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Patterns of neonatal hypoxic–ischaemic brain injury
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Abstract Enormous progress has been made in assessing
the neonatal brain, using magnetic resonance imaging
(MRI). In this review, we will describe the use of MRI and
proton magnetic resonance spectroscopy in detecting different
patterns of brain injury in (full-term) human neonates
following hypoxic–ischaemic brain injury and indicate the
relevance of these findings in predicting neurodevelopmental
outcome.
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Introduction

Fifty years ago, experiments have demonstrated that
perinatal asphyxia could induce brain injury in primates
[1]. Since then, different patterns of brain injury have been
established [2], which were dependent on the severity and
duration of the hypoxic–ischaemic insult. These findings in
animal studies were comparable to postmortem findings in
asphyxiated human neonates.

During the 1960s to 1980s, imaging of brain injury was
performed in human neonates using positron emission

tomography scans and ultrasound. Since the introduction
of magnetic resonance imaging (MRI), the knowledge of
localisation and severity of brain injury following
perinatal asphyxia (hypoxic–ischaemic brain lesions) in
surviving neonates has expanded tremendously [3–5].
Diffusion-weighted MRI has enabled us to diagnose
lesions much earlier than conventional MRI. MRI can
reliably predict neurodevelopmental outcome and may
serve as an early biomarker. In addition, phosphorus and
proton MR spectroscopy (MRS) have enabled us to detect
metabolic changes in the neonatal brain following hypoxia–
ischaemia [6, 7]. In this review, we will describe the use of
MRI and proton MRS in detecting different patterns of brain
injury in (full-term) human neonates following hypoxic–
ischaemic brain injury and indicate the relevance of these
findings in predicting neurodevelopmental outcome.

MRI

Although cranial ultrasound can still play a role in the full-
term infant with hypoxic–ischaemic brain injury [8], MRI
is the method of choice to obtain more detailed and
accurate information [5]. The American Academy of
Neurology recommended in 2002 that a computed tomogra-
phy (CT) should be performed to detect haemorrhagic lesions
in encephalopathic term infants and MRI only if findings are
inconclusive [9]. We do, however, recommend the use of
MRI in all full-term infants who present with neonatal
encephalopathy and/or seizures. The use of CT is restricted
to infants who present with a large intracranial haemorrhage
with a shift of the midline seen on cranial ultrasound. These
infants may need neurosurgical intervention and access to a
CT may be easier, and associated skull fractures may also be
better visualised than with MRI [10, 11].
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Timing of insult

The increased use of neuroimaging techniques and MRI, in
particular, has been a tremendous help in timing of brain
injury and recognising patterns of injury [4, 12, 13].
Performing MRI within the first 2 weeks after birth, Cowan
et al. [13] were able to show that more than 90% of affected
newborns had evidence of perinatally acquired lesions on
their MRI, with a very low rate of established antenatal
brain injury. The presence of ventricular dilatation, widen-
ing of the subarachnoid space and interhemispheric fissure,
presence of germinolytic cysts or cystic lesions in the white
matter, seen at birth or during the first week, are all
suggestive of an antenatal insult or an underlying problem,
for instance a metabolic disorder [14]. Performing cranial
ultrasound on admission is also of value, as most of
these lesions suggestive of an antenatal insult or an
underlying problem will be recognised with ultrasound.
The presence of increased echogenicity in the white
matter on a day 1 ultrasound examination is also strongly
suggestive of an antenatal insult as this echogenicity
takes time to develop. These findings may be important
for genetic counselling as well as for medicolegal issues
(Fig. 1).

The use of diffusion-weighted imaging (DWI) has also
greatly improved our ability to time the onset of brain
lesions. A reduced apparent diffusion coefficient can be
calculated, showing reduced values (restricted diffusion)
during the first few days after the insult, with pseudonorm-
alisation by the end of the first week [15–17]. Sequential
imaging has shown that lesions in the basal ganglia may
increase in size and site during the first week after birth
[18, 19]. Barkovich et al. [19] performed sequential
imaging in ten newborn infants and noted that patterns
of injury varied considerably during the first 2 weeks after
injury. The appearance of new areas of reduced diffusion
simultaneous with the pseudonormalisation of areas that
had reduced diffusion at earlier times could result in an
entirely different pattern of injury on ADC maps acquired
at different time points. One therefore needs to be aware of
these evolving patterns.

