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MEP and planetary climates: insights from
a two-box climate model containing

atmospheric dynamics
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A two-box model for equator-to-pole planetary heat transport is extended to include simple atmos-
pheric dynamics. The surface drag coefficient CD is treated as a free parameter and solutions are
calculated analytically in terms of the dimensionless planetary parameters h (atmospheric thick-
ness), v (rotation rate) and j (advective capability). Solutions corresponding to maximum
entropy production (MEP) are compared with solutions previously obtained from dynamically
unconstrained two-box models. As long as the advective capability j is sufficiently large, dynami-
cally constrained MEP solutions are identical to dynamically unconstrained MEP solutions.
Consequently, the addition of a dynamical constraint does not alter the previously obtained MEP
results for Earth, Mars and Titan, and an analogous result is presented here for Venus. The rate
of entropy production in an MEP state is shown to be independent of rotation rate if the advective
capability j is sufficiently large (as for the four examples in the solar system), or if the rotation rate v

is sufficiently small. The model indicates, however, that the dynamical constraint does influence the
MEP state when j is small, which might be the case for some extrasolar planets. Finally, results from
the model developed here are compared with previous numerical simulations in which the effect
of varying surface drag coefficient on entropy production was calculated.
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1. INTRODUCTION
Atmospheric circulation on a planetary scale can be
regarded as a heat engine. Motion driven by the
equator-to-pole gradient in absorbed radiation at the
surface is resisted by frictional forces. Momentum
exchange at the surface (via boundary layer turbu-
lence) plays a dominant role in resisting motion
(Kleidon et al. 2006). Equilibrium is reached when
the driving force equals the frictional force, and
when the radiative energy flux and the energy flux by
atmospheric circulation are in balance. It follows that
the atmospheric heat engine produces entropy by driv-
ing a poleward atmospheric heat flux down a
meridional gradient in temperature.

In ground-breaking papers, Paltridge (1975, 1978)
hypothesized that the climate system organizes itself
such that the equator-to-pole heat flux produces
entropy at the maximum possible rate. Based on this
hypothesis Paltridge was able to reproduce important
features of the observed climate, including meridional
temperature gradients and the large-scale pattern of
cloud cover (Paltridge 1978). The success of this
approach led to a great deal of interest in the late
1970s and early 1980s, but was also criticized for lack-
ing a mechanism by which the MEP state was
achieved, and for producing meridional heat
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transports which were independent of well-known
constraints on atmospheric dynamics, such as the
planetary rotation rate (Rodgers 1976).

There has been a recent resurgence in the appli-
cation of MEP principles to the climate system
(Ozawa et al. 2003; Paltridge et al. 2007), for two
main reasons. Firstly, Lorenz et al. (2001) showed
that the equator-to-pole temperature differences on
Titan and Mars, as well as on Earth, can be repro-
duced by applying an MEP selection principle to a
simple two-box model. The power of this study lay
in part in the transparency of its underlying model,
whereas the Paltridge models are more difficult to
understand and contain additional important assump-
tions about vertical heat transports that are not directly
related to MEP (O’Brien & Stephens 1995). Secondly,
Dewar (2003, 2005) provided a statistical explanation
for the emergence of MEP in a wide-range of non-
equilibrium systems, thereby removing one of the
major concerns about the use of MEP principles in
climate modelling. However, criticisms about the
lack of atmospheric dynamics in the models have
remained (Goody 2007).

How could the Lorenz et al. two-box model repro-
duce equator-to-pole temperature gradients on
Earth, Mars and Titan without reference to the atmos-
pheric parameters or rotation rates of these planets? In
order to answer this question, we extend the two-box
model to include a simple representation of atmos-
pheric dynamics on a rotating planet. We consider
the fundamental physical balances that operate in
equator-to-pole heat transport and investigate the
This journal is q 2010 The Royal Society
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Figure 1. Overview of the dynamically constrained two-box model. (a) Polar and equatorial regions in a planetary hemisphere,
each of surface area pR2, and separated by a boundary at 308 latitude. A surface wind of speed U blows from pole to equator on
a bearing u through an effective thickness H of the atmosphere. The circulation is completed by a compensating

high-altitude wind from equator to pole. (b) Schematic of the model. Dashed arrows—radiative energy fluxes, solid
arrows—atmospheric energy fluxes, dotted arrows—atmospheric circulation in a single Hadley cell.
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effect that they have when introduced as an extra
constraint into Lorenz et al.’s two-box model. The first
aim of the present paper, therefore, is to understand
why Lorenz et al. were able to obtain their result while
ignoring the dynamics completely.

The second aim of the present paper is to under-
stand the relationship between surface friction and
atmospheric entropy production. Recently, Kleidon
et al. (2006) used a numerical climate model to inves-
tigate the influence of surface–atmosphere coupling
on the rate of entropy production in Earth’s atmos-
phere. In a series of simulations, they varied the
surface drag coefficients for heat and momentum
and noted the subsequent effect on entropy pro-
duction. (Strictly, the difference between their
simulations lay in varying the von Kármán constant
away from its true value k ¼ 0:41. If one’s sensibilities
are offended by varying a constant, one can imagine
that they varied the roughness length z0 instead.)
The numerical simulations led Kleidon et al. to con-
clude that observed values of Earth’s drag coefficients
correspond to an MEP state.

