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Abstract

Purpose—To develop an age-dependent mathematical model of the zero-order shape of the isolated
ex vivo human crystalline lens, using one mathematical function, that can be subsequently used to
facilitate the development of other models for specific purposes such as optical modeling and
analytical and numerical modeling of the lens.

Methods—~Profiles of whole isolated human lenses (n=30) aged 20 to 69, were measured from
shadow-photogrammetric images. The profiles were fit to a 10t-order Fourier series consisting of
cosine functions in polar-coordinate system that included terms for tilt and decentration. The profiles
were corrected using these terms and processed in two ways. In the first, each lens was fit to a 10t-
order Fourier series to obtain thickness and diameter, while in the second, all lenses were
simultaneously fit to a Fourier series equation that explicitly include linear terms for age to develop
an age-dependent mathematical model for the whole lens shape.

Results—Thickness and diameter obtained from Fourier series fits exhibited high correlation with
manual measurements made from shadow-photogrammetric images. The root-mean-squared-error

of the age-dependent fit was 205 um. The age-dependent equations provide a reliable lens model for
ages 20 to 60 years.

Conclusion—The contour of the whole human crystalline lens can be modeled with a Fourier
series. Shape obtained from the age-dependent model described in this paper can be used to facilitate
the development of other models for specific purposes such as optical modeling and analytical and
numerical modeling of the lens.
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1. Introduction

There is much interest in computational modeling for the analysis of accommodative functions
of the human crystalline lens. For such modeling to be valid, the geometrical, optical and
mechanical parameters of the accommodative system need to be established. In the first
instance, as it sets the initial conditions, a reliable geometric model of the lens will, to a large
extent, impact the validity of data obtainable from computational models. Geometrically, the
crystalline lens is a solid in three-dimensional space that approximately possesses one axis of
rotational symmetry. The presence of rotational symmetry provides for simplification by
modeling in axi-symmetric two-dimensions. However, the presence of anterior and posterior
surfaces, as well as regions of vertical surfaces at the equator, invokes certain geometric
conditions in modeling.

Chien, Huang and Schachar (2003) listed five compulsory requirements for any analytical
function that seeks to represents the shape of the crystalline lens to meet geometric conditions.
The five compulsory requirements are (1) the lens profile should be continuous and smooth
(2) the derivative at the pole should be zero (3) the lens profile should be zero at the equator
(4) the slope at the equator should be vertical and (5) the surface slope should decrease
monotonically as distance from the axis increases so that the generated surface has a positive
Gaussian curvature everywhere.

They also listed four desirable conditions, for the surface to have appropriate optical qualities,
which are (1) the model should follow the original lens profile closely (2) the radii of curvature
should be continuous (3) the rate of change of the radii of curvature should be zero at the poles
and (4) The rate of change of the radius of curvature with respect to distance from the axis
should be gentle at least in the pole regions.

Against the foregoing geometric conditions, the majority of existing lens models describe the
lens with two mathematical functions, one each for the two surfaces of the lens (Howcroft and
Parker 1977; Koretz, Handelman and Brown 1984; Dubbelman and van der Heijde 2001; Chien
etal., 2003; Manns, Fernandez, Zipper, Sandadi, Hamaoui, Ho and Parel 2004; Strenk, Strenk,
Semmlow and DeMarco 2004; Rosen, Denham, Fernandez, Borja, Ho, Manns, Parel and
Augusteyn 2006; Borja, Manns, Ho, Ziebarth, Rosen, Jain, Amelinckx, Arrieta, Augusteyn
and Parel 2008). These models were mostly developed for supporting optical modeling and
therefore focus on the central 4 to 5 mm region, bypassing the need for accurate portrayal of
the lens equator. As an alternative to using two functions to describe anterior and posterior lens
surfaces, Kasprzak (2000) and Smith, Atchison, Iskander, Jones and Pope (2009) approximated
the whole profile of the human lens using hyperbolic cosine functions and a generalized conic
function.