Main patterns of injury

Comparable to studies in a primate model [2], two main
patterns of injury can be distinguished with MRI in the
full-term neonate:

1. Basal ganglia–thalamus pattern (BGT) predominantly
affecting bilaterally the central grey nuclei (ventrolateral
thalami and posterior putamina) and perirolandic cortex.
Associated involvement of the hippocampus and brain
stem is not uncommon (Fig. 2). This pattern of injury is

most often seen following an acute sentinel event, for
instance a ruptured uterus, placental abruption or a
prolapsed cord [3], and is also referred to as a pattern
following ‘acute near total asphyxia’ [12, 20]. Using
conventional MRI, it was first shown by Rutherford et
al. [21] that absence of a normal high-signal intensity of
the posterior limb of the internal capsule (PLIC) is
highly predictive of severe adverse sequelae. Using
conventional MRI, an inversion of the signal within the
PLIC is only seen from 48 to 72 h onwards. When MRI
is performed early, DWI will already show changes in
the basal ganglia/thalami. More accurate information
about timing of injury can sometimes be obtained when
measuring the apparent diffusion coefficients, but due to
evolution over time, this is mainly helpful in the most
severely affected infants, who have an MRI performed
within the first few days after birth [16, 22]. Hunt et al.
[23] measured ADC values within the PLIC in 28 term
infants with a clinical diagnosis of hypoxic–ischaemic
encephalopathy (HIE) at a mean age of 5.6 days. ADC
values were significantly associated with survival and
motor outcome. Measuring fractional anisotropy (FA)
was noted to be superior to measuring ADC values in
predicting outcome [24]. While reduced ADC values
were only found in infants with severe encephalopathy,
reduced FA values were found in infants with severe and
moderate encephalopathy [24]. Children with the BGT
pattern of injury tend to be severely disabled due to
dyskinetic cerebral palsy (CP). Himmelmann et al. [25]
studied 48 children at a mean age of 9 years (range
4–13 years) with dyskinetic CP mostly due to BGT
injury and found that most children had Gross Motor
Function Classification System levels of level IV, n=10,
and level V, n=28. The rate of learning disability (n=35)
and epilepsy (n=30) increased with the severity of the
motor disability.

2. Watershed predominant pattern of injury (WS) is the
other pattern of injury which is also referred to as a pattern
seen following ‘prolonged partial asphyxia’. The vascular
watershed zones (anterior–middle cerebral artery and
posterior–middle cerebral artery) are involved, affecting
white matter and inmore severely affected infants also the
overlying cortex (Fig. 3). The lesions can be uni- or
bilateral, posterior and/or anterior. Although loss of the
cortical ribbon and therefore the grey–white matter
differentiation can be seen on conventional MRI, DWI
highlights the abnormalities and is especially helpful in
making an early diagnosis [26, 27]. A repeat MRI may
show cystic evolution, but more often atrophy and
gliotic changes will be recognised [28]. It is also more
common after hypotension, infection and hypoglycaemia,
all of which may be associated with a more protracted
course [29]. Neurological manifestations at birth may be
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mild and do not always meet the perinatal asphyxia
criteria and onset of neurological signs can be delayed
[30]. Severe motor impairment is uncommon in this
group of infants, and they are often considered to have
an early normal outcome, when seen at 12–18 months.
When seen up till early childhood suboptimal head
growth, behavioural problems and delay in language are,
however, common [31, 32]. Miller et al. [33] were first
able to recognise cognitive deficits associated with the
watershed pattern of injury at 30 months, while the
problems were largely overlooked, when seen at
12 months. More recently, they also showed a correlation
with verbal IQ at 4 years of age [32]. Symptomatic
parieto-occipital epilepsy may occur later in childhood,
often associated with reduced intelligence quotients and
visuospatial cognitive functions [34].

