize the relative entropy
Hecol ¼ �

Ps
i¼1 pi lnpi=gi (3.5), subject to known

prior probabilities gi and constraints
Ps

i¼1 pi ¼ 1
and

Ps
i¼1 piei ¼ kEl, giving:

p*
i ¼ Z�1gi expð�zEeiÞ ð4:1Þ

and

Z ¼ ez0 ¼
Xs

i¼1

gi expð�zEeiÞ; ð4:2Þ

where z0 and zE are, respectively, the Lagrangian mul-
tipliers for the two constraints, and Z is the partition
function. The analysis (3.6)–(3.8) then follows from
equation (4.2), with the energetic multiplier identified
as zE/ FE ¼ rrrrrT21. Although equation (4.2) has the
appearance of a Boltzmann distribution akin to that
of chemical thermodynamics, in an ecosystem the
‘energy levels’ i are actually ‘energy consumption
levels’, which can be positive or negative, correspond-
ing, respectively, to net energy consumers (i . 0) and net
energy producers (i , 0). At a high ecological flux
entropy H*

ecol, the ‘most probable’ ecosystem will there-
fore be forced to contain both energy producers and
consumers, rather than just energy consumers. Simi-
larly, in turbulent fluid flow, some energetic
structures will be net energy consumers (dissipating
energy as heat), while others will be net energy produ-
cers (transferring energy from its incoming source to
the consumers). We therefore recover—at least in a
qualitative sense—the essence of the trophic structure
(food chain or food web) of ecological systems and
the energy cascade of turbulent flow systems.
(b) Classification of spontaneous processes

We can now return to the equilibrium (3.3) and
steady-state (3.6) potential functions. For simplicity,
we first confine the discussion to processes with mono-
tonic changes in the entropy S* and entropy produced
s ¼ 2H/T. We see that in equilibrium systems, the
path towards equilibrium dfeq � 0 will depend on
the relative changes in S* and s, leading to three poss-
ible scenarios for a spontaneous process, as listed in
table 1. In Case E1, the process is driven by changes
in both entropy terms, while in Cases E2 and E3, a
reduction in one entropy is ‘paid for’ by a greater
and opposite gain in the other. In all cases, since the
entropy changes are monotonic, the equilibrium pos-
ition (minimum feq ¼minimum G/T ) must coincide
with extrema (a minimum or maximum) in both
S* and s, as set out in the table.

Similarly, from equation (3.6), in a flow system sub-
ject to monotonic changes in H*

st and _̂s, each
increment towards steady state dfst � 0 could be
achieved by one of the three cases listed in table 1.
The corresponding extrema at steady state are also
listed. As shown, Cases S1 and S3 are consistent
with a position of MEP. Case S2, on the other
hand, involves convergence towards a position of
MinEP. The three cases therefore encompass the
two major (seemingly contradictory) principles of
Phil. Trans. R. Soc. B (2010)
non-equilibrium thermodynamics (Prigogine 1967,
1980; Martyushev et al. 2007).

We further note that if passage to equilibrium or
steady state is not monotonic, many more scenarios
are possible. In thermodynamics, this is handled by
considering only the net change in Gibbs free energy
DG ¼ 2TDS* þ DH at constant T and P. In light of
equation (3.3), this is more appropriately written as:

kDfeq ¼ D
G

T

� �
¼ �DS* þ D

H

T

� �
� 0: ð4:3Þ
This rests on the fact that G, S*, U, V and H are state
functions, so we can disregard the path taken by the
system. Although such systems could follow any of
the paths E1–E3 in table 1 during different stages of
the process—or even temporarily deviate from
d(G/T ) � 0 to overcome an activation energy
barrier—they must approach a position of minimum
G/T, leading to a net change D(G/T ) � 0.
The system can still be said to follow one of Cases
E1–E3, but now only in a net sense (using D’s rather
than d’s). In Case E3, for example, we can still speak
of the system tending towards a position of minimum
S* and maximum s (¼ minimum H/T ), provided this
is understood to refer to their net changes rather than
the path taken by the system.

In a similar vein, if an unsteady flow system is not
restricted to purely monotonic changes, it must still
approach a steady-state position of minimum H*

st,
and thus undergo the net change DH*

st � 0. Presuming
that H*

st and _̂s can be considered as state functions, the
system can still be identified as following—now in a net
sense—one of the three Cases S1–S3 in table 1.