It would be ideal to develop one mathematical model for the lens shape that can be applied for
various purposes such as optical and mechanical modeling. But this would involve imposing
various constraints to the lens shape and its subsequent derivatives, which would prohibit the
model from being faithful to the true lens shape. A faithful age-dependent mathematical model
of the zero-order shape of the lens contour would be beneficial to scientists who wish to develop
their own models with constraints for specific purposes. This model would serve as a substitute
for actual lens measurements.
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We recently developed two age-dependent polynomial models (Urs, Manns, Ho, Borja,
Amelinckx, Smith, Jain Augusteyn and Parel 2009). The Two Curves Model (TCM) used two
10t-order even polynomials to describe the two lens surfaces from equator to equator and the
One Curve Model (OCM) described one meridional half of the lens using one 10t-order
polynomial equation from pole to pole. While both models were age-dependent and attempted
to model the whole lens profile including the equatorial regions, they did not represent the
whole lens profile with a single mathematical expression. This limitation caused, in the TCM
model, the lens surfaces and their derivates to be discontinuous at the equator and in the OCM
model, the derivative of the profile to be non-zero at the poles. Constraints can be set to fitting
functions to overcome this problem. However, these conditions may cause the fitting functions
to not closely model the lens.

The purpose of the current study is to develop an age-dependent mathematical model of the
whole lens profile, using one mathematical function. This model should address the
shortcomings of the previous models and ideally satisfy as many as possible of the geometrical
conditions defined above. This age-dependent model should provide reliable lens contour
shapes to facilitate development of new mathematical functions for various purposes such as
optical modeling and analytical and numerical modeling of the lens.

2. Materials and Methods

Lens Preparation

All human eyes were obtained and used in compliance with the guidelines of the Declaration
of Helsinki for research involving the use of human tissue. Crystalline lenses (n=30) from
donors in the age range of 20 to 69 were used in this study. They were extracted from whole,
intact cadaver eyes, obtained from various US eye banks. The post-mortem time ranged from
1to 5days. The lens extraction procedure consisted of first removing the globe's posterior pole,
the cornea and the iris. Then the adherent vitreous was carefully removed, the zonules were
cut and the lens was extracted and placed in the imaging cell containing DMEM (Augusteyn,
Rosen, Borja, Ziebarth and Parel, 2006). Of the 105 lenses available for this study, 75 lenses
were excluded either because of capsular tear or separation. This proportion is similar to that
reported by Augusteyn et al., (2006)

Lens Imaging and Image Analysis

Lenses were imaged using the technique of shadow-photogrammetry (Denham, Holland,
Mandelbaum, Pflugfelder and Parel, 1989; Pflugfelder, Roussel, Denham, Feuer, Mandelbaum
and Parel, 1992; Rosen et al., 2006; Augusteyn et al., 2006, Urs et al., 2009). The shadow-
photogrammetric system consists of a modified optical comparator (BP-30S, Topcon, Tokyo,
Japan) with two light sources to enable photography of the crystalline lens in the coronal and
sagittal planes. A 20x magnified shadow of the excised lens is projected onto a viewing screen
and images are captured by a 4.0 Mp Nikon Coolpix 4500 digital camera (Tokyo, Japan)
positioned at a fixed distance from the screen. For scaling purposes a ruler (1376 T-25, Keuffel
and Esser Co., Hoboken, New Jersey) was concurrently photographed on each image.

Lens contour detection has been described in a previous publication (Urs et al, 2009). Binary
images of the lens contours were loaded into MATLAB. An approximate center for the lens
was determined by examining the outermost pixels along the equatorial axis and the optical
axis. The initially centered lens contour was positioned such that, the anterior surface of the
lens was in the second and third quadrants of the Cartesian coordinate system and the posterior
surface in the first and fourth quadrants (Figure 1). This coordinate system was converted to
polar domain and the lens contour was fit to a 101-order cosine series function (Equation 1)
using MATLAB's curve-fitting toolbox.
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10
pc(6)2a0+2a"cos (n X (tanl (u) - 00))
X — X

n=1 Equation 1

The curve fit provided values for x; and y; (the center displacement terms), and 6 (the angle
displacement term), to correct for decentration and tilt, and scaling coefficients ag to a,, (for
the cosine series). The center and angle displacements of the lens contour were first corrected
with the values X, y¢ and 0. obtained from the curve fit. In the Cartesian coordinate system
the corrected profile was then translated to place the equator on the y-axis (i.e. x = 0), where
the equator is defined as the largest linear dimension of the lens parallel to the equatorial axis.
The original lens profile, the curve fit and corrected profile are shown in Figure 2, for a 28
year-old lens, in both the Cartesian and polar coordinate systems. The translated, corrected
profiles were processed in two ways: one for individual lens biometry and the other for
obtaining an age-dependent model.