The present paper inhabits a mid-point on the spec-
trum of model complexity running from Lorenz et al.’s
model (with no dynamics) to Kleidon et al.’s model
(with full numerical dynamics). In §2, simple atmos-
pheric dynamics are added to the two-box model of
Phil. Trans. R. Soc. B (2010)
Lorenz et al. (2001) to give a dynamically constrained
two-box model. In §3, this dynamically constrained
model is non-dimensionalized and solved analytically
as a function of the governing dimensionless par-
ameters. The nature of this solution is examined in
§4 and the model is applied to a range of planets in §5.
A summary and physical overview are presented in §6
and conclusions are drawn in §7.
2. A TWO-BOX MODEL INCLUDING DYNAMICS
A dynamically constrained two-box model for atmos-
pheric heat transport can be created as follows
(North et al. 1981). Assuming for simplicity that the
sun is always in the equatorial plane (i.e. that the
planet has zero obliquity), it suffices by symmetry to
consider a single planetary hemisphere (figure 1a).
This is divided into ‘polar’ and ‘equatorial’ regions
of equal surface area pR2 by a boundary at 308 latitude
(Lorenz et al. 2001). (Here R is the planetary radius. A
list of symbols and corresponding numerical values is
given in table 2). The contrast in absorbed solar radi-
ation between the polar and equatorial regions induces
an atmospheric circulation which, for simplicity, is
assumed here to be a single convective Hadley cell
(figure 1b) in which warm air ascends near the equator
and cold air descends near the pole. The Hadley cell
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induces a surface wind of speed U that blows from pole
to equator and a corresponding high-altitude wind that
blows from equator to pole (figure 1b). The surface
wind is subject to Coriolis forces and so crosses the
boundary at 308 latitude on a bearing u away from
the meridian (see figure 1a for the definition of u).

Heat transport by the winds is assumed to act
over an effective thickness H of the atmosphere.
Since the boundary between the regions has length
2pR cos 308 ¼

ffiffiffi
3
p

pR, it follows that the meridional
heat flux from equator to pole flows through a vertical
plane of area

ffiffiffi
3
p

pRH.
The absorbed solar flux at latitude f is ((1 2 a)S0/p)

cos f, where a is albedo and S0 is the solar constant in
J m22 s21. The band of latitudes from f to f þ df
has area 2pR2 cos f df and so it follows from inte-
gration of the absorbed flux that the mean fluxes
received by the surface in the polar and equatorial
regions are

Fp ¼
ð1� aÞS0ð1� gÞ

4

and Fe ¼
ð1� aÞS0ð1þ gÞ

4
;

9>>=
>>; ð2:1Þ

where g ¼ ð3
ffiffiffi
3
p
� pÞ=ð3pÞ � 0:218 is a geometric con-

stant. The difference in absorbed flux leads to distinct
surface temperatures Tp and Te in the polar and equator-
ial regions (figure 1b). The upward radiative fluxes from
the two regions are then 1sT4

p and 1sT4
e where s is the

Stefan–Boltzmann constant and e is a dimensionless
factor depending on the infrared optical depth of the
atmosphere and represents greenhouse effects (Lorenz
et al. 2001). (In this paper, the value e ¼ 0.5 is assumed
to be reasonable for Earth-like planets, with e ¼ 0.01
chosen for Venus because of the strong greenhouse
effect there.) For simplicity, the radiative fluxes can be
linearized (Budyko 1969; Lorenz et al. 2001) as follows:

1sT 4 � Aþ BT : ð2:2Þ

In both the polar and equatorial regions, the surface is
coupled by boundary layer turbulence to a correspond-
ing region of the atmosphere. Atmospheric
temperatures in the two regions are then assumed to
be Tp þ Tsa and Te 2 Tsa (model symmetry ensuring
that the surface-to-atmosphere temperature difference
has magnitude Tsa in both regions).

Energy conservation at the surface in the two
regions (figure 1b) implies that

Fp þ Fa ¼ Aþ BTp

and Fe � Fa ¼ Aþ BTe;

)
ð2:3Þ

where Fa is the atmospheric flux in W m22. (Note that
the total flow rate in the atmosphere is pR2Fa although
meridional transport acts through an area

ffiffiffi
3
p

pRH. In
this paper, all fluxes are expressed per unit surface area.)
From equation (2.1), equator-to-pole differences in
surface temperature and absorbed solar flux (with
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subscript ep) can be defined as

Tep ¼ Te � Tp

and Fep ¼ Fe � Fp ¼
ð1� aÞS0g

2
:

9>=
>; ð2:4Þ

For later use, a reference temperature T0 (repre-
senting the typical surface temperature in the absence
of atmospheric flow) is defined as the solution of

1sT4
0 ¼

Fe þ Fp

2
¼ Fep

2g
: ð2:5Þ

It follows that the linearization parameters in equation
(2.2) are

A ¼ �31sT 4
0 and B ¼ 41sT3

0 ð2:6Þ

and that the surface temperatures satisfy

Te ¼ T0 þ
1

2
Tep and Tp ¼ T0 �

1

2
Tep: ð2:7Þ

Equations (2.3) and (2.4) can be combined to give an
expression for energy conservation:

Fep ¼ BTep þ 2Fa: ð2:8Þ

The surface-to-atmosphere energy fluxes in each region
are of opposite sign, with each being equal in mag-
nitude to the lateral flux between regions (figure 1b).
Following Kleidon et al. (2006), it is assumed that the
surface-to-atmosphere flux is proportional to wind-
speed and surface-to-atmosphere temperature
difference. The equation for surface-to-atmosphere
flux is therefore

Fa ¼ CDrcUTsa; ð2:9Þ

where CD is a dimensionless drag coefficient quantifying
the strength of the coupling between the atmosphere
and the surface, r is the density of the atmosphere
and c is its specific heat capacity. (In the notation of
Kleidon et al. (2006), this drag coefficient would be
written CD ¼ f ðRi; z=z0Þk2=ðlogðz=z0ÞÞ2, where k is
the von Kármán constant, z0 is the roughness length
and z represents the height at which the windspeed
is U. f is an empirical function dependent on the stab-
ility of the atmosphere as quantified by the Richardson
number Ri.)

The surface wind (with meridional component
U cos u) blows from pole to equator while the high-
altitude wind blows from equator to pole. The net
effect of this circulation is that energy is advected
from equator to pole across the boundary at 308
latitude. Overall, therefore, a meridional volumetric
flow rate U cos u�

ffiffiffi
3
p

pRH carries energy across an
atmospheric temperature difference (Te 2 Tsa) 2

(Tp þ Tsa) ¼ Tep 2 2Tsa (figure 1b). Equating the
area-integrated fluxes for surface-to-atmosphere and
equator-to-pole exchange it follows that

pR2Fa ¼
ffiffiffi
3
p

pRHrcU cos uðTep � 2TsaÞ: ð2:10Þ

To complete the model, it remains to specify how
the windspeed U depends on the equator-to-pole
difference in air temperature. Assuming that energy
and momentum have the same effective drag
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coefficient, reasonable dynamics can be constructed
by considering the force balance in the meridional
and zonal directions. The atmosphere in each region
is assumed for simplicity to be isothermal, with a
temperature difference Tep 2 2Tsa between the two
regions. It will be shown later that Tep � T0 and so
the atmospheric temperature is everywhere close to
the reference temperature T0. It is therefore reasonable
to approximate the thermal expansivity of the atmos-
phere by 1/T0, the value for an ideal gas at
temperature T0. It follows that a hydrostatic pressure
difference of order (Tep 2 2Tsa)gH/T0 exists between
the two regions and acts over a cross-sectional area
of order

ffiffiffi
3
p

pRH. The resultant meridional force of
order

ffiffiffi
3
p

pRHðTep � 2TsaÞgH=T0 tends to drive an
atmospheric flow. It is resisted by a quadratic drag
force of order pR2CDU2 acting parallel to the surface
wind and a Coriolis force of order pR2HVU acting
perpendicular to the surface wind. (The Coriolis par-
ameter at 308 latitude is 2V sin 308 ¼ V.) It follows
that the balance between density-driven pressure
gradient and quadratic drag—in the presence of a
Coriolis force—is expressed by the equations:

pR2CDU2 cos u ¼ �pR2HVU sin u

þ
ffiffiffi
3
p

pRHðTep � 2TsaÞgH

T0

ð2:11Þ

and

pR2CDU2 sin u ¼ pR2HVU cos u: ð2:12Þ

The drag coefficient CD can be regarded as a
parameter controlling the degree of geostrophy in the
system, with the limit CD! 0 corresponding to pure
geostrophic balance.

Equations (2.8)–(2.12) constitute a complete
description of the model system. The rate of entropy
production for the whole planet (in W K21) is

_S ¼ 4pR2Fa

1

Tp

� 1

Te

� �
¼ 4pR2FaTep

TeTp

: ð2:13Þ

The overall aim of this paper is to examine the influ-
ence of the drag coefficient CD and the rotation rate
V on the rate of entropy production _S. To achieve a
deeper understanding of this model, it will be
non-dimensionalized and solved analytically in §3.
3. ANALYSIS AND NON-DIMENSIONALIZATION
Dimensional analysis shows that the system is
governed by the following three dimensionless
parameters:

j ¼
ffiffiffiffiffiffiffiffi
12g

p rc
ffiffiffiffiffiffiffiffiffi
gH3

p
BR

" #
; v ¼ 1ffiffiffiffiffiffiffiffi

12g
p VRffiffiffiffiffiffiffi

gH
p
� �

and h ¼
ffiffiffi
3
p H

R

� �
:

ð3:1Þ

Here and subsequently quantities in square brackets
represent natural non-dimensionalizations while the
preceding quantities are numerical factors of order
unity introduced for convenience.
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The advection parameter j can be interpreted as a
measure of the atmosphere’s ability to transport heat
from equator to pole by advection. The meridional
wind is at most of order

ffiffiffiffiffiffiffi
gH
p

and so the maximum
advective flux from equator to pole is of order
rcH

ffiffiffiffiffiffiffi
gH
p

Tep=R. Normalizing with respect to the
equator-to-pole difference in outgoing flux BTep

yields the advection parameter j up to a multiplicative
constant. For example, a planet with strong surface
gravity and large atmospheric heat capacity can sustain
a large density-driven meridional heat flux and would
have a correspondingly large advection parameter j.