3. Although not very common, severe involvement of
the subcortical white matter and cortex can be seen
with relative sparing of the immediate periventricular
white matter and central grey matter, referred to as the

‘white cerebrum’, as DWI shows an almost completely
white cerebrum, contrasted to a normal looking cerebel-
lum [35] (Fig. 4). This condition tends to be fatal, but
in case of survival, muticystic encephalomalacia will
develop. An association was recently shown with
homozygosity for the 677C>T allele [36]. The
prevalence of the 677C>T allele was studied in 11
children with HIE, their respective mothers and 85
healthy individuals. Seven mothers were homozygous
and four heterozygous for the 677C>T allele. Five of
the children were homozygous and six heterozygous
for this polymorphism. The variant allele frequency
was higher in the group of mothers with affected
children than in the controls and was associated with
an increase in plasma homocysteine after methionine
loading. The 677C>T mutation in mothers, either in a
homozygous or heterozygous state, together with poor
nutritional status (probable folate deficiency) may
represent a risk factor for irreversible brain injury in
the offspring.

Fig. 1 Cranial ultrasound,
coronal view, day 1, showing
severe echogenicity in the white
matter. MRI (T2SE (TR 6284/
TE 120) and ADC) performed
on day 3 showing increased
signal intensity in the white
matter on T2SE and low signal
intensity in the deep white
matter on the ADC map with
sparing of the anterior
periventricular white matter and
asymmetrical distribution in the
parieto-occipital white matter.
The child died and was
subsequently diagnosed to have
molybdenum cofactor
deficiency
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4. Another pattern of brain injury consists of “lesions
restricted to the periventricular white matter”, not
dissimilar from the so-called punctate white matter
lesions in the preterm infant (Fig. 5). Li et al. [37]
diagnosed this pattern of injury in 23% of their infants
and pointed out that infants with this type of injury are
significantly less mature with a milder degree of

encephalopathy and fewer clinical seizures relative to
other newborns in their cohort, who were diagnosed to
have the two more common patterns of injury. This
pattern of brain injury is also seen in newborn infants
with congenital heart defects [38].

5. Perinatal arterial ischaemic stroke (PAIS), perinatal
haemorrhagic stroke (PHS) and sinovenous thrombosis

Fig. 2 Full-term infant with
acute sentinel event (ruptured
uterus) with MRI pattern
suggestive of acute near total
asphyxia. a Inversion recovery
sequence (TR 5038/TE 30/TI
600) does not show a normal
signal within the posterior limb
of the internal capsule, but areas
of increased signal intensity
within thalami and basal
ganglia. DWI (b–d) shows
restricted diffusion in the
ventrolateral thalami, lentiform
nuclei, cerebral peduncles, and
in the perirolandic cortex. Also
note involvement of the
hippocampi

Fig. 3 Full-term infant with
watershed pattern of injury.
Born with severe anaemia
(Hb 2.2 mmol/l) following
fetomaternal transfusion and a
short period of hypoglycaemia
(<1.1 mmol/l). Loss of cortical
ribbon is noted on the T2SE (TR
6284/TE 120; a), and the corpus
callosum appears to be swollen
with increased signal intensity.
b) The ADC map shows low-
signal intensity in the posterior
watershed areas, as well as the
splenium of the corpus callosum
and the optic radiation
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can also be seen in newborn infants presenting with
neonatal encephalopathy and/or seizures. PAIS was
found to be related to perinatal asphyxia in only six out
of 124 infants [39]. Our own experience and that of
others, however, do suggest that the obstetric history is
more complicated in infants presenting with PAIS, and

there is often a history of an abnormal cardiotocograph,
an instrumental delivery or an emergency caesarean
section [40]. Cranial ultrasound may be normal if the
stroke is superficial and ischaemic, or it may reveal a
wedge-shaped area of increased echogenicity with a
linear demarcation line, usually within the territory of

Fig. 4 Full-term infant with
‘white brain’ pattern of injury.
a, c T2SE (TR 6284/TE 120)
shows increased signal intensity
in the white matter with loss of
cortical ribbon. There is relative
sparing of the basal ganglia and
immediate periventricular white
matter. DWI (b, d) confirms the
abnormalities and shows a
striking discrepancy in signal
intensity with the cerebellum.
Note high-signal intensity of the
mesencephalon (c) on T2SE and
symmetrical restricted diffusion
in the cerebral peduncles and
also in the cerebellum (d)