First, each lens contour was fit to a 10!-order Fourier series of cosine functions (Equation 2).

10

pr(6)= (b)cos(nt)

n=0 Equation 2

The Fourier series of Equation 2 assumes a period  and mirror symmetry since the lens is
assumed to be rotationally symmetric. The equatorial diameter (D) was calculated as twice the
radial distance at 6==/2. The anterior sagittal thickness and the posterior sagittal thickness were
calculated as the radial distances at 6== and 6=0 respectively. Total sagittal thickness was
calculated as the sum of the two thicknesses. Thickness and diameter were also measured
directly from the shadow-photogrammetric images using Canvas (version 9.0, ACD Systems
of America, Miami, FL).

In a second, separate process, the translated, corrected profiles of all 30 lenses were re-sampled
with a sampling step-size of 10 radians and fit simultaneously to an age-dependent Fourier
series model (Equation 3) using MATLAB's least-square curve-fit method to develop an age-
dependent model for the lens.

10

p(ﬁ):Z(Anl +A;2 X age)cos(nb)
n=0 Equation 3

The coefficients obtained from the fits were used to plot lens shapes for 20, 40 and 60 year-
old lenses.

The root-mean-squared-error (rmse) of the Fourier fits of the individual lenses ranged from 11
to 137 um with a mean of 37 £24 um for the 30 lenses.

Figure 3 shows the linear regression graphs of thickness and diameter versus age. Both
dimensions increased significantly with age (p<0.05). Pearson correlation of thickness and
diameter calculated by the Fourier function fits and measured from the shadow-
photogrammetric images, revealed that the two methods were highly correlated for
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measurement of both dimensions (R > 0.98; p<.0001). Regression analysis of both dimensions
yielded comparable slopes (0.01+0.004mm/year for thickness from Fourier fits and 0.01+0.01
mm/year for thickness from shadow-photogrammetric images and 0.02+0.01 mm/year for
diameter from both methods). Bland-Altman analysis (Figure 4) demonstrated that the mean
measurement error was 0.02+0.04 mm for the thickness and 0.01+0.1 mm for the diameter.
Most of the measurements were within 2 standard deviations of the mean measurement error.

Table 1 lists the age-dependent Fourier coefficients. The root-mean-squared-error (rmse) of
the age-dependent fit for the 30 lenses was 205 um. Figure 5 shows the Fourier model for lenses
aged 20, 40 and 60 years. Figure 6 shows the model superimposed on lenses of various ages.

4. Discussion

In this study, shapes of 30 explanted human crystalline lenses were recorded using a shadow-
photogrammetric system. These lenses were from cadaver eyes, where the vertical and
horizontal meridians were unknown and therefore the lens was assumed to be rotationally
symmetric. Profiles of these lenses were extracted from the images and corrected for angular
and centration misalignments. The corrected profiles were individually fit to a 10t-order
Fourier series of cosine functions for lens biometry. The corrected profiles were also re-
sampled and simultaneously fit to a 10™-order age-dependent Fourier series model to obtain
the age-dependent Fourier amplitudes. Lens shapes for lenses aged 20, 40 and 60 were plotted
using this age-dependent model (Figure 5). The Fourier series chosen did not include phase
terms (i.e. shifts in 0) because the lens was assumed to be symmetric around the optical axis.
We chose to use a 10t-order Fourier series as our preliminary evaluations suggested that the
rmse of the fits converged at order 10 and did not decrease significantly for higher orders
(Figure 7). At 10™-order, the average rmse for the 30 profiles was 37 + 24 um indicating a very
good fit to actual data.