The rotation parameter v can be interpreted as a
measure of planetary rotation rate. Specifically it is
(up to a multiplicative constant) the ratio of the equa-
torial rotation velocity VR to the gravitational velocity
scale

ffiffiffiffiffiffiffi
gH
p

. This ratio can also be interpreted as the
ratio of a Froude number Fr ¼ U=

ffiffiffiffiffiffiffi
gH
p

to a Rossby
number Ro ¼ U/VR.

The thickness parameter h is a measure of atmos-
pheric thickness as a fraction of planetary radius. It
is shown below that h does not appear in the dimen-
sionless governing equations under an appropriate
rescaling of the drag coefficient CD. It follows that all
aspects of the solutions (other than the numerical
values of CD) are independent of h. For this reason
the v–j plane will be treated as the parameter space
for this model, and the qualitative nature of the
solution for any planet will be shown to depend
solely on its rotation parameter v and advection
parameter j.

To derive the dimensionless governing equations,
a rescaled drag coefficient cd, rescaled rotation
parameter z and wind angle tangent t are defined by

cd ¼
1

4h
CD; z ¼ vþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ v2

p
and t ¼ tan u

9>=
>; ð3:2Þ

and dimensionless model variables (denoted by lower
case letters) are defined by

fa ¼ 2
Fa

Fep

� �
; u ¼ 2zffiffiffi

g
p

Uffiffiffiffiffiffiffi
gH
p
� �

and tj ¼
BTj

Fep

� �
; ð3:3Þ

where j [ fe, p, ep, sa, 0g. The letters in this set
denote equatorial, polar, equator-to-pole difference,
surface-to-atmosphere difference and reference state,
respectively.

The dimensional model of equations (2.8)–(2.12)
can now be written in dimensionless form as:

1 ¼ tep þ fa; ð3:4Þ
zfa ¼ 2jcdutsa; ð3:5Þ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2

p
zfa ¼ juðtep � 2tsaÞ; ð3:6Þ

cdu2 ¼ �vztuþ 1

2
z2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2

p
ðtep � 2tsaÞ ð3:7Þ

and

tcdu2 ¼ vzu: ð3:8Þ

Equations (3.4)–(3.8) constitute a full description of
the system, representing energy balance, surface-
to-atmosphere heat flux, equator-to-pole energy



Table 1. Three distinct maximization principles—maximum

entropy production (MEP), Lorenz energy balance (LEB)
and maximum atmospheric flux (MAF). The energy
constraint is given by equation (3.4) while the dynamical
constraints are given by equations (3.5)–(3.8). The MEP
solution is equal to an LEB solution if an LEB solution

exists and is equal to the MAF solution if no LEB solution
exists.

name
quantity constraints explicit
maximized applied solution

MEP _s energy and
dynamics

—

LEB _s energy only fa ¼ tep ¼ 1
2
; _s ¼ 1

MAF fa energy and
dynamics

—
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transport, meridional dynamics and zonal dynamics,
respectively.

The governing equations have one degree of free-
dom and so the solution for any planet could in
principle be calculated as a function of the advection
parameter j, rotation parameter v and rescaled drag
cd. In practice, however, it is simpler to derive a para-
metric solution in which the tangent of the wind angle
t is used as the independent variable and all other vari-
ables are calculated as functions of j, v and t.

The system can be solved analytically by making the
substitution X ¼ f

�1=2
a and noting from rearrangement

of the governing equations that all model variables can
be written as functions of X and t:

fa ¼
1

X2
; tep ¼ 1� 1

X2
; u ¼

ffiffiffiffiffiffi
t

jv

r
z

X
;

cd ¼
ffiffiffiffiffiffiffiffi
jv3

t3

r
X and tsa ¼

t

2jvX2:

ð3:9Þ

The governing equations then imply that X must
satisfy the quadratic equation

X2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4vð1þ t2Þ

jt

s
X � 1þ t

jv

� �
¼ 0; ð3:10Þ

whose (positive) root is

X ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vð1þ t2Þ

jt

s
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jt

vð1þ t2Þ þ
t2

v2ð1þ t2Þ

s !
:

ð3:11Þ

Equation (3.11) constitutes the required analytical sol-
ution of the system. In conjunction with equation (3.9)
it provides explicit parametric formulae for all vari-
ables in the model as functions of the wind angle
tangent t ¼ tan u.

The final step in the formulation of the dimen-
sionless system is to define a dimensionless rate of
entropy production _s by suitable rescaling of its
dimensional equivalent _S. A reasonable definition is
the first equality in:

_s ¼ 4fatep ¼ 1�
t2
ep

4t2
0

 !
2t2

0Fep
_S

pR2B

" #
; ð3:12Þ

where the second equality follows from equations
(2.13), (3.3) and (3.13).

