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Abstract
Heat shock proteins (HSPs) are highly regulated proteins that are involved in normal cellular activity
and are up regulated when the cell is exposed to stress such as heat or excess reactive oxygen species
(ROS) production. HSPs are molecular chaperones that mediate the proper folding of proteins and
promote recovery of the native conformations of proteins lost due to stress. Improperly folded or
denatured proteins tend to aggregate and accumulate in cells. A number of neurodegenerative
diseases such as Parkinson disease (PD) and Alzheimer disease (AD) have been called “protein
misfolding disorders” due their characteristic pathology. Until now the exact mechanism(s) of AD
progression and pathogenesis largely remains unknown. Reasoning that stress is present in brain in
AD, we tested the suggestion that HSP levels would be increased in amnestic mild cognitive
impairment (aMCI), a transition stage between normal aging and AD. Accordingly, in the present
study we measured the levels of HSPs in hippocampus, inferior parietal lobule (IPL) and cerebellum
of subjects with aMCI. The results of show a general induction of HSPs and decreased levels of
Thioredoxin 1 in aMCI brain suggesting that alteration in the chaperone protein systems might
contribute to the pathogenesis and progression of AD. The results also are consistent with the notion
that targeting HSP could be a therapeutic approach to delay the progression of aMCI to AD.
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Introduction
Amnestic mild cognitive impairment (aMCI) is a term used to define the transitional phase
between normal aging and early Alzheimer disease (AD). aMCI, reportedly, represent a high-
risk stage for the development of AD and about 10–15% patients convert to AD yearly
(Petersen, 2003; Visser et al., 2006). aMCI individuals share similar pathology with AD
including temporal lobe atrophy, low CSF Aβ levels, and the accumulation of neurofibrillary
tangles in the hippocampus and entorhinal cortex (Chertkow et al., 2001; Morris and
Cummings, 2005; Petersen et al., 1999). However, the severity of the pathology is reduced in
aMCI compared to AD. Further aMCI brain showed increased levels of oxidative stress as
indicated by elevated level of oxidative markers of proteins, lipids, carbohydrates, and nucleic
acid compared to age-matched controls (Butterfield et al., 2006; Butterfield et al., 2007; Keller
et al., 2005; Reed et al., 2008). In recent years, several studies support the functional importance
of oxidative stress as a critical event in mediating neurodegeneration and AD pathogenesis
(Butterfield and Lauderback, 2002; Markesbery, 1997; Perry et al., 1998).

Heat shock proteins (HSPs) are up-regulated in response to cellular stress to protect the cell
from a variety of stresses (Kelly and Yenari, 2002; Yenari, 2002). In the central nervous system
(CNS) HSP synthesis is induced after hyperthermia, by alterations to intracellular redox
environment and by exposure to heavy metals, aminoacid analogs or cytotoxic drugs, among
other stresses (Calabrese et al., 2002a; Calabrese et al., 2002b; Mosser and Morimoto, 2004).
HSPs are produced as a part of the heat shock response and are one of the most highly expressed
classes of cellular proteins. HSPs account for roughly 1–2% of total protein in unstressed cells,
but the concentration increases to 4–6% of cellular proteins when proteins are heated or under
stress (Garrido et al., 2001). Heat-shock proteins act as chaperones, binding and regulating
protein conformation. HSPs also escort protein across membranes or through organelles, or
alter enzyme activity. Under conditions of cell stress HSPs prevent protein misfolding and
oligomerization and transfer misfolded proteins to the proteasome for degradation (Becker and
Craig, 1994). HSP synthesis is tightly regulated at the transcriptional level by heat shock factors
(HSF). Denatured proteins activate HSFs within the cytosol by dissociating other HSPs that
are normally bound to HSF. Active HSF enter the nucleus and binds to the heat shock elements
within the promoters of different heat shock genes leading to transcription and synthesis of
HSPs (Calabrese et al., 2007).