Can we infer anything more about flow systems?
Indeed, we can. Consider a flow element which experi-
ences a gradual increase in the local thermodynamic
force FX conjugate to the mean local flux or rate jX.
Such an element may undergo two types of changes:
(i) an increase in jX without any corresponding increase
(or even a decrease) in H*

st, illustrated in figure 2a–c;
and (ii) increases in both jX and H*

st, illustrated in
figure 2a,d,e. From equation (3.7), both scenarios
involve identical increases in the entropy production,
D _̂s ¼ Dð jXFXÞ. Which is more likely? From our knowl-
edge of flow systems, the first scenario seems less
credible, since it requires the fluxes to remain within a
narrow range of instantaneous values at all times, even
though the driving force has increased. A decrease in
H*

st seems even more unlikely. The second scenario per-
mits greater variability (fluctuations) of the fluxes,
consistent with the formation of a nonlinear mechanism
to enable greater transport or production of X. A simi-
lar argument applies if the flux, rather than the gradient,
is the control variable. Although this is not a proof, it
does lend support to the argument (Niven 2009b)
that fluid elements tend to undergo concurrent
increases in H*

st and _̂s, and thus converge to steady
state by a (net) panentropogenic process. In such cases,
the steady-state position can be determined by the
(net) MEP principle, without concern over contrary
effects due to decreases in H*

st.



Table 1. List of possible spontaneous processes in equilibrium and steady-state systems, for monotonically varying
parameters (terminology from ancient Greek: exo-, external; endo-, internal; pan-, everywhere; tropos, transformation
(Clausius 1865); -genic, generating or producing).

case conditions
entropic driving
force label extrema at stationary position

equilibrium systems (kdfeq ¼ d(G/T ) � 0)
E1 dS* � 0, ds � 0 universal panentropic max S*, max s (¼ min H/T )
E2 dS* � jdsj � 0, ds � 0 internal dominant endoentropic max S*, min s (¼ max H/T )
E3 dS* � 0, ds � jdS*j � 0 external dominant exoentropic min S*, max s (¼ min H/T )

steady-state systems (Kdfst� 0 with K ¼ k/uV)
S1 dH*

st � 0, d _̂s � 0 universal panentropogenic max H*
st, max _̂s

S2 KdH*
st � jd _̂sj � 0, d _̂s � 0 internal dominant endoentropogenic max H*

st, min _̂s
S3 dH*

st � 0, d _̂s � jKdH*
stj � 0 external dominant exoentropogenic min H*

st, max _̂s
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Figure 2. Possible responses of a flow system to an increasing force FX or mean flux jX (increasing I0): (a,b,c) constant H*
st or

(a,d,e) increasing H*
st.
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5. THE MEP ‘HEURISTIC’
We now turn to a discussion of current practice in the
application of the MEP principle to flow or chemical
reaction systems, including biological systems. From
the pioneering works of Paltridge (1975, 1978) and
three decades of further experience (e.g. Ozawa et al.
2001, 2003; Juretić & Županović 2003; Kleidon
2004; Kleidon & Lorenz 2005; Dewar et al. 2006;
Martyushev & Seleznev 2006; Bruers 2007; Meysman &
Bruers 2007), this has evolved into a set of practices
which can be termed the ‘MEP heuristic’:
— Divide the control volume into very large
subdomains (or even consider the entire domain).

— Set up the set of mass, chemical species, energy,
momentum and/or charge balance equations for
the system, based on the bulk flow rates between
subdomains, using linear (Onsager-like) transport
equations with adjustable, whole-subdomain
transport coefficient(s), and chemical reaction
rate equations with adjustable first-order rate
constant(s).

— Calculate the thermodynamic entropy production
of the system, as a function of the adjustable
parameter(s).

— The inferred steady state of the system is given by
the position of MEP with respect to the adjustable
parameter(s).
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How does this heuristic work? In effect, it selects the
highest allowable entropy production consistent with
the set of allowable bulk net fluxes JX,G and bulk ther-
modynamic forces FX,G in and between subdomains G

of the system:

MEP Heuristic ¼ max
V

X
G

X
X

JX ;G ðVÞ FX ;G ðVÞ
 !