Rewriting equations (2.4) and (2.7) shows that the
dimensionless surface temperatures satisfy

te ¼ t0 þ
1

2
tep; tp ¼ t0 �

1

2
tep

where t0 ¼
2

g
� 9:17:

ð3:13Þ

It follows that tep , 1 � 2t0 (equivalently Tep � T0)
and so the factor 1� t2

ep=4t2
0 in equation (3.12) may

be regarded for practical purposes as being equal to
one. Thus the dimensionless rate of entropy pro-
duction _s is, to a good approximation, simply
proportional to its dimensional equivalent _S. Under
this approximation the maximization of _s is equivalent
to the maximization of _S.
Phil. Trans. R. Soc. B (2010)
4. SOLUTIONS OF THE MODEL
The objective now is to consider how solutions of the
dimensionless system (§3) vary as functions of the
drag coefficient CD. Particular interest will centre on
the values of CD for which either the entropy pro-
duction _s or the atmospheric flux fa is maximized.
The variables in the model are divided into two classes
—dynamical variables and thermal variables. The
dynamical variables windspeed u and wind angle u

(from which meridional wind u cos u and zonal wind
u sin u can be derived) relate to motion in the atmos-
phere. The thermal variables, on the other hand,
relate to the poleward transfer of energy and are:
the atmospheric energy flux fa, the equator-to-pole
surface difference in surface temperature tep, the
surface-to-atmosphere temperature difference tsa and
the overall rate of entropy production _s. Each of
these variables can be calculated as a function of the
drag coefficient CD.

Three distinct maximization procedures are rel-
evant to this problem. They are denoted by the
letters MEP, LEB (Lorenz energy balance) and MAF
(maximum atmospheric flux) and are summarized
in table 1.
(a) MEP—maximum entropy production

solutions

In the context of this paper, an MEP solution is
defined to be one in which the rate of entropy pro-
duction _s is maximized subject to both the energy
constraint of equation (3.4) and the dynamical con-
straints of equations (3.5)–(3.8). In other words, an
MEP solution is obtained by imposing all of the
constraints in the model developed in §3.
(b) LEB—Lorenz energy balance solutions

In contrast to an MEP solution, an LEB solution is
defined to be one in which the rate of entropy
production _s is maximized subject to the energy
constraint of equation (3.4) only. It follows immedi-
ately that an LEB solution is a solution for which
fa ¼ tep ¼ 1

2
and hence _s ¼ 1. Maximizing _s subject

only to equation (3.4) is equivalent to the procedure
adopted in the dynamically unconstrained model of
Lorenz et al. (2001). In the framework of the present
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Figure 2. The critical line jc(v) (equation (4.5)) and a set of
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model, an LEB solution is found by setting X ¼
ffiffiffi
2
p

in
equation (3.10) to give

LEB solution: 1� t

jv
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8vð1þ t2Þ

jt

s
: ð4:1Þ

For a given planet (i.e. for given parameters j and
v), the wind angle tangent t in an LEB solution is
found numerically by solving equation (4.1) and the
remaining model variables are calculated from
equations (3.9) and (3.11). In general, equation
(4.1) may have zero, one or two solutions t depending
on whether j is less than, equal to, or greater than a
critical value jc(v) (which will be derived below in
equation (4.5)). In physical terms, the difference
between these regimes relates to whether the atmos-
phere is dynamically capable of sustaining the
entropy production _s ¼ 1 which is necessary for
there to be an LEB solution. It is important to stress
that an atmosphere with excess advective capability
(j � jc) can achieve the required (maximal) entropy
production _s ¼ 1 in two separate ways: either with a
fast quasi-zonal flow (u � 1, u � 908) when the drag
coefficient is small or with a slow quasi-meridional
flow (u � 1, u � 08) when the drag coefficient is large.

The region of v–j parameter space in which LEB
solutions exist is calculated below and is illustrated in
figure 2.
(c) MAF—maximum atmospheric flux solutions

An MAF solution is defined to be one in which the
atmospheric flux fa ¼ 1/X2 is maximized subject to
both the energy constraint of equation (3.4) and the
dynamical constraints of equations (3.5)–(3.8).
Equation (3.11) shows that X!1 both as t! 0
and as t! 1, while X is finite for positive values
of t. Hence X must have a minimum for some finite
value of t which corresponds to the MAF solution.
An explicit formula for the MAF solution can
therefore be obtained by implicit differentiation of
equation (3.10) with respect to t and then setting
dX/dt ¼ 0. It follows that

MAF solution: X ¼ t2

1� t2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2

jv3t

s
: ð4:2Þ

In contrast to LEB solutions, exactly one MAF sol-
ution exists for all points in v–j parameter space.
For given planetary parameters j and v, the wind
angle tangent at an MAF solution is found numerically
by equating (3.11)and (4.2) and solving for t.
(d) Solution regimes and the critical line

In the model of §3 an MEP solution is one that maxi-
mizes the dimensionless entropy production
_s ¼ 4fað1� faÞ (equations (3.4) and (3.12)). It is
clear that this expression is maximized when fa ¼ 1

2
,

which corresponds to an LEB solution. In other
words, the MEP solution is equal to either one of
the LEB solutions when LEB solutions exist. It may
be, however, that fa , 1

2
for all possible solutions. In

this case, the maximum value of _s ¼ 4fað1� faÞ is
obtained when the atmospheric flux fa is itself
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maximized. In other words, the MEP solution is
equal to the MAF solution if no LEB solutions exist.