In mammalian cells, the stress response involves the induction of 4 major members of HSP
families named according to their molecular weight: HSP 27, HSP 60, HSP 70 and HSP 90.
Recent studies propose that HSPs are part of an extended network of stress response and
cytoprotection, called the vitagene system, which includes the thioredoxin (Trx) system
(Calabrese et al., 2004; Calabrese et al., 2006a; Calabrese et al., 2007; Mancuso et al., 2007).
Thioredoxin-1 is involved in a variety of redox-dependent pathways such as supplying reducing
equivalents for ribonucleotide reductase and peptide methionine sulfoxide reductase. Several
lines of evidence suggest that manipulation of the cellular stress response may offer strategies
to protect brain cells from the damage encountered following cerebral ischemia or during the
progression of neurodegenerative diseases (Butterfield et al., 2002; Halliwell, 2001; Perluigi
et al., 2006).

Given that oxidative stress is present in aMCI brain (Butterfield and Lauderback, 2002;
Butterfield et al., 2006; Butterfield et al., 2007; Keller et al., 2005; Markesbery, 1997; Reed et
al., 2008) and that oxidative stress is known to induce HSPs, in the present study we measured
changes in the protein levels of HSPs and Trx-1, two major constituents of cellular stress
response machinery in different regions of aMCI brain.

Di Domenico et al. Page 2

Brain Res. Author manuscript; available in PMC 2011 May 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Results
aMCI samples and age-matched control samples from hippocampus, IPL and cerebellum were
homogenized, and analyzed separately by Western blot methods to determine the levels of
HSPs and Trx-1. HSPs levels measured in the current study were HSP 27, 32, 60, 70 and 90.
Table 2 summarizes the protein level results in all three brain regions. The expression values
of each protein, in control and aMCI samples, have been normalized with β-actin levels, used
as a loading control. The aMCI results are expressed as a percentage of the control values,
arbitrarily set as 100%. As can be seen in Table 2 in hippocampus we found a significant (p
value<0.05) increase of HSP 27 (200%) (Figure 1) in aMCI compared to control. Further, the
levels of HSP 32 showed an increase of 130% (Figure 1) in aMCI compared to control, but the
difference was not statistically significant (p value=0.16). The protein levels of Trx-1 were
found significantly decreased by 32% in aMCI hippocampus compared to the control samples.

In aMCI IPL compared to control we found a 160% increase of HSP 27 and HSP 70 that was
statistically significant (Figure 2). Like aMCI hippocampus, aMCI IPL have increased HSP
32 levels but the value is not significant (Figure 2).

In aMCI cerebellum we did not observe any changes in the levels of any of the heat shock
proteins analyzed. HSP 32 protein levels were found elevated in all the three brains regions
but did not show a significant difference compared to respective age-matched controls. In
contrast, the levels of Trx-1 were found decreased by 41% in aMCI cerebellum compared to
that of controls (Figure 3).

Discussion
This is the first study that reports the protein levels of the main component of the HSP family
and thioredoxin-1 in three different brain regions of aMCI hippocampus, IPL and cerebellum.
Investigating the levels of HSP and Trx in aMCI may help to understand HSPs involvement
in aMCI pathogenesis and progression to AD.

Like AD, brain from aMCI subjects show increased levels of oxidative stress markers and
(Butterfield and Lauderback, 2002; Butterfield et al., 2006; Butterfield et al., 2007; Keller et
al., 2005; Markesbery, 1997; Reed et al., 2008). The accumulation of oxidative stress markers
that occur in aMCI brain are consistent with the notion that oxidative stress could be an early
event in the conversion of aMCI subjects to AD (Muchowski and Wacker, 2005; Sultana and
Butterfield, 2009). The alterations of protein structure by oxidative damage generally impair
function and lead to the formation of protein aggregates in the cytosol.

HSPs appear to be up-regulated in several neurodegenerative diseases acting to protect brain
cells against free radical injury, oxidative stress and misfolded proteins. (Calabrese et al.,
2004; Kalmar and Greensmith, 2009). In AD, HSPs expression is associated with Aβ deposition
and neurofibrillary tangles, and recent findings suggest that HSPs prevent the accumulation of
Aβ (Abdul et al., 2006; Evans et al., 2006; Shimura et al., 2004; Sultana et al., 2005). In view
of the increased oxidative stress parameters observed in aMCI, we expected to see increased
levels of all of the stress induced heat shock proteins. However, we observed that only the
levels of HSP 70 in IPL and HSP 27 in IPL and hippocampus are increased in aMCI compared
to controls with no effects on the other members of HSPs measured in the current study.
Although, HSP 32 showed increased levels in all the three aMCI regions studied, these
increases were not statistically significant. Our results suggest that not all the HSPs protein
levels are affected in similar way in different regions of the brain in this early stage of the AD.