Fig. 5 Full-term infant with
punctate white matter lesions
seen as low signal intensity
changes on T2SE (TR 6284/TE
120) and as areas of restricted
diffusion on DWI. There is also
mild involvement of the corpus
callosum and PLIC, seen on
DWI
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the middle cerebral artery. The echogenicity tends to
become visible during the second half of the first week
[41]. MRI, including DWI, and MR angiography are by
far superior to head ultrasound and should be
performed in any newborn presenting with neonatal
seizures and especially hemiconvulsions. The role of
DWI in the prediction of motor outcome was
recently shown [42, 43] with restricted diffusion
within the descending corticospinal tracts. Restricted
diffusion at the level of the internal capsule and
especially the middle part of the cerebral peduncle is
now referred to as ‘pre-Wallerian degeneration’ as it is
followed by Wallerian degeneration at 6–12 weeks and
beyond. Presence of Wallerian degeneration at birth
suggests an antenatal onset of the insult (Fig. 6).

Recently developed techniques, such as diffusion tensor
imaging (DTI), will allow quantification and visualisation
of white matter pathways in vivo [44]. DTI characterises
the 3D spatial distribution of water diffusion in each MRI
voxel. Water diffuses preferentially along the direction of
the axons and is restricted perpendicular to axons by

myelin. This directional dependency is referred to as
anisotropy. Directionality encoded colour maps (red–
green–blue) or fibre trackings are commonly used. A FA
map can show asymmetry of the PLIC as early as the
neonatal period. In a study of 15 patients with congenital
hemiparesis due to different causes, studied at a median age
of 2 years and compared with 17 age-matched controls,
clinical severity of hemiparesis was noted to correlate with
asymmetry in fractional anisotropy (p<0.0001), transverse
diffusivity (p<0.0001) and mean diffusivity (p<0.03) [45].
Another promising technique is volumetric determination
of stroke volumes, which was noted to predict motor
outcome in animal studies [46]. Functional MRI tends to be
used in childhood or adolescence to study reorganisation of
the sensorimotor cortex [47, 48], but it was recently shown
that passive unilateral sensorimotor stimulation is feasible
even in the preterm infant resulting in bilateral activation of
the sensorimotor cortex [49, 50].

The term PHS was recently coined by Armstrong-Wells
et al. [51] and appeared to include term infants with
parenchymal haemorrhage due to different underlying
problems. They found a population prevalence of 6.2 in

Fig. 6 Born at 37 weeks,
following antenatal diagnosis of
foetal supraventricular tachycar-
dia. MRI, T2SE (TR 6284/TE
120) performed on day 3, shows
a large left-sided middle cerebral
artery infarct of antenatal onset,
with evidence of Wallerian
degeneration and presence of
cysts within the area of
infarction. Diffusion tensor
tractography shows loss of
fibres with the corticospinal tract
of the affected hemisphere
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100,000 live births. All infants presented with encepha-
lopathy and more than half (65%) with seizures. Perinatal
haemorrhagic stroke was typically unifocal (74%) and
unilateral (83%). Etiologies included thrombocytopenia
(n=4) and cavernous malformation (n=1); 15 (75%) were
idiopathic. Foetal distress and postmaturity were found to
be independent predictors. While some of the larger
lesions will be recognised with ultrasound, MRI will
provide more detailed information, and early DWI will be
able to show associated areas with restricted diffusion.

Cerebral sinovenous thrombosis (CSVT) occurs in 0.41
per 100,000 liveborn infants [52]. This diagnosis should
especially be considered in infants who present without a
history of perinatal asphyxia but with seizures and/or
lethargy, sometimes in the context of infection or dehydra-
tion. Wu et al. [53] first pointed out that CSVT should
always be considered in the presence of an intraventricular
haemorrhage (IVH), especially when associated with a
unilateral thalamic haemorrhage. Thirty-one percent of 29
infants born >36 weeks gestation, who were diagnosed with
CSVT, presented with an IVH. Thalamic haemorrhage was
diagnosed in 16% of infants with CSVT [53, 54].