;

ð5:1Þ

where the bulk fluxes and/or forces are functions of
the set of subdomain-wide adjustable parameters
V ¼ fVg. It must be recognized, however, that the
adjustable parameters are secondary variables, which
do not represent fundamental physical processes.
The true maximum must therefore be given by a
‘system maximum entropy production’ (SMEP)
principle:

SMEP ¼ max

ð ð ð
CV

_̂sðV ÞdV

0
@

1
A; ð5:2Þ

where the maximum is taken with respect to the
instantaneous fluxes jXI

, conditioned by the constraints
on the system, and the integral is calculated over the
control volume. The MEP heuristic therefore makes
the assumption that equations (5.1) and (5.2) are
equivalent, which is correct if and only if there exists
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a set of local physical mechanisms by which the maxi-
mum in equation (5.1) can be physically realized.
Using the terminology of MEP practitioners, the
MEP heuristic equation (5.1) must be considered to
apply only to ‘many-degree-of-freedom’ systems
(Ozawa et al. 2001, 2003; Juretić & Županović 2003;
Kleidon 2004; Kleidon & Lorenz 2005; Dewar et al.
2006; Martyushev & Seleznev 2006; Bruers 2007;
Meysman & Bruers 2007).

In contrast, the analysis herein (§§2–4) and in
Niven (2009b) gives the optimization principle:

Optimum ¼
ð ð ð

CV

minðfstðV ÞÞdV

¼
ð ð ð

CV

max H*
stðV Þ þ

uV _̂sðV Þ
k

 !
dV :

ð5:3Þ

If the parameters H*
st and _̂s are positively correlated—

as argued in §4—then equation (5.3) becomes func-
tionally equivalent to a ‘local maximum entropy
production’ (LMEP) principle, which gives for the
overall system:

LMEP ¼
ð ð ð

CV

ðmax _̂sðV ÞÞdV : ð5:4Þ

This is a much stronger condition than equation (5.2).
By considerations of integral calculus (Zwillinger
2003), the two bounds are related by

maxð
ð ð ð

CV

_̂sðV ÞdV Þ �
ð ð ð

CV

max _̂sðV ÞdV ð5:5Þ

since the left-hand side could possess regions of _̂s , 0,
compensated by other regions of greater _̂s . 0. This,
however, runs against an argument used by Prigogine
(1967, 1980): how can a system possibly ‘know’ that
it can consume entropy in some regions, which will
be compensated by greater entropy production in
others? Indeed, we could construct a smaller control
volume containing only the entropy-consuming
elements, which would continuously violate the
second law of thermodynamics. It is for this sound
reason that the MEP principle must be a local prin-
ciple, applicable at all volume scales. With the
restriction _̂sðV Þ � 0, we see that the two maxima in
equation (5.5) coincide, and so the MEP heuristic
(with its assumption of many degrees of freedom)
becomes equivalent to the local formulation.
6. CONCLUSIONS
This study examines the meaning and implications of a
new formulation of non-equilibrium thermodynamics
applicable to flow and/or chemical reaction systems
at steady state (Niven 2009b). This provides a very
different, conditional derivation of the MEP principle,
based on minimization of a dimensionless, local, free-
energy-like potential function fst. The analysis
encompasses all biological and ecological systems.
Firstly, the basis of the derivation and the meaning
of fst are examined. The flux entropy H*

st used in the
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analysis is then shown to represent the ‘spread’ of
the distribution of instantaneous fluxes and/or reaction
rates through or within the element. Since a flow
system can access states of reverse flow or reaction, a
high flux entropy is consistent with higher variability
and thus with chaotic or oscillatory processes. In this
respect, the term ‘steady state’ is therefore something
of a misnomer, since it refers only to the constancy
of the mean bulk flows and not their temporal and
spatial variability. One consequence, examined
through a specific example, is the coexistence of
energy producers and consumers in ecological
systems.

The effects of reinforcement or competition
between changes in flux entropy H*

st and entropy pro-
duction _̂s are then examined and classified. It is
argued that in many systems, these two parameters
should increase concurrently, enabling the steady-
state position to be determined by the MEP principle.
The ‘MEP heuristic’ used by MEP practitioners is
then shown to be consistent with the present local for-
mulation, with the additional assumption that the
system has sufficient dynamic degrees of freedom
that the MEP state can be physically realized.

The author thanks the participants of the MEP workshops
hosted by the Max-Planck-Institut für Biogeochemie, Jena,
Germany, in 2007 and 2008, for valuable discussions; The
University of New South Wales and the above Institute for
financial support; and the European Commission for
financial support as a Marie Curie Incoming International
Fellow (2007–2008) under Framework Programme 6.
ENDNOTE
1Technically, the variation in Hprod is written with a d, since it is a

‘non-property’ of the system; however, for a reproducible phenom-

enon, it will be expressible in terms of other state functions of the

system.
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