HSP 27 and HSP 70, among all HSPs, are the most strongly induced after stresses such as
oxidative stress, anticancer drugs, or irradiation (Lanneau et al., 2008). HSP 27 is an ATP-
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independent chaperone that protects the cells from protein aggregation. The affinity of HSP
27 for proteins to be chaperoned is modulated by its phosphorylation and oligomerization status
(Shimura et al., 2004). In AD brain, increased expression of HSP 27 associated with NFTs has
been found, especially in proliferating and degenerating astrocytes and hippocampal neurons
(Bjorkdahl et al., 2008; Charette and Landry, 2000; Renkawek et al., 1993; Renkawek et al.,
1994). Our findings reporting increased levels of HSP 27 in both hippocampus and IPL of
aMCI are consistent with the increase oxidative stress in these two aMCI regions (Butterfield
et al., 2006; Butterfield et al., 2007; Keller et al., 2005). The increased oxidative stress and
consequent oxidative damage of proteins and other cellular component could easily explain
the increased levels of HSP 27. However, the lack of a broad increase of all the HSPs analyzed
in aMCI suggests that other factors may influence HSP 27 induction. Increased HSP 27 levels
might be favored by the occurrence of hyperphosphorylated tau and consequent formation of
NFTs. Several studies showed that HSP 27 directly binds to hyperphosphorylated tau, thereby
protecting against cell death (Bjorkdahl et al., 2008). Moreover, HSP 27 facilitates the
degradation of hyperphosphorylated tau without ubiquitination (Shimura et al., 2004).
Hyperphosphorylated tau and NFT are present in aMCI hippocampus and IPL, and increased
levels of HSP 27 are consistent with increased risk for conversion to AD (Markesbery et al.,
2006). HSP 27 also has a direct function in blocking apoptosis and several mechanisms have
been proposed to account for its negative regulation of programmed cell death (Garrido et al.,
2001). HSP 27 specifically interacts with released cytochrome c from the mitochondria present
in the cytosol and inhibits the activation of procaspase-9, an initiator caspase, in apoptosis
(Parcellier et al., 2003). Further, HSP 27 inhibits Daxx, a Fas-binding protein that activates
apoptosis (Charette and Landry, 2000). Recently our laboratory showed evidence for an
increased activation of apoptosis by the activation of the p53 pathway in aMCI brain (Cenini
et al., 2008a; Cenini et al., 2008b). HSP 27, as a negative regulator of apoptosis, might increase
as a consequence of the activation of the p53 apoptotic pathway. Consequently elevated level
of HSP 27 in MCI can be considered as a process triggered early in the progression of AD.
Interestingly, the up regulation of clusterin, a versatile chaperone protein and functional
homologue of HSP 27, is gaining recently remarkable attention as a valuable neuroprotective
response during AD progression (Bertram and Tanzi; Nuutinen et al., 2009). Clusterin has high
affinity for Aβ peptides and oligomers and is involved in prevention of Aβ aggregation, Aβ
clearance and in the suppression of apoptotic signals (Calero et al., 2005; Trougakos and Gonos,
2006; Yerbury and Wilson), supporting the functional role proposed for HSP 27.