The region of v–j parameter space in which LEB
solutions exist is bounded by a critical line ðvc; jcÞ
on which the MAF and LEB solutions coincide. An
LEB solution requires that X ¼

ffiffiffi
2
p

(as in equation
(4.1)). Setting X ¼

ffiffiffi
2
p

and then eliminating j from
equations (4.1) and (4.2) gives the following para-
metric solution for the critical line

critical line: v2
c ¼

t2ð1þ t2Þ
2ð1� t2Þð3þ t2Þ

and j2
c ¼

2ð3þ t2Þ3

ð1� t2Þð1þ t2Þ :
ð4:3Þ

The expression for vc can be rewritten as a quadratic
equation in t2, which can then be solved to show
that, for points on the critical line:

t2 ¼ sðvÞ � 1� 4v2

2þ 4v2

where sðvÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 32v2 þ 64v4

p
:

ð4:4Þ

Equations (4.3) and (4.4) can then be combined to
give an explicit formula for the critical line in v–j
parameter space:

jcðvÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 5þ 8v2 þ sðvÞð Þ3

2þ 4v2ð Þ 3þ 8v2 � sðvÞð Þ 1þ sðvÞð Þ

s
:

ð4:5Þ

Equation (4.5) can be used to diagnose the qualitative
behaviour of an arbitrary planet with rotation
parameter v and advection parameter j (figure 2).

When j . jc(v) the planet has sufficient advective
capability to achieve the two LEB solutions. It follows
that the planet has two MEP solutions and that these
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are equal to the two LEB solutions. On the other hand,
when j , jc(v) the planet is prevented from achieving
the LEB solutions by the dynamical constraints. It
follows that there is only one MEP solution and that
it is equal to the MAF solution.

It is helpful to consider approximate forms of
equation (4.5) in the limits of fast and slow rotation
(figure 2). In the limit of fast rotation v!1,
s(v)! 2 þ 8v2 and so jc! 16v. For a rapidly rota-
ting planet, therefore, LEB solutions are unobtainable if
j , 16v. In the limit of slow rotation v! 0, s(v)! 1
and so jc !

ffiffiffiffiffiffi
54
p

. For a slowly rotating planet, there-
fore, LEB solutions are forbidden if j ,

ffiffiffiffiffiffi
54
p

. It makes
sense physically that the impact of the dynamical
constraint should depend on rotation rate in the limit
of fast rotation but become independent of rotation
rate in the limit of slow rotation.
drag coefficient, CD
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Figure 3. Model solutions as a function of drag coeffi-
cient CD for Earth. Dynamical variables are shown in (a)
and thermal variables are shown in (b). There are two LEB
solutions for which fa ¼ tep ¼ 1

2
and hence _s ¼ 1. There is

one MAF solution for which fa is maximized. The surface-
to-atmosphere temperature difference tsa can be shown
analytically to attain a maximum value 1/2z2. For clarity, there-

fore, the rescaled quantity 2z2tsa is plotted rather than tsa. Earth
(j¼ 2.33� 102, v¼ 1.01 � 100, h¼ 2.19� 1023) (a) dash-
dotted line, windspeed u; solid line, meridional wind u cos u;
grey line, zonal wind u sin u; dashed line, angle u. (b) solid
line, _s; dotted line, fa; dotted grey line, tep; dash-dotted line,

2z2tsa.
5. APPLICATION TO A RANGE OF PLANETS
In this section, solutions to the model of §3 are pre-
sented using parameter values for a range of planets
(figures 3–7). Since the model is concerned with sur-
face drag it is appropriate to apply it to rocky bodies
with an atmosphere but not to gas planets. Accord-
ingly, Earth, Mars, Titan and Venus will be used as
case studies within the solar system. Plausible par-
ameter values for these planets are given in table 2.
It turns out that all four of these planets inhabit the
same quadrant of v–j parameter space and so exhibit
qualitatively the same behaviour within the framework
of this model. A qualitatively different solution is
presented using parameter values for the fictitious
planet P1.

Model solutions for the Earth are shown in figure 3.
The dependence of the dynamical variables on drag
coefficient is shown in figure 3a. When the drag coef-
ficient is very small, the wind speed u is high but the
wind angle u is close to 908 and so the wind blows pre-
dominantly in the zonal direction. A zonal wind does
not carry an equator-to-pole heat flux. As the drag
coefficient increases, the wind speed and the wind
angle both decrease. The net result is that the meridio-
nal wind u cos u—which carries the poleward heat
flux—attains a maximum value for drag coefficient
CD � 0.2 before falling away for higher values of
the surface drag. The dependence of the dynamical
variables on drag coefficient is shown in figure 3b.
The effect of the maximized meridional wind when
CD � 0.2 is reflected in a nearby maximum in
the atmospheric heat flux fa (and hence, from
equation (3.4), a minimum in the equator-to-pole
difference in surface temperature tep). It follows that
CD � 0.2 constitutes the MAF solution for the
Earth. Figure 3b shows that this MAF solution corre-
sponds to a local minimum in the rate of entropy
production _s. There are however two maxima in
entropy production which occur for CD � 0.002
and 30. These are by definition the MEP solutions.
The Earth lies above the critical line in v–j parameter
space (figure 2). It follows that the two MEP solutions
coincide with the LEB solutions for which, by
definition, fa ¼ tep ¼ 1

2
and _s ¼ 1.
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These results can now be compared with the
numerical results of Kleidon et al. (2006). They
obtained an MEP solution for the (true) value of
the von Kármán constant k � 0.4, which should
correspond to a drag coefficient CD of order 0.1.
The present model, in contrast, produces MEP
solutions for drag coefficients CD � 0.002 and 30
which differ by several orders of magnitude from
Kleidon et al.’s value. While the MEP results do not
coincide, it is intriguing that the present model does
yield an MAF solution for a drag coefficient CD � 0.2
that is comparable with Kleidon et al.’s MEP solution.
Clearly, the differences must arise because the present
model contains substantially less physics than a full
atmospheric simulation.