Thickness and diameter calculated from the fits displayed an age-dependent trend similar to
that reported by Rosen, et al., (2006). Unlike the typical approach of statistically fitting
coefficients to age values post model-fitting, our age-dependent model explicitly included age
within the function (Equation 3). Thus, the model is a true age-dependent model of lens shape.
This age-dependent model is applicable for lenses aged 20-60, being limited by the age-range
of lenses available for this study. While it is known that certain geometrical parameters of the
lens follow curvilinear relationships with age especially at the younger age ranges (Zadnik,
Mutti, Fusaro & Adams 1995; Multti, Zadnik, Fusaro, Friedman, Sholtz, & Adams 1998;
Augusteyn 2007, Augusteyn 2008), due to the few number of samples available, linear age-
dependence was assumed for the lens shape in the development of this model. A more
sophisticated model (e.g. in which the Fourier amplitude coefficients have curvilinear or power
relationship with age) can be developed when greater number of lenses and especially younger
lenses become available.

The cosine function-based model has some advantages over the polynomial models published
earlier (Urs et al., 2009). In particular, the whole lens shape can be modeled with one
mathematical function. In addition the lens profile, as well as the derivative of the whole lens
profile is continuous, with zero slopes at the poles.

Therefore, of the five compulsory requirements listed by Chien et al., (2003) the age-dependent
Fourier model of the present study satisfies the first two compulsory requirements.

The third and fourth requirements which state that the equator should coincide with the X-axis
and that the slope should be vertical at the equator is not precisely satisfied by this model.
However, this requirement is not strictly compulsory for numerical modeling such as finite
element or optical modeling as these techniques are invariant with translation. Further, since
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the function is based on cosine functions on a polar coordinate system, analytically, it can be
shown that there are two points on the curve where the slope is vertical when converted back
to Cartesian coordinates. In the present models, these points are very close to the X-axis. Since
by most definitions, the line passing through these two points is the equator, if required, the
curve can be translated (very slightly) to place the equator on the X-axis. This minor translation
will render the model's compliance with the third and fourth requirements.

The fifth requirement, which states that the surface slope should decrease monotonically as
distance from the axis increases, is only satisfied for lenses aged 43 to 59. However, there is
evidence that the lens profile may not always obey the positive Gaussian curvature condition.
For example Zeeman (1908) showed that the lens profile may be locally concave in the mid-
periphery of the posterior surface. While the preparation method might account for some of
these observations, forcing positive Gaussian curvature on models that intend to fit all possible
lens profiles may render it less general and valid. Therefore, depending on the lens sample, the
‘compulsory’ fifth requirement of Chien et al., (2003) may not necessarily be considered
compulsory.

This model also does not meet one desirable condition for optical modeling which is that the
rate of change of the radius of curvature with respect to distance from the axis should be gentle
at least in the pole regions. The relatively erratic behavior of local radii of curvature (which
can be calculated using the first and second derivatives) might be anticipated from this model
as it included higher-order (i.e. frequency) series.

The primary purpose of this model is to provide an age-dependent contour of the zero-order
lens shape. This model could then be used to facilitate the development of other mathematical
models for specific purposes. To illustrate this application, the central 6 mm of the raw lens
contour obtained from shadow-photogrammetric images and that of the contour obtained from
the age-dependent Fourier model were fit to conic functions. The radii of curvature obtained
from the fits were analyzed with a two-sample t-test, which revealed that the datasets acquired
from the two methods were not significantly different at the 0.05 significance level (p=0.96
for posterior radius of curvature and p=0.58 for anterior radius of curvature). The age-
dependency of the radii of curvature was also analyzed (Figure 8). Linear regression yielded
similar results for age-dependency for both posterior radius of curvature (0.05£0.1 mm/year
for conic fits of raw lens shape and 0.04+7E-5 mm/year for conic fits of age-dependent Fourier
lens model) and anterior radius of curvature (0.08+0.03 mm/year for conic fits of raw lens
shape and 0.11+0.002 mm/year for conic fits of age-dependent Fourier lens model).
Furthermore an F-test revealed that the linear regressions were not significantly different at
the 0.05 significance level. (F=0.001, p=0.99 for posterior radius of curvature and F=0.02,
p=0.98 for anterior radius of curvature). From this analysis it can be deduced that the lens shape
as described by the age-dependent Fourier model is close to the actual lens shape, and as such,
can be used to develop models for other specific purposes such as optical modeling.