HSP 70 is the major heat-inducible chaperone protein that exerts a cytoprotective effect under
a number of different conditions. HSP 70 prevents protein aggregation, assists in the refolding
of damaged proteins, and chaperones nascent polypeptides along ribosomes (Calabrese et al.,
2006a). Moreover, HSP 70 is also involved in the ubiquitin-proteasome pathway. HSP 70
shows low expression levels in brain under physiological conditions, but it is strongly induced
during oxidative stress (Calabrese et al., 2000; Calabrese et al., 2002a). In AD, in which
misfolded brain proteins accumulate, HSP 70 synthesis is increased in various cell populations
of the CNS and in several brain regions including the IPL, hippocampus and cerebellum.
Recently, HSP 70 was identified as a protector against intracellular Aβ accumulation: its
overexpression rescued neurons from Aβ-mediated toxicity (Evans et al., 2006; Magrane et
al., 2004). To explain this phenomenon, it has been proposed that HSP 70 acts to attenuate the
cytotoxicity of Aβ by binding amyloidogenic peptides and restoring the balance between
aggregation, folding and degradation (Evans et al., 2006). Interestingly, previous redox
proteomics studies from our laboratory identified HSP 70 as oxidatively modified by
carbonylation in aMCI IPL (Sultana et al., 2009). HSP 70 carbonylation may inactivate its
function, leading to the accumulation of toxic oligomeric assemblies of Aβ peptides and
subsequent oxidative damage. The current results show increased HSP 70 levels in IPL and
correlates with HSP 70 carbonylation in the same region. Hence, we propose that the
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inactivation of HSP 70 by oxidation may lead to an induction of HSP 70 expression in attempt
to preserve its cytoprotective capacity to defend against oxidative stress.

Trx-1 expression levels represent a valuable tool to understand the capability of the cell to
counteract oxidative stress conditions in aMCI. Thioredoxin is a multifunctional and ubiquitous
protein characterized by the presence of a redox-active disulfide/dithiol within its conserved
active site, essential to maintain the redox homeostatic state of the cells. Trx scavenges ROS,
regulates transcription factors and modifies the structure of proteins by reducing disulfides
(Calabrese et al., 2006b; Lovell et al., 2000). Trx and GSH act together to form a powerful
system controlling redox regulation of gene expression, signal transduction, cell proliferation,
protection against oxidative stress, anti-apoptotic functions, growth factor and co-cytokine
effects, as well as a variety of redox-dependent pathways such as supplying reducing
equivalents (Nordberg and Arner, 2001). Previous data demonstrate a general decrease in Trx
levels in AD brain regions: a significant decrease in the levels of Trx-1 were reported for
amygdala, SMTG and hippocampus (Lovell et al., 2000), which is consistent with the presence
of high levels of Aβ in these regions. Furthermore, neuronal culture studies also show that
Trx-1 acts as a radical scavenger inhibiting neuronal injury induced by Aβ (Lovell et al.,
2000). Our current results of decreased Trx-1 levels in aMCI hippocampus, mirroring the
situation in AD, are consonant with the notion that oxidative stress is an early event in the
progression of the AD. The hippocampus in aMCI, presents a large amount of oxidative
damage, NFT, and Aβ deposition. The decrease in Trx-1 levels in aMCI hippocampus
conceivably could be due to the general increase of oxidatively modified proteins and decrease
levels of redox molecules in this an arguably earliest form of AD, that might be instrumental
in the progression of aMCI to AD. However, it is interesting to note that the levels of Trx-1
are also significantly lower in aMCI cerebellum, a region that is devoid of AD pathology and
oxidative stress (Keller et al., 2005; Markesbery, 2009). At present we have no explanation for
this observation, but we speculate that the different cell types between hippocampus and
cerebellum may somehow contribute to these results.

HSP 32 is also known as heme oxygenase 1 (HO-1), but differs from the other chaperone
molecule by protecting brain cells from oxidative stress by degrading toxic heme into free iron,
carbon monoxide (CO) and biliverdin (Errico et al., 2010). Biliverdin is then reduced into
bilirubin (BR), a linear tetrapyrrole with antioxidant properties (Calabrese et al., 2007).
Although, HSP 32 was not statistically significantly increased in all the regions of the brain in
aMCI studied increased levels were found, compared to age-matched controls. This result
suggest that increased HSP 32 levels in AD may be initiated in aMCI that lead to a significant
increase in the levels of HO-1 associated with NFTs, Aβ deposition and oxidative damage in
AD (Takeda et al., 2000).