In comparison with the dynamically unconstrained
model of Lorenz et al. (2001), the solutions for
Earth in figure 3 offer an explanation for why the
dynamics did not seem to matter when Lorenz et al.
obtained an MEP solution within the framework of
their model. The Earth has an atmosphere which is
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Figure 4. As figure 3, but for Mars. Like Earth, Mars
inhabits the top-left quadrant in parameter space (figure 2).
Mars (j ¼ 1:28� 101; v ¼ 6:15� 10�1; h ¼ 8:11� 10�3Þ:
For key explanation see figure 3.
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Figure 5. As figure 3, but for Titan. Like Earth, Titan
inhabits the top-left quadrant in parameter space (figure 2).
Titan (j ¼ 9:08� 104; v ¼ 4:60� 10�2; h ¼ 1:30� 10�2).
For key explanation see figure 3.
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dynamically capable of sustaining a flux fa ¼ 1
2

and so
the addition of dynamics to Lorenz et al.’s two-box
model does not introduce any constraints which
prevent this LEB solution being attained.

To continue the comparison with Lorenz et al.
(2001), model solutions for Mars and Titan are
shown in figures 4 and 5, and the present model is
also applied to Venus in figure 6. The analysis of §3
suggests that qualitatively the same behaviour would
be expected for these planets as was obtained for the
Earth because they inhabit the same quadrant of par-
ameter space (figure 2). This is indeed the case. All
three non-terrestrial planets have an MAF solution
for CD � 0.1 at which the meridional wind and atmos-
pheric flux are maximized. This is not the MEP
solution however, because LEB solutions exist. As
for the Earth, the two MEP solutions coincide with
the two LEB solutions at which fa ¼ 1

2
. Mars lies very

close to the critical line in figure 2, and so the MAF
and LEB solutions almost coincide in figure 4.

The behaviour of solutions below the critical line
can be illustrated by considering a fictitious planet
P1 with appropriate parameter values. One might
speculate that there is, somewhere, an extrasolar
planet having these parameter values. Since P1
(figure 7) lies below the critical line in figure 2 its
atmosphere is dynamically incapable of sustaining
the LEB atmospheric flux fa ¼ 1

2
. The MEP solution

is therefore given by an MAF solution in which fa
is maximized.
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The behaviour of planets with high rotation rate
(not illustrated here) is qualitatively similar to
those with low rotation rate, except that the MAF
and LEB solutions occur at higher values of the
drag coefficient CD. This follows (equations (3.2),
(3.9) and (4.2)) from the fact that the drag coeffi-
cient at an MAF solution is:

MAF solution: CD ¼ 4h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2

ð1� t2Þ2

s
ð5:1Þ

and that the wind angle tangent t at an MAF
solution is a function of rotation rate.
6. SUMMARY AND PHYSICAL INTERPRETATION
A simple energy balance model has been constructed
to explore the underlying physics behind entropy pro-
duction by equator-to-pole heat flux in planetary
atmospheres. Analysis of the present model gives
insight into previous results from both a model con-
taining less physics (Lorenz et al. 2001) and a model
containing more physics (Kleidon et al. 2006). The
dimensionless form of the present model allows it to
be applied easily to arbitrary planets.

It should be stressed that the model is very simple
and that the approximations involved in its construc-
tion become harder to justify for extreme parameter
values. For example, the number of convection cells



0

0.2

0.4

0.6

0.8

1.0

10−6 10−410−8 10−2 100 102 104 106 108

0

10

20

30

40

50

60

70

80

90
u,

 u
 c

os
 θ,

 u
 si

n 
θ

θ 
(º

)

drag coefficient, CD

(a)

10−6 10−410−8 10−2 100 102 104 106 108

drag coefficient, CD

(b)

0

0.2

0.4

0.6

0.8

1.0

σ̇,
 f a

, t
ep

, 2
ζ2

 t s
a

Figure 6. As figure 3, but for Venus. Like Earth, Venus inha-
bits the top-left quadrant in parameter space (figure 2).

Venus (j ¼ 1:08� 105; v ¼ 2:00� 10�3; h ¼ 6:60� 10�3).
For key explanation see figure 3.
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Figure 7. As figure 3, but for the fictional planet P1. P1 inha-
bits the bottom-left quadrant in parameter space (figure 2).
P1 (j ¼ 1� 100; v ¼ 1� 10�2; h ¼ 1� 10�2).