One feature of this model is that it allows determination of the equatorial plane, the point at
which the derivative is zero. This enables prediction of the aspect ratio (ratio of anterior to
posterior thickness) of the lens. The model predicts a mean aspect ratio of 0.78 (x0.01) which
is comparable to experimental data of 0.7 (0.013) (Rosen, et al., 2006). This provides further
evidence for the efficacy of the age-dependent Fourier model.

In this study we have presented an age-dependent mathematical model for the whole shape of
the ex vivo human crystalline lens, using a single mathematical function. The method described
can be used for individual lens biometry as it provides a mathematical method for correction
of tilt and decentration. While only human lens shapes were tested, the approach should be
applicable to all lenses that follow similar geometrical conditions. We believe that the shape
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obtained from the age-dependent Fourier model can be used to develop new models for other
purposes such as mechanical modeling, to obtain reliable information about the
accommodative mechanism of the human eye with particular advantage in the modeling of the
equatorial region, or optical modeling.
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Figure 1.

The co-ordinate system for the Fourier model. The lens anterior surface was placed in quadrants
I1and 111 and the posterior surface was placed in the quadrants I and IV. T and D represent the
thickness and diameter of the lens.
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Figure 2.

The original lens contour (black), lens contour fit to Equation 1 (green) and the adjusted lens
contour (red). (2a) Shows lens contour in Cartesian coordinates and (2b) in polar coordinates
for contour extracted from shadow-photogrammetric images of a 28 year-old human crystalline
lens that was 3 days post mortem.
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Figure 3.

Linear regression of thickness (T) and diameter (D) of the human crystalline lens with age
yielded T =3.8 (£0.9) + 0.01(x0.004) x Age (R=0.45, p=0.01) and D = 8.6 (x0.3) + 0.02(x0.01)
x Age (R=0.53, p=0.002).
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Bland-Altman plots for thickness (4a) and diameter (4b) of the lens measured from shadow-
photogrammetric images and from Fourier function fits. Most measurements were within 2
standard deviations of the mean measurement error. The mean measurement error was 0.02
+0.04 mm for the thickness and 0.01+0.1 mm for the diameter. These results indicate that
measurements from both methods are the same.
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Figure 5.
Age-dependent Fourier model of 20 (red), 40 (green) and 60 (blue) year-old lenses
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Figure 6.

Figure shows raw lens contours (blue) of ages 20 (a), 32 (b), 42 (c), 48 (d), 53 (e) and 63 (f)
years on which the corresponding shape obtained from the age-dependent Fourier lens model
is superimposed (red).
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Figure 7.

Graph shows effect of the number of coefficients included in the Fourier series on the RMSE
fit of a lens surface. Overall RMSE values converged at order 10 and did not decrease
significantly for orders higher than 10.
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Radii of Curvature from
Conic Fits of lens profiles
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Figure 8.

(8a) Anterior (Ra) and Posterior (Rp) radii of curvature obtained from conic function fits of
raw lens contours. Linear regression of curvatures as a function of age yielded Ra = 5.6 (£1.4)
+0.08 (x0.03) x Age (R =0.47; p=0.009) and Rp = -3.81 (x0.51) - 0.05 (x0.01) x Age (R =
-0.62; p=0.0002). (8b) Anterior (Ra) and Posterior (Rp) radii of curvature obtained from conic
function fits of the age-dependent Fourier lens model. Linear regression of curvatures as a
function of age yielded Ra = 3.9 (+0.1) + 0.11 (x0.002) x Age (R = 0.99; p<.0001) and Rp =
-3.96 (x0.004) - 0.04 (x7E-5) x Age (R = -0.99; p<.0001).
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Fourier coefficients of the age-dependent Fourier model, where A, = Ay1 + App X Age.

Fourier Coefficient | A, Anz

Ag 2.6466 812.11E-5
Ay 0.2246 170.62E-5
A,y -0.97938 -297.37E-5
Az 0.010573 -34.901E-5
Ay 0.37993 -26.276E-5
Ag -0.032321 | 1.6647E-5
Ag -0.16846 69.192E-5
Ay 0.027934 -9.5571E-5
Ag 0.066522 -42.251E-5
Ag -0.014232 | 1.7295E-5
Al0 -0.021375 | 18.638E-5
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