Our study gives a broad picture on HSP response in aMCI brain. HSP induction is one of the
first effective responses of the cell to stress and is an important tool for the protection of the
brain from degeneration and progression to disease. aMCI brain demonstrates oxidative stress
and AD hallmarks, NFTs and Aβ deposition, but in a milder status compared to AD. The brain’s
capability to protect and counteract the increase of damage and subsequent neurodegeneration
process is given by the ability to activate cytoprotective elements like HSPs. Our findings show
a general low induction of HSPs in this early stage of AD, with the exceptions of HSP 27 and
70, coupled with a reduction of Trx-1 levels. During aMCI, this low induction of HSPs
promotes oxidative modification of proteins altering functional activity of the cell. Moreover,
the increase of oxidative stress and the weak cell stress response to increased oxidative damage
might represent a favorable condition for the progression from aMCI to AD, playing a key role
in neurodegenerative processes. Previous studies from our laboratory investigated with success
the ability of ferulic acid ethyl ester (FAEE), a phenolic compound that acts as a strong HSP
inducer, to potentiate cell stress response (Joshi et al., 2006; Perluigi et al., 2006; Sultana et
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al., 2005), providing protection to the cell from oxidative stress and Aβ toxicity. Our results
suggest that alterations in chaperone protein systems might be a mechanism in the pathogenesis
and progression of AD, and that developing a therapeutic approach to induce HSP levels could
be a potential strategy to treat or delay the onset of AD.

Experimental procedures
Materials

Unless otherwise stated, chemicals used were purchased from Sigma-Aldrich (St. Louis, MO,
USA). Nitrocellulose membranes and electrophoresis transfer system Trans-blot semi-dry
Transfer Cell were obtained from Bio-Rad (Hercules, CA, USA), while anti-HSP 27, anti-HSP
60 and anti-HSP 70 mouse monoclonal antibodies were purchased from Assay Designs, Inc.
(Ann Arbor, MI, USA). Anti-HSP 32 mouse monoclonal antibody was obtained from
Calbiochem (San Diego, CA, USA), while anti-HSP90 mouse monoclonal antiboby was
obtained from AbCam (Cambridge, MA, USA). Anti-Trx-1 was purchased from Millipore
(Temecula, CA, USA), anti-β actin rabbit polyclonal antibody, anti-mouse and anti rabbit IgG
alkaline phosphatase secondary antibody were obtained from Sigma-Aldrich (St. Louis, MO,
USA). Anti-mouse and anti-rabbit IgG horseradish peroxidase conjugate secondary antibody
and ECL plus Western blot detection reagents were obtained from GE Healthcare Bio-Sciences
corp. (Piscataway, NJ, USA).

Subjects
Frozen hippocampus, inferior parietal lobule (IPL), and cerebellum samples from aMCI and
age-matched controls (6 Controls and 6 aMCI for each brain region) were obtained from the
University of Kentucky Rapid Autopsy Program of the Alzheimer’s Disease Clinical Center
(UK ADC) with an average PMI of 3 h for aMCI patients and control subjects. All the subjects
were longitudinally followed and underwent annual neuropsychological testing, and
neurological and physical examinations. Control subjects were without history of dementia or
other neurological disorders and with intact activities of daily living (ADLs), they underwent
annual mental status testing and semi-annual physical and neurological exams as part of the
UK ADC normal volunteer longitudinal aging study. aMCI patients met the criteria described
by Petersen (Petersen, 2003), which include: a memory complaint supported by an informant,
objective memory test impairment (age- and education-adjusted), general normal global
intellectual function, intact ADLs, Clinical Dementia Rating score of 0.0 to 0.5, no dementia,
and a clinical evaluation that revealed no other cause for memory decline. The control subjects
showed no significant histopathological alterations and the average Braak score was 1.33±0.52.
The aMCI patients had an average Braak score of 3.8±1.0. The demographic parameters of
controls and aMCI subjects are provided in Table 1.

Sample preparation
The brain tissues (hippocampus, IPL and cerebellum) from control and aMCI were sonicated
in Media 1 lysis buffer (pH 7.4) containing 320 mM Sucrose, 1% of 990 mM Tris-HCl
(pH=8.8), 0.098 mM MgCl2, 0.076 mM EDTA, as well as proteinase inhibitors leupeptin (0.5
m g/mL), pepstatin (0.7 μg/mL), aprotinin (0.5 mg/mL) and PMSF (40 μg/mL). Homogenates
were centrifuged at 14,000 × g for 10 min to remove debris. Protein concentration in the
supernatant was determined by the Pierce BCA method (Pierce, Rockford, IL, USA).