Table 2. List of parameters in the model, with approximate numerical values for Earth, Mars, Titan and Venus. Numerical

values for albedo a, gravity g, radius R, solar constant S0 and rotation rate V were obtained from online databases. Other
parameters were derived as follows: Fep from equation (2.4), e chosen to make T0 from equation (2.5) agree with online
data, A and B from equation (2.6). Estimates of surface pressure p0 and surface density r0 were also obtained from online
databases, allowing the scale height to be estimated from the formula for an isothermal atmosphere H ¼ p0=gr0. Volumetric

heat capacity was estimated from the formula for a diatomic ideal gas rc ¼ 7p0=2T0. The dimensionless parameters j, h, v
and z were calculated using equations (3.1) and (3.2).

symbol Earth Titan Mars Venus Units

a 0.3 0.21 0.15 0.65 —
g 9.81 1.35 3.69 8.87 m s22

R 6.3 � 106 2.6 � 106 3.4 � 106 6.1 � 106 m
S0 1340 14.73 577 2561 W m22

V 7.27 � 1025 4.56 � 1026 7.09 � 1025 2.99 � 1027 s21

Fep 102.2 1.268 53.5 97.7 W m22

T0 301.6 100.7 256.4 792.9 K
e 0.5 0.5 0.5 0.001 —
A 2703.5 28.728 2367.838 2672.263 W m22

B 3.11 0.116 1.912 1.130 W m22 K21

H 7981 18 641 15 913 23 233 m
rc 1262 5705 13.3 4.37 � 104 J m23 K21

j 232.7 90 774 12.789 108 079 —
h 2.19 � 1023 0.0124 8.11 � 1023 6.60 � 1023 —

v 1.01 0.046 0.615 0.002 —
z 2.44 1.05 1.79 1.002 —
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per hemisphere (assumed here to be one) is likely to
increase with rotation rate, and drag coefficients
many orders of magnitude different from unity (as in
figures 3–7) are difficult to contemplate. Nonetheless,
Phil. Trans. R. Soc. B (2010)
the model contains sufficient physics to yield qualitative
conceptual insight.

It is clear that the low friction limit CD! 0
de-couples the atmosphere and the surface. In this
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case surface temperatures in the equatorial and polar
regions take their radiative equilibrium values, and
atmospheric temperature is uniform across latitudes.
This means that there is no drive for meridional
atmospheric transport, and the wind is strong but
predominantly zonal. The rate of entropy production
is therefore zero.

On the other hand, the high friction limit CD!1

couples the atmosphere and the surface so tightly
that atmospheric temperatures are equal to surface
temperatures (Tsa! 0), which again take their radia-
tive equilibrium values. In this case the drive for
meridional transport is large, but high surface friction
prevents significant flow from taking place. The rate of
entropy production is therefore close to zero.

It follows that between these two extremes there
must exist at least one intermediate value of CD for
which the entropy production is maximized. For pla-
nets with a sufficiently large advection parameter j,
there are two values of the drag coefficient for which
the entropy production is maximized (LEB solutions),
and one intermediate value of the drag coefficient for
which the atmospheric flux is maximized (the MAF
solution). On the other hand, for planets with a
small advection parameter, the value of the drag coef-
ficient for which the atmospheric flux is maximized is
also the single value for which the entropy production
is maximized (the MAF solution).

The rate of entropy production _sMEP for a planet in
an MEP state is shown in v–j parameter space in
figure 8. Above the critical line, _sMEP ¼ 1 and hence
is independent of rotation rate. Below the critical
line, _sMEP is independent of rotation rate only for a
slowly rotating planet v � 1, exactly as one would
expect on physical grounds.

Finally, the influence of the dynamical constraints
on entropy production can be interpreted in terms of
the ‘coefficient of meridional diffusion’ D ¼ Fa/Tep
Phil. Trans. R. Soc. B (2010)
used by Lorenz et al. as the free parameter in
their model. In terms of the present model D ¼
(B/4)(1 2 tep)/tep, and so it is reasonable to define
a dimensionless coefficient of meridional diffusion
d ¼ (1 2 tep)/tep. It follows from the governing
equations of §3 that the dimensionless dynamical
variables can be written as functions of d:

_s ¼ 4d

ð1þ dÞ2
; fa ¼

d

ð1þ dÞ and tep ¼
1

ð1þ dÞ : ð6:1Þ

These relationships are plotted in figure 9. The effect
of the dynamical constraints in the model of §3 is to
prevent large values of d from being realized. It follows
that a LEB solution _s ¼ 1 is possible only if d ¼ 1 is
permitted by the dynamical constraints.
7. CONCLUSIONS
We have extended the traditional two-box model of
latitudinal heat transport to include a simple represen-
tation of atmospheric dynamics on a rotating planet.
The revised model reproduces the previous uncon-
strained MEP state when the advective capability of
the atmosphere is sufficiently large and the planetary
rotation rate is sufficiently small. By chance, this is
the regime that describes the rocky planets in the
solar system (Earth, Mars, Venus and Saturn’s
moon—Titan), and we believe that this is why the
unconstrained MEP solution can reproduce the
observed equator-to-pole temperature gradient,
despite the absence of atmospheric dynamics in the
model (Lorenz et al. 2001). It is possible that exo-
planets will be discovered in which the advective
capacity and rotation rate provide meaningful con-
straints on the MEP state. In these cases we predict
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a divergence of the observed planetary climates from
the unconstrained MEP state, as outlined in the
theory developed in this paper.
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