Cranial ultrasound may detect CSVT, particularly in the
presence of a midline thrombus in the superior sagittal
sinus, or a unilateral thalamic haemorrhage. Power Doppler
may be superior to colour Doppler when available [55, 56].
Additional imaging is required to exclude CSVT in more
peripheral locations and to confirm the extent of the
thrombus. Unenhanced CT may detect a thrombus and
contrast-enhanced CT may show the ‘empty delta’ sign
which is a filling defect in the posterior portion of the
superior sagittal sinus due to thrombus. There are false
positives and missed diagnoses in up to 40% of children
with CSVT [57]. MRI and MR venography or CT
venography are needed to confirm the diagnosis [58].
Susceptibility weighted imaging has recently been reported
as another useful sequence in confirming the presence of
CSVT and following for progression or resolution [59, 60].

MRS

The technique of MRS enables us to detect different
molecules in tissue. Nuclei that have been used clinically
for MRS are 31P and 1H. Thereby, in vivo brain metabolism
can be assessed, and changes can be documented. MRS has
been used to study changes in cerebral metabolism of
neonates following (perinatal) hypoxia–ischaemia.

31P-MRS

31P-MRS was one of the first MRS techniques to be used in
neonates more than two decades ago [6, 7]. With this

technique, metabolites such as high-energy phosphates
(phosphocreatine (PCr), nucleotide triphosphates (NTP))
and inorganic phosphate (Pi), phosphomonoesters and
phosphodiesters can be detected. It is time-consuming to
measure absolute concentrations, and therefore, metabolite
ratios have been calculated used instead to demonstrate
changes in the brain. In addition, intracellular pH can be
calculated using the formula published by Petroff et al. [61].

It has been shown that these metabolite ratios change
during development, especially during the first years of life
[62]. In animal experiments hypoxia decreased PCr/Pi and
NTP/total phosphate ratios [63]. Full-term neonates with
perinatal asphyxia have also been studied [64, 65]. After a
successful resuscitation, brain energy metabolism returned
to normal to become abnormal after 6–12 h to decrease
even further after 24–48 h [65–67]. This coincided with
clinical deterioration such as the development of seizures.
The concept of ‘secondary energy failure’ has been
elaborated in animal models, in particular in newborn
piglets [68–70]. Using 31P-MRS in these animal models,
neuroprotective strategies like hypothermia or 2-iminobiotin
could be tested [71, 72].

An example of the changes in 31P-MRS during cerebral
hypoxia–ischaemia in the newborn piglet is presented in
(Fig. 7). With the increasing experience in human neonates,
31P-MRS was found to correlate with long-term neuro-
developmental outcome, especially when performed during
the first few weeks after the insult [66, 67]. In neonates with
a very poor outcome, elevated intracellular pH, the so-called
pH paradox, existed even for weeks after the insult, possibly
due to changes in the Na+/H+ transporter.

Fig. 7 31P-MRS of a newborn piglet at baseline (top) and after 1 h of
cerebral hypoxia–ischaemia (bottom). The PCr/Pi ratio and ATP peaks
decreased, whereas the distance between PCr and Pi decreased,
indicating a decrease in the intracellular pH [14]
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Unfortunately, with the magnetic field strength of the
current clinical systems, it is impossible to perform
localised 31P-MRS, so only relatively large brain areas
can be examined. Due to these limitations, 31P-MRS has
not become a routine clinical tool to assess asphyxiated
full-term neonates.

1H-MRS

Proton MRS has also been used in neonates since the early
1990s [62, 73]. Metabolites that can be demonstrated with
1H-MRS and echo times of 136 or more milliseconds are
choline (Cho), creatine and phosphocreatine as a single peak
(Cr), N-acetylaspartate (NAA) and—when present—lactate
(Lac). With shorter echo times, myo-inositol and the
combined glutamate–glutamine–GABA peak can be
measured. Given the large amounts of water in the
neonatal brain, high-quality water suppression is essential
for 1H-MRS. The detection level of the aforementioned
metabolites is in the millimolar range. As with 31P-MRS,

providing absolute concentrations of metabolites is difficult,
needing internal or external standards. Although some have
used water as an internal standard, this may not be
appropriate in asphyxiated full-term neonates with changing
amounts of intracellular and extracellular brain water [74].