Western blot analysis
For Western blot analyses 50μg of protein were denaturated in sample buffer for 5 min at 100
°C, and proteins were separated on 8–16 % precast Criterion gels (Bio-Rad) by electrophoresis
at 100 mA for 2 h into Bio-Rad apparatus. The proteins from the gels were then transferred to
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nitrocellulose membrane using the Transblot-BlotSD Semi-Dry Transfer Cell at 20 mA for 2
hr. Subsequently, the membranes were blocked at 4°C for 1 h with fresh blocking buffer made
of 3% bovine serum albumin (BSA) in phosphate-buffered saline containing 0.01% (w/v)
sodium azide and 0.2% (v/v) Tween 20 (PBST). The membranes were incubated with primary
antibody in PBST for 2 hr with gentle rocking at room temperature. All the membranes were
co-incubated with actin or Tubulin antibody to validate equal loading of the proteins. The
membranes were then washed three times for 5 min with PBST followed by incubation with
anti-mouse alkaline phosphatase or horseradish peroxidase conjugate secondary antibody
(1:3000) in PBST for 2 hr at room temperature. Membranes were then washed three times in
PBST for 5 min and developed using or 5-bromo-4-chloro-3-indolyl-phosphate/nitroblue
tetrazolium (BCIP/NBT) color developing reagent for alkaline phosphatase secondary
antibody or ECL plus WB detection reagents for horseradish peroxidase conjugate secondary
antibody. Blots were dried, scanned or in TIF format using Adobe Photoshop on a Canoscan
8800F (Canon) or STORM UV transilluminator (λex=470 nm, λem=618 nm, Molecular
Dynamics, Sunnyvale, CA, USA) for chemiluminescence. The images has been quantified
with Image Quant TL 1D version 7.0 software (GE Healthcare)

Statistical analysis
Two-tailed, Student’s t-tests were used to analyze differences in protein levels between aMCI
sample and age-matched controls samples. A p-value of less than 0.05 was considered
statistically significant

Abbreviations

HSP heat shock protein

ROS reactive oxygen species

AD Alzheimer disease

aMCI amnestic mild cognitive impairment

IPL inferior parietal lobule

Trx thioredoxin
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Figure 1.
HSP 27, 32, 60, 70, 90 and Trx-1 protein levels in control and aMCI hippocampus. For each
protein the Western blot image (above) and the relative histogram (below) are shown. An equal
amount (50 ug) of CTR (lane 1–6) and MCI (lane 7–12) samples were loaded onto a 8–16%
SDS-PAGE gel, blotted onto nitrocellulose membrane and probed with specific antibodies.
The immunoblots were then probed with β-actin, scanned and analyzed by image software.
Densitometric values shown in the histogram are given as percentage of CTR, set as 100%,
and are the product of the band value of the protein studied normalized with β-actin. n=6.
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Figure 2.
HSP 27, 32, 60, 70, 90 and Trx-1 protein levels in control and aMCI IPL. For each protein the
Western blot image (above) and the relative histogram (below) are shown. An equal amount
(50 ug) of CTR (lane 1–6) and MCI (lane 7–12) samples were loaded onto a 8–16% SDS-
PAGE gel, blotted onto nitrocellulose membrane and probed with specific antibodies.
Immunoblots were later on probed with β-actin, scanned by densitometry and all values were
normalized to β-actin. Densitometric values shown in the histogram are given as percentage
of CTR, set as 100%, and are the product of the band value of the protein studied normalized
with β-actin. n=6.
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Figure 3.
HSP 27, 32, 60, 70, 90 and Trx-1 protein levels in control and aMCI cerebellum. For each
protein the Western blot image (above) and the relative histogram (below) are shown. An equal
amount (50 ug) of CTR (lane 1–6) and MCI (lane 7–12) samples were loaded onto a 8–16%
SDS-PAGE gel, blotted onto nitrocellulose membrane and probed with specific antibodies.
Immunoblots were later on probed with β-actin, scanned by densitometry and all values were
normalized to β-actin. Densitometric values showed in the histogram are given as percentage
of CTR, set as 100%, and are the product of the band value of the protein studied normalized
with β-actin. n=6.
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