Therefore, metabolite ratios such as NAA/Cho, NAA/Cr
or Lac/NAA are used instead [75]. NAA is found mainly in
neurons and oligodendroglial precursors. It has been used
as a marker of neuronal integrity. With selective loss of
neurons, the NAA/Cho ratio will decrease (Fig. 8).

Previously, the changes in 1H-MRS during normal
development have been demonstrated [62]. In a previous
study, we have shown an increase in the NAA/Cho ratio
between preterm at a gestational age of 32 weeks and term
equivalent age [76]. Others have shown that lactate is a
normal component in the preterm brain [77]. We have
demonstrated lactate in the brain of the asphyxiated full-term
neonate days after the insult [75]. Others have shown that this
may persist even for weeks [78]. Experimental work in
animals showed accumulation of lactate in the brain during

Fig. 8 1H-MRS of a full-term neonate, 4 days after perinatal
asphyxia. NAA/Cho is still within the normal range for full-term
neonates, but a very large lactate resonance can be identified at

1.33 ppm. a Original spectrum of TE 35 ms, b original spectrum of
TE 144 ms, c fitted spectrum of TE 35 ms, and d fitted spectrum of
TE 144 ms
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secondary energy failure which could be decreased with
appropriate neuroprotective strategies [71].

An advantage of 1H-MRS over 31P-MRS is the possibility
to perform localised examinations. Volumes of brain tissue as
small as 1 cc can be assessed in 1.5-T MR systems. Thereby,
changes in brain areas that are particularly vulnerable, such
as the basal ganglia and thalamus, can be demonstrated.

In addition, chemical shift imaging enables us to
measure metabolites in a matrix of voxels overlying the
brain. Thereby, localised elevations of lactate can be
demonstrated [79]. An example of this is given in Fig. 9,
where 1H-MRS chemical shift imaging is presented of a
neonate with a large infarct in the territory of the right
middle cerebral artery.

One of the limitations of 1H-MRS is the loss of quality
by susceptibility. Thereby, it is impossible to examine the
cortex reliably.

We and others have shown decreases in NAA/Cho or
NAA/Cr and elevations of Lac/NAA to predict a poor
neurodevelopmental outcome [75, 80]. These studies have
recently been summarised [81]. The timing of 1H-MRS is
less critical than of 31P-MRS. Measurements performed after
the second week of life may show normalised PCr/Pi ratios.
MR imaging performed before the fourth day after the insult

may not yet demonstrate changes on T1- and T2-weighted
images. Diffusion-weighted images may show pseudo-
normalisation, which complicates assessment of the severity
of the insult. Abnormalities using 1H-MRS may only be
missed, when this technique is performed very early, i.e.
during the first day of life, before the development of
secondary energy failure [82].

Based on these aspects, it has been suggested that
1H-MRS is the best MR biomarker to predict neurodeve-
lopmental outcome in asphyxiated full-term neonates [81].
However, since brain metabolite ratios may vary between
MR systems and coils, development of normal values in
one’s own setting is required, and support of physicists is
mandatory. The limiting factor in the development of these
normal values may be the lack of ‘normal’ neonates who will
undergo MR examinations.

Conclusion

Overall, there has been tremendous progress in the MRI
technique over the last few decades. Both MRI and proton
MRS can help in detecting different patterns of brain injury
in (full-term) human neonates following hypoxic–ischaemic

Fig. 9 Chemical shift imaging a neonate with a large stroke in the territory of the right middle cerebral artery (a). In the infarcted area, NAA
concentration is decreased (b, red), whereas Lac/NAA ratio is increased (c, yellow)
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brain injury and are extremely useful in predicting neuro-
developmental outcome. We recommend to perform MRI
and MRS in every full-term infant with encephalopathy
and/or seizures admitted to a neonatal intensive care unit.
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